

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f36506dfa-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

As of July 2012

1.3 Product List

Table 1.5 and Table 1.6 list product information. Figure 1.1 shows the Part No., with Memory Size and Package, and Figure 1.2 shows the Marking Diagram (Top View).

	Table	1.5	Product List (1)	/2)
--	-------	-----	------------------	-----

	F	ROM Capacit	у	DAM		
Part No.	Program ROM 1	Program ROM 2	Data flash	RAM Capacity	Package Code	Remarks
R5F36506NFA					PRQP0100JD-B	Operating
R5F36506NFB	128 KB	16 KB	4 KB	12 KB	PLQP0100KB-A	temperature -20°C to 85°C
R5F36506DFA	- 120 KB	TO ND	× 2 blocks	12 ND	PRQP0100JD-B	Operating temperature
R5F36506DFB					PLQP0100KB-A	-40°C to 85°C
R5F3651ENFC					PLQP0128KB-A	Operating
R5F3650ENFA					PRQP0100JD-B	temperature
R5F3650ENFB	256 KB		4 KB	20 KB	PLQP0100KB-A	-20°C to 85°C
R5F3651EDFC	230 KB			PLQP0128KB-A	Operating	
R5F3650EDFA					PRQP0100JD-B	temperature
R5F3650EDFB	_				PLQP0100KB-A	-40°C to 85°C
R5F3651KNFC					PLQP0128KB-A	Operating
R5F3650KNFA					PRQP0100JD-B	temperature
R5F3650KNFB	204 KD	384 KB 16 KB	4 KB × 2 blocks	31 KB	PLQP0100KB-A	-20°C to 85°C
R5F3651KDFC	384 KB				PLQP0128KB-A	Operating
R5F3650KDFA	_				PRQP0100JD-B	temperature
R5F3650KDFB	_				PLQP0100KB-A	-40°C to 85°C
R5F3651MNFC					PLQP0128KB-A	Operating
R5F3650MNFA	_				PRQP0100JD-B	temperature
R5F3650MNFB		40.175	4 KB	31 KB	PLQP0100KB-A	-20°C to 85°C
R5F3651MDFC	512 KB	16 KB	× 2 blocks		PLQP0128KB-A	Operating
R5F3650MDFA					PRQP0100JD-B	temperature
R5F3650MDFB					PLQP0100KB-A	-40°C to 85°C
R5F3651NNFC					PLQP0128KB-A	Operating
R5F3650NNFA	_				PRQP0100JD-B	temperature
R5F3650NNFB			4 KB × 2		PLQP0100KB-A	-20°C to 85°C
R5F3651NDFC	512 KB	16 KB	blocks	47 KB	PLQP0128KB-A	Operating
R5F3650NDFA					PRQP0100JD-B	temperature
R5F3650NDFB					PLQP0100KB-A	-40°C to 85°C
R5F3651RNFC					PLQP0128KB-A	Operating
R5F3650RNFA					PRQP0100JD-B	temperature
R5F3650RNFB			4 KB		PLQP0100KB-A	-20°C to 85°C
R5F3651RDFC	640 KB	16 KB	× 2 blocks	47 KB	PLQP0128KB-A	Operating
R5F3650RDFA					PRQP0100JD-B	temperature
R5F3650RDFB	1				PLQP0100KB-A	-40°C to 85°C

(D): Under development

(P): Planning

Previous package codes are as follows: PLQP0128KB-A: 128P6Q-A PRQP0100JD-B: 100P6F-A PLQP0100KB-A: 100P6Q-A

