

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f36506dfb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Function	Description
		16-bit timer × 5
	Timer A	Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode
		Event counter two-phase pulse signal processing (two-phase encoder
		Programmable output mode × 3
		16-bit timer × 6
	Timer B	Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode
Timers	Three-phase motor control	• Three-phase inverter control (timer A1, timer A2, timer A4, timer B2)
	timer functions	 On-chip dead time timer
	Real-time clock	Count: seconds, minutes, hours, days of the week
	PWM function	8 bits × 2
		• 2 circuits
		• 4 wave pattern matchings (differentiate wave pattern for headers, data
	Remote control signal receiver	0, data 1, and special data)
		• 6-byte receive buffer (1 circuit only)
		• Operating frequency of 32 kHz
.	UART0 to UART2, UART5 to	Clock synchronous/asynchronous × 6 channels
Serial	UART7	SIM (UART2)
Interface	SI/O3, SI/O4	Clock synchronization only × 2 channels
Multi-master I	² C-bus Interface	1 channel
	(2)	CEC transmit/receive, arbitration lost detection, ACK automatic output,
CEC Function	15 (2)	operation frequency of 32 kHz
A/D Converte	r	10-bit resolution × 26 channels, including sample and hold function Conversion time: 1.72 μs
D/A Converte	r	8-bit resolution x 2 circuits
CPC Colculat	ior.	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1),
	.01	CRC-16 ($X^{16} + X^{15} + X^2 + 1$) compliant
		 Program and erase power supply voltage: 2.7 to 5.5 V
Flash Memory		 Program and erase cycles: 1,000 times (program ROM 1, program
		ROM 2), 10,000 times (data flash)
		Program security: ROM code protect, ID code check
Debug Functi	ons	On-chip debug, on-board flash rewrite, address match interrupt × 4
Operation Fre	equency/Supply Voltage	32 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1
Current Cons	umption	Described in Electrical Characteristics
Operating Ter	mperature	-20°C to 85°C, -40°C to 85°C ⁽¹⁾
Package		128-pin LQFP: PLQP0128KB-A (Previous package code: 128P6Q-A)

Table 1.2	Specifications for the 128-Pin Package (2)	/2)
-----------	--	-----

Notes:

1. See Table 1.5 "Product List (1/2)" and Table 1.6 "Product List (2/2)" for the operating temperature.

2. The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

As of July 2012

Product List (2/2) Table 1.6

	ROM Capacity			DAM			
Part No.	Part No. Program Program Data flash Capacity		Package Code	Remarks			
R5F3651TNFC					PLQP0128KB-A	Operating	
R5F3650TNFA	768 KB 16 KB	16 KB		47 KB	PRQP0100JD-B	temperature -20°C to 85°C Operating	
R5F3650TNFB			4 KB		PLQP0100KB-A		
R5F3651TDFC			× 2 blocks		PLQP0128KB-A		
R5F3650TDFA				PRQP0100JD-B	temperature		
R5F3650TDFB					PLQP0100KB-A	-40°C to 85°C	

(D): Under development (P): Planning

Previous package codes are as follows: PLQP0128KB-A: 128P6Q-A PRQP0100JD-B: 100P6F-A PLQP0100KB-A: 100P6Q-A

			I/O Pin for Peripheral Function			Bus Control	
Pin No.	Control Pin	Port	Interrupt	Timer	Serial interface	A/D converter,	Pin
4				-		D/A converter	
1	VREF						
2	AVCC						
3		P9_7					
4		P9_6					
о С		P9_5			CLK4		
0		P9_4					
/		P9_3				DAU	
0		P9_2					
9		P9_1					
10		P9_0		IDUIN	CLK3		
11		P14_1					
12	DVTC	P14_0					
13							
14							
10		P0_/					
10		P0_0					
17	KESEI						
10	X001						
19	V 3 3						
20							
21	VCCI		NINAL				
22		P0_0			CEC		
23		P0_4		28			
24		P0_3					
20		F0_2					
20							
21		F0_0					
20		F/_/					
29		F7_0			1×D3/3DA3		
30		D7 /					
32		D7 3					
32 33		P7 2			CI K2		
34		P7 1					
35		P7 0					
36		P6 7		17.0001			
37	VCC1	10_7					
38		P6 6			RXD1/SCI 1		
39	VSS	10_0					
40		P6 5					
41		P6_4			CTS1/BTS1/CTS0/CLKS1		
42		P6_3					
43		P6_2			RXD0/SCL0		
44		P6_1					
45		P6 0	1	RTCOUT	CTS0/RTS0		
46		P13 7					
47		P13_6	1				
48	1	P13 5	1				<u> </u>
49		P13_4					
50	CLKOUT	P5_7					RDY