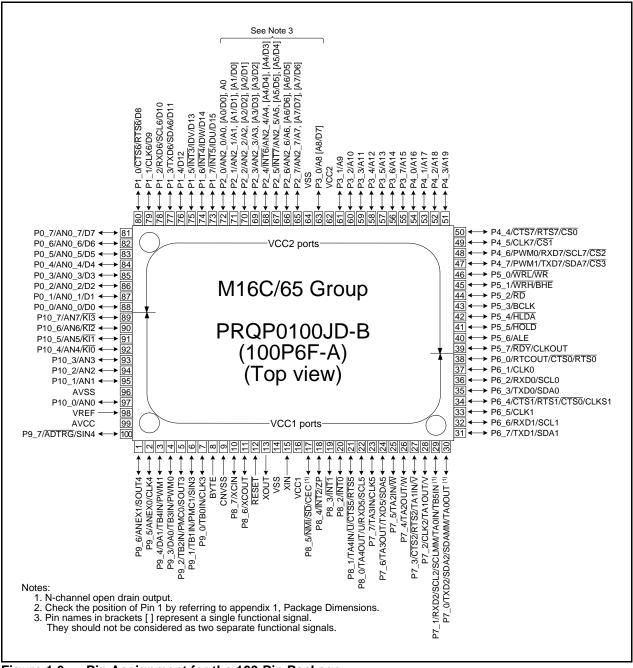


Figure 1.6 Pin Assignment for the 100-Pin Package

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1, VCC2, VSS	Ι	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \geq VCC2) and 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.
External data bus width select input	BYTE	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low, and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.
	D8 to D15 I/O VCC2 Inputs or output			Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2	Outputs chip-select signals $\overline{CS0}$ to $\overline{CS3}$ to specify an external area.
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WRH is driven low. Data is written to an external area when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data in an external area is read when RD is driven low. An odd address is accessed when BHE is driven low. Select WR, BHE, and RD when using an 8-bit external data bus.
	ALE	0	VCC2	Outputs an ALE signal to latch the address.
	HOLD	ļ	VCC2	$\overline{\text{HOLD}}$ input is unavailable. Connect the $\overline{\text{HOLD}}$ pin to VCC2 via a resistor (pull-up).
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.
	RDY	I	VCC2	The MCU bus is placed in a wait state while the $\overline{\text{RDY}}$ pin is driven low.

Table 1.15 Pin Functions for the 100-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

2.8.7 Interrupt Enable Flag (I Flag)

The I flag enables maskable interrupts.

Maskable interrupts are disabled when the I flag is 0, and enabled when it is 1. The I flag becomes 0 when an interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0. USP is selected when the U flag is 1. The U flag becomes 0 when a hardware interrupt request is accepted, or the INT instruction of software interrupt number 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from 0 to 7. If a requested interrupt has higher priority than IPL, the interrupt request is enabled.

2.8.10 Reserved Areas

Only set these bits to 0. The read value is undefined.

4. Special Function Registers (SFRs)

4.1 SFRs

An SFR is a control register for a peripheral function.

Address	Register	Symbol	Reset Value
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	0000 0000b (CNVSS pin is low) 0000 0011b (CNVSS pin is high) ⁽²⁾
0005h	Processor Mode Register 1	PM1	0000 1000b
0006h	System Clock Control Register 0	CM0	0100 1000b
0007h	System Clock Control Register 1	CM1	0010 0000b
0008h	Chip Select Control Register	CSR	01h
0009h	External Area Recovery Cycle Control Register	EWR	XXXX XX00b
000Ah	Protect Register	PRCR	00h
000Bh	Data Bank Register	DBR	00h
000Ch	Oscillation Stop Detection Register	CM2	0X00 0010b ⁽³⁾
000Dh			
000Eh			
000Fh			
0010h	Program 2 Area Control Register	PRG2C	XXXX XX00b
0011h	External Area Wait Control Expansion Register	EWC	00h
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0013h			
0014h			
0015h	Clock Prescaler Reset Flag	CPSRF	0XXX XXXXb
0016h			
0017h			
0018h	Reset Source Determine Register	RSTFR	XX00 001Xb (hardware reset) ⁽⁴⁾
0019h	Voltage Detector 2 Flag Register	VCR1	0000 1000b (5)
001Ah	Voltage Detector Operation Enable Register	VCR2	00h (5)
001Bh	Chip Select Expansion Control Register	CSE	00h
001Ch	PLL Control Register 0	PLC0	0X01 X010b
001Dh			
001Eh	Processor Mode Register 2	PM2	XX00 0X01b
001Fh			

Table 4.1SFR Information (1) (1)

X: Undefined

Notes:

- 1. The blank areas are reserved. No access is allowed.
- 2. Software reset, watchdog timer reset, oscillator stop detect reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect the following bits: bits PM01 and PM00 in the PM0 register.
- 3. Oscillator stop detect reset does not affect bits CM20, CM21, and CM27.
- 4. The state of bits in the RSTFR register depends on the reset type.
- 5. This is the reset value after hardware reset. Refer to the explanation of each register for details.

Address	Register	Symbol	Reset Value
0040h			
0041h			
0042h	INT7 Interrupt Control Register	INT7IC	XX00 X000b
0043h	INT6 Interrupt Control Register	INT6IC	XX00 X000b
0044h	INT3 Interrupt Control Register	INT3IC	XX00 X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	XXXX X000b
0046h	Timer B4 Interrupt Control Register UART1 Bus Collision Detection Interrupt Control Register	TB4IC U1BCNIC	XXXX X000b
0047h	Timer B3 Interrupt Control Register UART0 Bus Collision Detection Interrupt Control Register	TB3IC U0BCNIC	XXXX X000b
0048h	SI/O4 Interrupt Control Register INT5 Interrupt Control Register	S4IC INT5IC	XX00 X000b
0049h	SI/O3 Interrupt Control Register INT4 Interrupt Control Register	S3IC INT4IC	XX00 X000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	BCNIC	XXXX X000b
004Bh	DMA0 Interrupt Control Register	DM0IC	XXXX X000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXX X000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXX X000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXX X000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXX X000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXX X000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXX X000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXX X000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXX X000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXX X000b
0055h	Timer A0 Interrupt Control Register	TA0IC	XXXX X000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
0057h	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
0058h	Timer A3 Interrupt Control Register	TA3IC	XXXX X000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b
005Ah	Timer B0 Interrupt Control Register	TB0IC	XXXX X000b
005Bh	Timer B1 Interrupt Control Register	TB1IC	XXXX X000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00 X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00 X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00 X000b

Table 4.3SFR Information (3) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0180h	5		XXh
0181h	DMA0 Source Pointer	SAR0	XXh
0182h	•		0Xh
0183h			
0184h			XXh
0185h	DMA0 Destination Pointer	DAR0	XXh
0186h			0Xh
0187h			
0188h		TODA	XXh
0189h	DMA0 Transfer Counter	TCR0	XXh
018Ah			
018Bh			
018Ch	DMA0 Control Register	DM0CON	0000 0X00b
018Dh	<u>_</u>		
018Eh			
018Fh			
0190h			XXh
0191h	DMA1 Source Pointer	SAR1	XXh
0192h			0Xh
0193h			-
0194h			XXh
0195h	DMA1 Destination Pointer	DAR1	XXh
0196h			0Xh
0197h			-
0198h			XXh
0199h	DMA1 Transfer Counter	TCR1	XXh
019Ah			
019Bh			
019Ch	DMA1 Control Register	DM1CON	0000 0X00b
019Dh			
019Eh			
019Fh			
01A0h			XXh
01A1h	DMA2 Source Pointer	SAR2	XXh
01A2h			0Xh
01A3h			¢741
01A4h			XXh
01A5h	DMA2 Destination Pointer	DAR2	XXh
01A6h			0Xh
01A7h			
01A8h			XXh
01A9h	DMA2 Transfer Counter	TCR2	XXh
01AAh			, , , , , , , , , , , , , , , , , , , ,
01ABh			
01ADh	DMA2 Control Register	DM2CON	0000 0X00b
01ADh		Divizoon	
01ADh 01AEh			

Table 4.5SFR Information (5) (1)

Note:

1. The blank areas are reserved. No access is allowed.

	•••••••••••••••••••••••••••••••••••••••		
Address	Register	Symbol	Reset Value
0240h			
0241h			
0242h			
0243h			
0244h	UART0 Special Mode Register 4	U0SMR4	00h
0245h	UART0 Special Mode Register 3	U0SMR3	000X 0X0Xb
0246h	UART0 Special Mode Register 2	U0SMR2	X000 0000b
0247h	UART0 Special Mode Register	U0SMR	X000 0000b
0248h	UART0 Transmit/Receive Mode Register	U0MR	00h
0249h	UART0 Bit Rate Register	U0BRG	XXh
024Ah		LIGTR	XXh
024Bh	UART0 Transmit Buffer Register	U0TB	XXh
024Ch	UART0 Transmit/Receive Control Register 0	U0C0	0000 1000b
024Dh	UART0 Transmit/Receive Control Register 1	U0C1	00XX 0010b
024Eh			XXh
024Fh	UART0 Receive Buffer Register	U0RB	XXh
0250h	UART Transmit/Receive Control Register 2	UCON	X000 0000b
0251h			
0252h	UART Clock Select Register	UCLKSEL0	X0h
0253h			
0254h	UART1 Special Mode Register 4	U1SMR4	00h
0255h	UART1 Special Mode Register 3	U1SMR3	000X 0X0Xb
0256h	UART1 Special Mode Register 2	U1SMR2	X000 0000b
0257h	UART1 Special Mode Register	U1SMR	X000 0000b
0258h	UART1 Transmit/Receive Mode Register	U1MR	00h
0259h	UART1 Bit Rate Register	U1BRG	XXh
025Ah	-		XXh
025Bh	UART1 Transmit Buffer Register	U1TB —	XXh
025Ch	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
025Dh	UART1 Transmit/Receive Control Register 1	U1C1	00XX 0010b
025Eh		0101	XXh
025Eh	UART1 Receive Buffer Register	U1RB —	XXh
0260h			7041
0260h			
0262h			
020211 0263h			
02031 0264h	UART2 Special Mode Register 4	U2SMR4	00h
	UART2 Special Mode Register 3	U2SMR4	000X 0X0Xb
0266h	UART2 Special Mode Register 3	U2SMR3	X000 0000b
0200h	UART2 Special Mode Register	U2SMR2	X000 0000b
0268h	UART2 Transmit/Receive Mode Register	U2MR	00h
0269h	UART2 Hanshink Receive Mode Register	U2BRG	XXh
0269h	UNITZ DIL NALE NEGISIEI	02010	XXh
026An 026Bh	UART2 Transmit Buffer Register	U2TB —	XXh
	ULART2 Transmit/Receive Central Register 0	U2C0	0000 1000b
026Ch	UART2 Transmit/Receive Control Register 0		
026Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000 0010b
026Eh	UART2 Receive Buffer Register	U2RB —	XXh
026Fh	-		XXh