 Table 1.7
 Pin Names for the 128-Pin Package (1/3)

Pin	No.			I/O Pin for Peripheral Function			Bus Control	
FA	FB	Control Pin	Port	Interrupt	Timer	Serial interface	A/D converter,	Pin
1	99		P9 6			SOUT4	ANEX1	
2	100		P9 5			CLK4	ANEX0	
3	1		P9 4		TB4IN/PWM1		DA1	
4	2		P9 3		TB3IN/PWM0		DA0	
5	3		P9 2		TB2IN/PMC0	SOUT3	-	
6	4		P9 1		TB1IN/PMC1	SIN3		
7	5		 P9_0		TB0IN	CLK3		
8	6	BYTE						
9	7	CNVSS						
10	8	XCIN	P8_7					
11	9	XCOUT	P8_6					
12	10	RESET						
13	11	XOUT						
14	12	VSS						
15	13	XIN						
16	14	VCC1						
17	15		P8_5	NMI	SD	CEC		
18	16		P8_4	INT2	ZP			
19	17		P8_3	INT1				
20	18		P8_2	INT0				
21	19		P8_1		TA4IN/U	CTS5/RTS5		
22	20		P8_0		TA4OUT/U	RXD5/SCL5		
23	21		P7_7		TA3IN	CLK5		
24	22		P7_6		TA3OUT	TXD5/SDA5		
25	23		P7_5		TA2IN/W			
26	24		P7_4		TA2OUT/W			
27	25		P7_3		TA1IN/V	CTS2/RTS2		
28	26		P7_2		TA1OUT/V	CLK2		
29	27		P7_1		TA0IN/TB5IN	RXD2/SCL2/SCLMM		
30	28		P7_0		TA0OUT	TXD2/SDA2/SDAMM		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6_4			CTS1/RTS1/CTS0/		
25	22		D6 2					
36	34		F0_3			RXD0/SCL0		
37	35		P6 1					
38	36		P6 0		RTCOUT			
39	37		P5 7			0100/1100		BDY
40	38	OLINO O I	P5_6					ALE
41	39		P5_5					
42	40		P5 4					
43	41		P5_3					BCLK
44	42		P5 2				+	RD
45	43		P5 1					WRH/BHE
46	44		P5 0					WRL/WR
47	45		P4 7		PWM1	TXD7/SDA7		CS3
48	46		P4 6		PWM0	RXD7/SCL7		CS2
49	47		P4_5		-	CLK7	1	CS1
50	48					CTS7/RTS7		CS0
1	1	1		1				I

 Table 1.10
 Pin Names for the 100-Pin Package (1/2)