Table 4.9SFR Information (9) (1)

X: Undefined

Note:

1. The blank areas are reserved. No access is allowed.

5. Electrical Characteristics

5.1 Electrical Characteristics (Common to 3 V and 5 V)

5.1.1 Absolute Maximum Rating

Table 5.1Absolute Maximum Ratings

Symbol		Parameter	Condition	Rated Value	Unit
V _{CC1}	Supply voltage		$V_{CC1} = AV_{CC}$	-0.3 to 6.5	V
V _{CC2}	Supply voltage		$V_{CC1} = AV_{CC}$	-0.3 to V _{CC1} + 0.1 ⁽¹⁾	V
AV _{CC}	Analog supply	voltage	$V_{CC1} = AV_{CC}$	-0.3 to 6.5	V
V _{REF}	Analog referen	ce voltage	$V_{CC1} = AV_{CC}$	-0.3 to V _{CC1} + 0.1 ⁽¹⁾	V
Vı	Input voltage	RESET, CNVSS, BYTE, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 XIN		-0.3 to V _{CC1} + 0.3 ⁽¹⁾	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		-0.3 to V _{CC2} + 0.3 ⁽¹⁾	V
		P7_0, P7_1, P8_5		-0.3 to 6.5	V
Vo	Output voltage	P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 XOUT		-0.3 to V _{CC1} + 0.3 ⁽¹⁾	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		-0.3 to V _{CC2} + 0.3 ⁽¹⁾	V
		P7_0, P7_1, P8_5		-0.3 to 6.5	V
P _d	Power consum	ption	$-40^{\circ}\text{C} < \text{T}_{opr} \le 85^{\circ}\text{C}$	300	mW
T _{opr}	Operating	When the MCU is operating		-20 to 85/-40 to 85	°C
- 1	temperature	Flash program erase	Program area	0 to 60	
			Data area	-20 to 85/-40 to 85	
T _{stg}	Storage tempe	rature		–65 to 150	°C

Note:

1. Maximum value is 6.5 V.

Table 5.6 A/D Conversion Characteristics (2/2) ⁽¹⁾

 $V_{CC1} = AV_{CC} = 3.0 \text{ to } 5.5 \text{ V} \ge V_{CC2} \ge V_{REF}, V_{SS} = AV_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified.}$

Symbol	Doron	Parameter	Magguring Condition	Standard			Unit
Symbol	Falameter		Measuring Condition	Min.	Тур.	Max.	Unit
φAD	A/D operating clock		$4.0~V \leq V_{CC1} \leq 5.5~V$	2		25	MHz
	frequency	ANEX0 to ANEX1	$3.2~\text{V} \leq \text{V}_{CC1} \leq 4.0~\text{V}$	2		16	MHz
		input	$3.0~\text{V} \leq \text{V}_{\text{CC1}} \leq 3.2~\text{V}$	2		10	MHz
		AN0_0 to AN0_7	$4.0~\text{V} \leq \text{V}_{\text{CC2}} \leq 5.5~\text{V}$	2		25	MHz
	input, AN2_0 to AN2_7 input	-	$3.2~\text{V} \leq \text{V}_{CC2} \leq 4.0~\text{V}$	2		16	MHz
		$3.0~\text{V} \leq \text{V}_{\text{CC2}} \leq 3.2~\text{V}$	2		10	MHz	
-	Tolerance level impedance				3		kΩ
D _{NL}	Differential non-linea	rity error	(4)			±1	LSB
-	Offset error		(4)			±3	LSB
-	Gain error		(4)			±3	LSB
t _{CONV}	10-bit conversion tim	e	V _{CC1} = 5 V, φAD = 25 MHz	1.60			μS
t _{SAMP}	Sampling time			0.60			μS
V _{REF}	Reference voltage			3.0		V _{CC1}	V
V _{IA}	Analog input voltage	(2), (3)		0		V _{REF}	V

Notes:

1. Use when $AV_{CC} = V_{CC1}$.

2. When $V_{CC1} \ge V_{CC2}$, set as below: Analog input voltage (AN0 to AN7, ANEX0, and ANEX1) $\le V_{CC1}$ Analog input voltage (AN0_0 to AN0_7 and AN2_0 to AN2_7) $\le V_{CC2}$.

- 3. When analog input voltage is over reference voltage, the result of A/D conversion is 3FFh.
- 4. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to V_{SS}. See Figure 5.2 "A/D Accuracy Measure Circuit".