Signal Name	Pin Name	I/O	Power Supply	Description	
UART0 to	SDA0 to SDA2, SDA5	I/O	VCC1	Serial data I/O.	
UART2,	SDA6, SDA7	I/O	VCC2		
UART7 I ² C mode	SCL0 to SCL2, SCL5	I/O	VCC1	Transmit/receive clock I/O.	
	SCL6, SCL7	I/O	VCC2		
	CLK3, CLK4	I/O	VCC1	Transmit/receive clock I/O.	
Serial interface	SIN3, SIN4	I	VCC1	Serial data input.	
	SOUT3, SOUT4	0	VCC1	Serial data output.	
Multi-master I ² C-	SDAMM	I/O	VCC1	Serial data I/O (N-channel open drain output).	
bus interface	SCLMM	I/O	VCC1	Transmit/receive clock I/O (N-channel open drain output).	
CEC I/O	CEC	I/O	VCC1	CEC I/O (N-channel open drain output).	
Reference voltage input	VREF	Ι	VCC1	Reference voltage input for the A/D and D/A converters.	
	AN0 to AN7	I	VCC1		
A/D converter	AN0_0 to AN0_7 AN2_0 to AN2_7	T	VCC2	Analog input.	
	ADTRG	I	VCC1	External trigger input.	
	ANEX0, ANEX1	I	VCC1	Extended analog input.	
D/A converter	DA0, DA1	0	VCC1	Output pin the D/A converter.	
I/O ports	P0_0 to P0_7 P1_0 to P1_7 P2_0 to P2_7 P3_0 to P3_7 P4_0 to P4_7 P5_0 to P5_7 P12_0 to P12_7 P13_0 to P13_7	I/O	VCC2	8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.	
	P6_0 to P6_7 8 P7_0 to P7_7 8 P8_0 to P8_7 1/0 P9_0 to P9_7 1/0 P10_0 to P10_7 fc P11_0 to P11_7 1/0		VCC1	8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1, and P8_5 are N-channel open drain output ports. No pull-up resistor is provided. P8_5 is an input port for verifying the NMI pin level and shares a pin with NMI.	
	P14_0, P14_1	I/U	VUU1	I/O poins naving equivalent functions to PU.	

 Table 1.14
 Pin Functions for the 128-Pin Package (3/3)

Signal Name	Pin Name	I/O	Power Supply	Description	
Power supply input	VCC1, VCC2, VSS	Ι	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \ge VCC2) and 0 V to the VSS pin.	
Analog power supply input	AVCC, AVSS	I	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.	
Reset input	RESET	I	VCC1	Driving this pin low resets the MCU.	
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.	
External data bus width select input	BYTE	l	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low, and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.	
	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.	
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.	
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.	
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.	
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.	
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2	Outputs chip-select signals $\overline{CS0}$ to $\overline{CS3}$ to specify an external area.	
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area is read when RD is driven low. Data in an external area is read when RD is driven low. Select WR, BHE, and RD when using an 8-bit external data bus. 	
	ALE	0	VCC2	Outputs an ALE signal to latch the address.	
	HOLD	I	VCC2	HOLD input is unavailable. Connect the HOLD pin to VCC2 via a resistor (pull-up).	
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.	
	RDY	I	VCC2	The MCU bus is placed in a wait state while the $\overline{\text{RDY}}$ pin is driven low.	

Table 1.15 Pin Functions for the 100-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

3.2 Memory Map

Special function registers (SFRs) are allocated from address 00000h to 003FFh and from 0D000h to 0D7FFh. Peripheral function control registers are located here. All blank areas within SFRs are reserved. Do not access these areas.

Internal RAM is allocated from address 00400h and higher, with 10 KB of internal RAM allocated from 00400h to 02BFFh. Internal RAM is used not only for data storage, but also for the stack area when subroutines are called or when an interrupt request is accepted.

The internal ROM is flash memory. Three internal ROM areas are available: data flash, program ROM 1, and program ROM 2.

The data flash is allocated from 0E000h to 0FFFFh. This data flash area is mostly used for data storage, but can also store programs.

Program ROM 2 is allocated from 10000h to 13FFFh. Program ROM 1 is allocated from FFFFFh and lower, with the 64 KB program ROM 1 area allocated from address F0000h to FFFFFh.

The special page vectors are allocated from FFE00h to FFFD7h. They are used for the JMPS and JSRS instructions. Refer to the M16C/60, M16C/20, M16C/Tiny Series Software Manual for details.

The fixed vector table for interrupts is allocated from FFFDCh to FFFFFh.

The 256 bytes beginning with the start address set in the INTB register compose the relocatable vector table for interrupts.

Figure 3.2 shows the Memory Map.