5.1.4 D/A Conversion Characteristics

Table 5.7 D/A Conversion Characteristics

 $V_{CC1} = AV_{CC} = V_{REF} = 3.0$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V at $T_{opr} = -20^{\circ}C$ to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Symbol Parameter	Measuring Condition		Unit		
Symbol		Measuring Condition	Min.	Тур.	Max.	Offic
-	Resolution				8	Bits
-	Absolute Accuracy				2.5	LSB
t _{SU}	Setup Time				3	μS
R _O	Output Resistance		5	6	8.2	kΩ
I _{VREF}	Reference Power Supply Input Current	See Notes ¹ and ²			1.5	mA

Notes:

1. This applies when using one D/A converter, with the D/A register for the unused D/A converter set to 00h.

2. The current consumption of the A/D converter is not included. Also, the I_{VREF} of the D/A converter will flow even if the ADSTBY bit in the ADCON1 register is 0 (A/D operation stopped (standby)).

Table 5.13 Voltage Detector 2 Electrical Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Unit		
Symbol	T arameter	Condition	Min.	Тур.	Max.	Onit
V _{det2}	Voltage detection level Vdet2_0	When V _{CC1} is falling	3.50	4.00	4.50	V
-	Hysteresis width at the rising of V _{CC1} in voltage detector 2			0.15		V
-	Voltage detector 2 response time ⁽²⁾	When V _{CC1} falls from 5 V to (Vdet2_0 - 0.1) V			200	μS
-	Voltage detector self power consumption	VC27 = 1, V _{CC1} = 5.0 V		1.8		μΑ
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽¹⁾				100	μs

Notes:

1. Necessary time until the voltage detector operates after setting to 1 again after setting the VC27 bit in the VCR2 register to 0.

2. Time from when passing the V_{det2} until when a voltage monitor 2 reset is generated.

Table 5.14Power-On Reset Circuit

The measurement condition is V_{CC1} = 2.0 to 5.5 V, T_{opr} = -20°C to 85°C/ -40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Unit		
			Min.	Тур.	Max.	Offic
V _{por1}	Voltage at which power-on reset enabled ⁽¹⁾				0.1	V
t _{rth}	External power V _{CC1} rise gradient		2.0		50000	mV/ms
t _{w(por)}	Time necessary to enable power-on reset		300			ms

Note: 1.

To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS1 address to 0. Also, set the VDSEL1 bit to 0 (Vdet0_2).

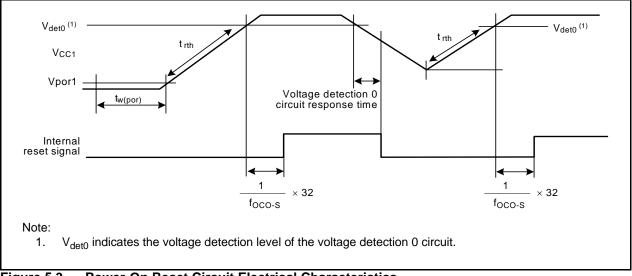


Figure 5.3 Power-On Reset Circuit Electrical Characteristics

5.2 Electrical Characteristics ($V_{CC1} = V_{CC2} = 5 V$)

5.2.1 Electrical Characteristics

$V_{CC1} = V_{CC2} = 5 V$

Table 5.19 Electrical Characteristics (1) ⁽¹⁾

 $V_{CC1} = V_{CC2} = 4.2$ to 5.5 V, $V_{SS} = 0$ V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C, $f_{(BCLK)} = 32$ MHz unless otherwise specified.

Symbol	Parameter			Measuring	Star	ndard		Unit	
•			Falametei		Condition	Min.	Тур.	Max.	Unit
V _{OH}	High output P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, I voltage P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1			I _{OH} = -5 mA	V _{CC1} – 2.0		V _{CC1}	V	
		P3_0 to		o P1_7, P2_0 to P2_7, o P4_7, P5_0 to P5_7, _0 to P13_7	I _{OH} = -5 mA	V _{CC2} – 2.0		V _{CC2}	
V _{OH}	High output voltage	P8_6, P P11_0 to	8_7, P9_0 to I p P11_7, P14_		I _{OH} = -200 μA	V _{CC1} – 0.3		V _{CC1}	V
		P3_0 to		o P1_7, P2_0 to P2_7, o P4_7, P5_0 to P5_7, _0 to P13_7	I _{OH} = -200 μA	V _{CC2} – 0.3		V _{CC2}	
V _{OH}	High output	voltage	XOUT	HIGH POWER	I _{OH} = -1 mA	V _{CC1} - 2.0		V_{CC1}	V
				LOW POWER	I _{OH} = -0.5 mA	$V_{CC1} - 2.0$		V_{CC1}	
	High output	voltage	XCOUT	HIGH POWER	With no load applied		2.6		V
				LOW POWER	With no load applied		2.2		
V _{OL}	Low output voltage	P9_0 to	P6_7, P7_0 to P9_7, P10_0 P11_7, P14_		I _{OL} = 5 mA			2.0	V
		P3_0 to		o P1_7, P2_0 to P2_7, o P4_7, P5_0 to P5_7, _0 to P13_7	I _{OL} = 5 mA			2.0	
V _{OL}	Low output voltage	P9_0 to	P6_7, P7_0 to P9_7, P10_0 P11_7, P14_		I _{OL} = 200 μA			0.45	V
		P3_0 to		o P1_7, P2_0 to P2_7, o P4_7, P5_0 to P5_7, _0 to P13_7	I _{OL} = 200 μA			0.45	
V _{OL}	Low output	voltage	XOUT	HIGH POWER	I _{OL} = 1 mA			2.0	V
				LOW POWER	I _{OL} = 0.5 mA			2.0	1
	Low output v	voltage	XCOUT	HIGH POWER	With no load applied		0		V
				LOW POWER	With no load applied		0		