Address	Register	Symbol	Reset Value
0020h			
0021h			
0022h	40 MHz On-Chip Oscillator Control Register 0	FRA0	XXXX XX00b
0023h			
0024h			
0025h			
0026h	Voltage Monitor Function Select Register	VWCE	00h
0027h			
0028h	Voltage Detector 1 Level Select Register	VD1LS	0000 1010b ⁽²⁾
0029h			
002Ah	Voltage Monitor 0 Control Register	VW0C	1000 XX10b (2)
002Bh	Voltage Monitor 1 Control Register	VW1C	1000 1010b ⁽²⁾
002Ch	Voltage Monitor 2 Control Register	VW2C	1000 0X10b ⁽²⁾
002Dh			
002Eh			
002Fh			
0030h			
0031h			
0032h			
0033h			
0034h			
0035h			
0036h			
0037h			
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			
<u>-</u>		· · ·	X: Undefined

Table 4.2SFR Information (2) (1)

Notes:

2. This is the reset value after hardware reset. Refer to the explanation of each register for details.

^{1.} The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0240h			
0241h			
0242h			
0243h			
0244h	UART0 Special Mode Register 4	U0SMR4	00h
0245h	UART0 Special Mode Register 3	U0SMR3	000X 0X0Xb
0246h	UART0 Special Mode Register 2	U0SMR2	X000 0000b
0247h	UART0 Special Mode Register	U0SMR	X000 0000b
0248h	UART0 Transmit/Receive Mode Register	U0MR	00h
0249h	UART0 Bit Rate Register	U0BRG	XXh
024Ah	LIABTO Transmit Buffor Bogistor	LIOTR	XXh
024Bh		0018	XXh
024Ch	UART0 Transmit/Receive Control Register 0	U0C0	0000 1000b
024Dh	UART0 Transmit/Receive Control Register 1	U0C1	00XX 0010b
024Eh	LIADTO Dessive Duffer Desister	LIOPP	XXh
024Fh	OARTO Receive Buller Register	UURB	XXh
0250h	UART Transmit/Receive Control Register 2	UCON	X000 0000b
0251h			
0252h	UART Clock Select Register	UCLKSEL0	X0h
0253h			
0254h	UART1 Special Mode Register 4	U1SMR4	00h
0255h	UART1 Special Mode Register 3	U1SMR3	000X 0X0Xb
0256h	UART1 Special Mode Register 2	U1SMR2	X000 0000b
0257h	UART1 Special Mode Register	U1SMR	X000 0000b
0258h	UART1 Transmit/Receive Mode Register	U1MR	00h
0259h	UART1 Bit Rate Register	U1BRG	XXh
025Ah			XXh
025Bh	UARI1 Transmit Buffer Register		XXh
025Ch	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
025Dh	UART1 Transmit/Receive Control Register 1	U1C1	00XX 0010b
025Eh			XXh
025Fh	UARI1 Receive Buffer Register	U1RB	XXh
0260h			
0261h			
0262h			
0263h			
0264h	UART2 Special Mode Register 4	U2SMR4	00h
0265h	UART2 Special Mode Register 3	U2SMR3	000X 0X0Xb
0266h	UART2 Special Mode Register 2	U2SMR2	X000 0000b
0267h	UART2 Special Mode Register	U2SMR	X000 0000b
0268h	UART2 Transmit/Receive Mode Register	U2MR	00h
0269h	UART2 Bit Rate Register	U2BRG	XXh
026Ah			XXh
026Bh	UARIZ Iransmit Butter Register	U21B	XXh
026Ch	UART2 Transmit/Receive Control Register 0	U2C0	0000 1000b
026Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000 0010b
026Eh		11000	XXh
026Fh	UARIZ RECEIVE BUTTER REGISTER	U2RB	XXh

Table 4.9SFR Information (9) (1)

X: Undefined

Note:

1. The blank areas are reserved. No access is allowed.

4.2 Notes on SFRs

4.2.1 Register Settings

Table 4.19 lists Registers with Write-Only Bits and registers whose function differs between reading and writing. Set these registers with immediate values. Do not use read-modify-write instructions. When establishing the next value by altering the existing value, write the existing value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM. Read-modify-write instructions can be used when writing to the no register bits.