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

$V_{CC1} = V_{CC2} = 5 V$

Table 5.21

able 5.21 Electrical Characteristics (3) R5F36506NFA, R5F36506NFB, R5F36506DFA, R5F36506DFB, R5F3650ENFA, R5F3650ENFB, R5F3650EDFA, R5F3650EDFB

 $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol	Deremeter	İ	Macouring Condition	1	Standar	d	Linit
-	Parameter		Measuring Condition	Min.	Тур.	Max.	Unit
R _{fXCIN}	Feedback resistance XCIN				8		MΩ
I _{CC}	Power supply current	High-speed mode	f _(BCLK) = 32 MHz XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		24.0		mA
	the output pin are open and other pins are V _{SS}		f _(BCLK) =32 MHz, A/D conversion XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		24.7		mA
			f _(BCLK) = 20 MHz XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped		16.0		mA
		40 MHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator on, divide-by-4 (f _(BCLK) = 10 MHz) 125 kHz on-chip oscillator stopped		17.0		mA
		125 kHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator stopped, 125 kHz on-chip oscillator on, no division FMR22 = 1 (slow read mode)		500.0		μΑ
		Low-power mode	$f_{(BCLK)} = 32 \text{ kHz}$ In low-power mode FMR22 = FMR23 = 1 On flash memory ⁽¹⁾		160.0		μA
			f _(BCLK) = 32 kHz In low-power mode On RAM ⁽¹⁾		45.0		μΑ
		Wait mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on Peripheral clock operating T _{opr} = 25°C		20.0		μΑ
			$f_{(BCLK)} = 32 \text{ kHz} \text{ (oscillation capacity High)}$ 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		11.0		μΑ
			$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity Low) 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		6.0		μΑ
		Stop mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock stopped T _{opr} = 25°C		1.7		μΑ
		During flash memory program	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$ V _{CC1} = 5.0 V		20.0		mA
		During flash memory erase	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$ V _{CC1} = 5.0 V		30.0		mA

Note: 1.

This indicates the memory in which the program to be executed exists.

 $V_{CC1} = V_{CC2} = 5 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.3 Timing Requirements (Memory Expansion Mode and Microprocessor Mode)

Table 5.37	Memory Expansion Mode and Microprocessor Mode
------------	---

Symbol	Parameter	Stan	Unit	
Symbol	Falallelei	Min.	Max.	Unit
t _{ac1(RD-DB)}	Data input access time (for setting with no wait)		(Note 1)	ns
t _{ac2(RD-DB)}	Data input access time (for setting with 1 to 3 waits)		(Note 2)	ns
t _{ac3(RD-DB)}	Data input access time (when accessing multiplex bus area)		(Note 3)	ns
t _{ac4(RD-DB)}	Data input access time (for setting with $2\phi + 3\phi$ or more)		(Note 4)	ns
t _{su(DB-RD)}	Data input setup time	40		ns
t _{su(RDY-BCLK)}	RDY input setup time	80		ns
t _{h(RD-DB)}	Data input hold time	0		ns
t _{h(BCLK-RDY)}	RDY input hold time	0		ns