Address	Register	Symbol
0249h	UART0 Bit Rate Register	U0BRG
024Bh to 024Ah	UART0 Transmit Buffer Register	U0TB
0259h	UART1 Bit Rate Register	U1BRG
025Bh to 025Ah	UART1 Transmit Buffer Register	U1TB
0269h	UART2 Bit Rate Register	U2BRG
026Bh to 026Ah	UART2 Transmit Buffer Register	U2TB
0273h	SI/O3 Bit Rate Register	S3BRG
0277h	SI/O4 Bit Rate Register	S4BRG
0289h	UART5 Bit Rate Register	U5BRG
028Bh to 028Ah	UART5 Transmit Buffer Register	U5TB
0299h	UART6 Bit Rate Register	U6BRG
029Bh to 029Ah	UART6 Transmit Buffer Register	U6TB
02A9h	UART7 Bit Rate Register	U7BRG
02ABh to 02AAh	UART7 Transmit Buffer Register	U7TB
02B6h	I2C0 Control Register 1	S3D0
02B8h	I2C0 Status Register 0	S10
0303h to 0302h	Timer A1-1 Register	TA11
0305h to 0304h	Timer A2-1 Register	TA21
0307h to 0306h	Timer A4-1 Register	TA41
030Ah	Three-Phase Output Buffer Register 0	IDB0
030Bh	Three-Phase Output Buffer Register 1	IDB1
030Ch	Dead Time Timer	DTT
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2
0327h to 0326h	Timer A0 Register	TA0
0329h to 0328h	Timer A1 Register	TA1
032Bh to 032Ah	Timer A2 Register	TA2
032Dh to 032Ch	Timer A3 Register	TA3
032Fh to 032Eh	Timer A4 Register	TA4
037Dh	Watchdog Timer Refresh Register	WDTR
037Eh	Watchdog Timer Start Register	WDTS

Table 4.19	Registers with	Write-Only Bits
------------	----------------	-----------------

Table 5.3

able 5.3 Recommended Operating Conditions (2/3) $V_{CC1} = V_{CC2} = 2.7$ to 5.5 V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol		Parameter		Standard			Linit
Symbol			Min.	Тур.	Max.	Onin	
I _{OL(sum)}	Low peak output current	Sum of I _{OL(r} P2_0 to P2_ P10_0 to P1	_{beak)} at P0_0 to P0_7, P1_0 to P1_7, _7, P8_6, P8_7, P9_0 to P9_7, 10_7, P11_0 to P11_7, P14_0 to P14_1			80.0	mA
		Sum of I _{OL()} P5_0 to P5_ P8_0 to P8_	_{beak)} at P3_0 to P3_7, P4_0 to P4_7, _7, P6_0 to P6_7, P7_0 to P7_7, _5, P12_0 to P12_7, P13_0 to P13_7			80.0	mA
I _{OL(peak)}	Low peak output current	P0_0 to P0_ P3_0 to P3_ P6_0 to P6_ P9_0 to P9_ P12_0 to P1	0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, 3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, 6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, 9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, 12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1			10.0	mA
I _{OL(avg)}	Low average output current ⁽¹⁾	P0_0 to P0_ P3_0 to P3_ P6_0 to P6_ P9_0 to P9_ P12_0 to P1	7, P1_0 to P1_7, P2_0 to P2_7, 7, P4_0 to P4_7, P5_0 to P5_7, 7, P7_0 to P7_7, P8_0 to P8_7, 7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1			5.0	mA
f _(XIN)	Main clock oscillation f	input frequency	V _{CC1} = 2.7 V to 5.5 V	2		20	MHz
f _(XCIN)	Sub clock oscillation fre		quency		32.768	50	kHz
f _(PLL)	PLL clock oscillation frequency		V _{CC1} = 2.7 V to 5.5 V	10		32	MHz
f _(BCLK)	CPU operation clock			2		32	MHz
t _{SU(PLL)}	PLL freque	ency	V _{CC1} = 5.0 V			2	ms
	synthesize	r n wait time	V _{CC1} = 3.0 V			3	ms

Note:

The average output current is the mean value within 100 ms. 1.