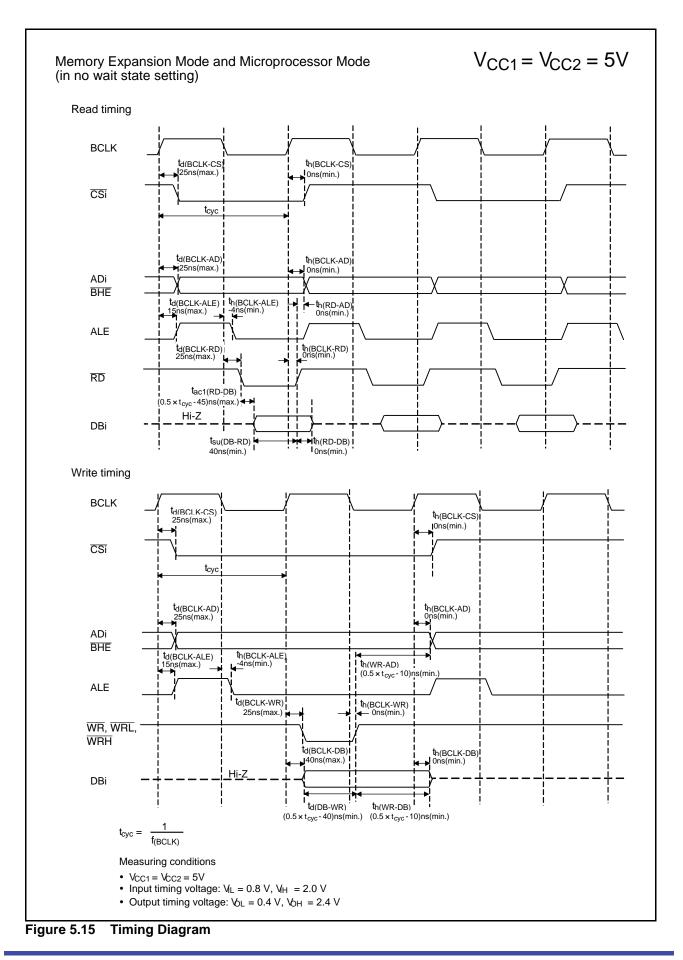
Notes:

1. Calculated according to the BCLK frequency as follows:

 $\frac{0.5 \times 10^9}{f_{(BCLK)}} - 45[ns]$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n+0.5) \times 10^9}{f_{(BCLK)}} - 45[ns]$ n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.


3. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 45[ns]$$
 n is 2 for 2 waits setting, and 3 for 3 waits setting.

4. Calculated according to the BCLK frequency as follows:

 $\frac{n \times 10^9}{f_{(BCLK)}} - 45[ns] \qquad \text{n is 3 for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and 5 for } 4\phi + 5\phi.$

RENESAS

 $V_{CC1} = V_{CC2} = 5 V$

Switching Characteristics

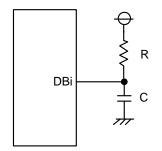
 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.4.4 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area

Table 5.41Memory Expansion Mode and Microprocessor Mode (in Wait State Setting 2 ϕ + 3 ϕ , 2 ϕ + 4 ϕ , 3 ϕ + 4 ϕ , and 4 ϕ + 5 ϕ , and When Accessing External Area)

Symbol	Parameter	Measuring	Stan	Lincit	
		Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)	-	0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time	-		15	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)	-		40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:


1. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times10^9}{f_{(BCLK)}} - 40[ns] \qquad \text{n is 3 for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and 5 for } 4\phi + 5\phi.$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times \ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

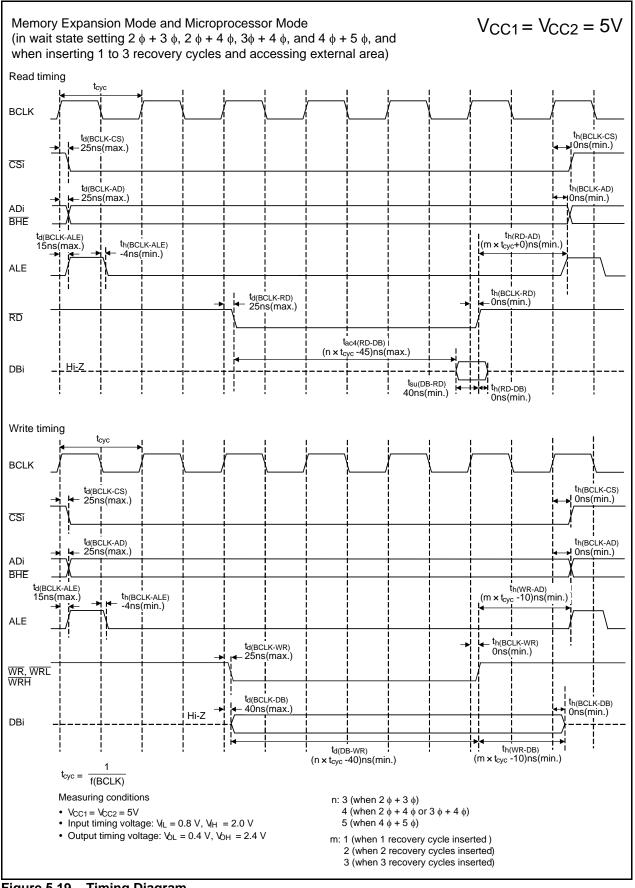


Figure 5.19 Timing Diagram

$V_{CC1} = V_{CC2} = 3 V$

Table 5.46 Electrical Characteristics (4)

R5F3651RNFC, R5F3650RNFA, R5F3650RNFB, R5F3651RDFC, R5F3650RDFA, R5F3650RDFB, R5F3651TNFC, R5F3650TNFA, R5F3650TNFB, R5F3651TDFC, R5F3650TDFA, R5F3650TDFB

 $V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, \text{ f}_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol	Parameter		Measuring Condition		Standar		Unit
R _{fXCIN}	Feedback resistance		<u>,</u>	Min.	Тур.	Max.	
MXCIN	XCIN				25		MΩ
I _{CC}	Power supply current In single-chip, mode, the output pin are	High-speed mode	f _(BCLK) = 32 MHz XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		32.0		mA
	open and other pins are $V_{\mbox{\scriptsize SS}}$		f _(BCLK) = 32 MHz, A/D conversion XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		32.7		mA
			f _(BCLK) = 20 MHz XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped		21.0		mA
		40 MHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator on, divide-by-4 (f(BCLK) = 10 MHz) 125 kHz on-chip oscillator stopped		23.0		mA
		125 kHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on, no division FMR22 = 1 (slow read mode)		750.0		μA
		Low-power mode	$f_{(BCLK)} = 32 \text{ MHz}$ In low-power mode, FMR 22 = FMR23 = 1 on flash memory ⁽¹⁾		300.0		μΑ
			f _(BCLK) = 32 MHz In low-power mode, on RAM ⁽¹⁾		40.0		μΑ
		Wait mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on Peripheral clock operating T _{opr} = 25°C		20.0		μА
			$f_{(BCLK)} = 32 \text{ MHz}$ (oscillation capacity High) 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		8.0		μА
			$f_{(BCLK)} = 32$ kHz (oscillation capacity Low) 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		4.0		μΑ
		Stop mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock stopped T _{opr} = 25°C		1.6		μА
		During flash memory program	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$ V _{CC1} = 3.0 V		20.0		mA
		During flash memory erase	$f_{(BCLK)} = 10$ MHz, PM17 = 1 (one wait) V _{CC1} = 3.0 V		30.0		mA

Note:

1. This indicates the memory in which the program to be executed exists.

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.2.3 Timer A Input

Table 5.49 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	150		ns
t _{w(TAH)}	TAilN input high pulse width	60		ns
t _{w(TAL)}	TAilN input low pulse width	60		ns

Table 5.50 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	600		ns
t _{w(TAH)}	TAilN input high pulse width	300		ns
t _{w(TAL)}	TAilN input low pulse width	300		ns

Table 5.51 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onit
t _{c(TA)}	TAilN input cycle time	300		ns
t _{w(TAH)}	TAiIN input high pulse width	150		ns
t _{w(TAL)}	TAilN input low pulse width	150		ns

Table 5.52Timer A Input (External Trigger Input in Pulse Width Modulation Mode and
Programmable Output Mode)

Symbol	Parameter	Stan	Unit	
	i didificici	Min.	Max.	Onit
t _{w(TAH)}	TAilN input high pulse width	150		ns
t _{w(TAL)}	TAilN input low pulse width	150		ns

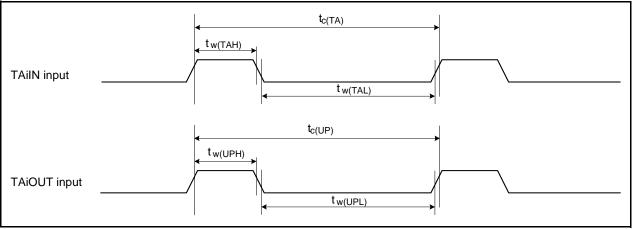


Figure 5.22 Timer A Input

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious properly damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for which it is not intended. Renesas Electronics shall not be in any way liable for any application for which the product is not intended by Nenesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Ciara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-989-5441, Fax: +1-905-898-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +49-211-65030, Fax: +444-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Disseldorf, Germany

 Tel: +49-211-65030, Fax: +449-11-6503-1327

 Renesas Electronics (Shanghal) Co., Ltd.

 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +80-10-8235-1155, Fax: +862-10-8235-7679

 Renesas Electronics (Shanghal) Co., Ltd.

 Unit 204, 205, AZIA Center, No.1233 Lujiazui Bing Rd., Pudong District, Shanghai 200120, China

 Tel: +862-877-1818, Fax: +862-216887-7858

 Renesas Electronics Hong Kong Limited

 Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +862-84175-9600, Fax: +862-24675-9670

 Renesas Electronics Taiwan Co., Ltd.

 173F, No. 383, Fu Shing Noth Road, Taipei, Taiwan

 Tel: +862-74175-9670

 Renesas Elect