 $V_{CC1} = V_{CC2} = 5 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.2.3 Timer A Input

Table 5.26 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Linit		
Symbol	i arameter	Min.	Max.	Offic	
t _{c(TA)}	TAIIN input cycle time	100		ns	
t _{w(TAH)}	TAilN input high pulse width	40		ns	
t _{w(TAL)}	TAilN input low pulse width	40		ns	

Table 5.27 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Llnit		
Gymbol	i arameter	Min.	Max.	Onit	
t _{c(TA)}	TAIIN input cycle time	400		ns	
t _{w(TAH)}	TAilN input high pulse width	200		ns	
t _{w(TAL)}	TAiIN input low pulse width		ns		

Table 5.28 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	Linit		
Symbol	i didificici	Min.	Max.	Onic	
t _{c(TA)}	TAIIN input cycle time	200		ns	
t _{w(TAH)}	TAiIN input high pulse width		ns		
t _{w(TAL)}	TAilN input low pulse width	100		ns	

Table 5.29Timer A Input (External Trigger Input in Pulse Width Modulation Mode and
Programmable Output Mode)

Symbol	Parameter	Stan	Unit		
Symbol		Min.	Max.	Onit	
t _{w(TAH)}	TAiIN input high pulse width	100		ns	
t _{w(TAL)}	TAIIN input low pulse width 100				

Figure 5.7 Timer A Input

5.3 Electrical Characteristics (V_{CC1} = V_{CC2} = 3 V)

5.3.1 Electrical Characteristics

VCC1 = VCC2 = 3 V

Table 5.43 Electrical Characteristics (1) (1)

 $V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} - 40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol Parameter Measuring Condition		Sta	andard	Unit				
Symbol		Farameter		Measuring Condition	Min.	Тур.	Max.	Onit
V _{OH}	High output voltage	P6_0 to P6_7, P7_2 to P7_7, F P8_6, P8_7, P9_0 to P9_7, P1 P11_0 to P11_7, P14_0, P14_	P8_0 to P8_4, 0_0 to P10_7, 1	I _{OH} = -1 mA	V _{CC1} – 0.5		V _{CC1}	V
		P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P12_0 to P12_7, P13_0 to P13	P2_0 to P2_7, P5_0 to P5_7, B_7	I _{OH} = -1 mA	V _{CC2} -0.5		V _{CC2}	
V _{OH}	High output	voltage XOUT	HIGH POWER	I _{OH} = -0.1 mA	$V_{CC1} - 0.5$		V _{CC1}	V
			LOW POWER	I _{OH} = -50 μA	$V_{CC1} - 0.5$		V _{CC1}	
	High output	voltage XCOUT	HIGH POWER	With no load applied		2.6		V
			LOW POWER	With no load applied		2.2		
V _{OL}	Low output voltage	P6_0 to P6_7, P7_0 to P7_7, F P9_7, P10_0 to P10_7, P11_0	P8_0 to P8_7, P9_0 to to P11_7, P14_0, P14_1	I _{OL} = 1 mA			0.5	V
		P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P12_0 to P12_7, P13_0 to P13	P2_0 to P2_7, P5_0 to P5_7, 3_7	I _{OL} = 1 mA			0.5	
		CEC		I _{OL} = 1 mA		0	0.5	V
V _{OL}	Low output	voltage XOUT	HIGH POWER	I _{OL} = 0.1 mA			0.5	V
			LOW POWER	I _{OL} = 50 μA			0.5	
	Low output	voltage XCOUT	HIGH POWER	With no load applied		0		V
			LOW POWER	With no load applied		0		
V _{T+} -V _{T-}	Hysteresis	HOLD, RDY, TAOIN to TA4IN, 1 INT7, NMI, ADTRG, CTS0 to C SCL0 to SCL2, SCL5 to SCL7, to SDA7, CLK0 to CLK7, TAOC KI3, RXD0 to RXD2, RXD5 to I PMC0, PMC1, SCLMM, SDAM	TBOIN to TB5IN, INTO to TS2, CTS5 to CTS7, SDA0 to SDA2, SDA5 DUT to TA4OUT, KIO to RXD7, SIN3, SIN4, SD, IM, ZP, IDU, IDV, IDW		0.2		1.0	V
		CEC			0.2	0.5	1.0	V
		RESET			0.2		1.8	V
l _{ιH}	High input current	P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P6_0 to P6_7, P7_0 to P7_7, F P9_0 to P9_7, P10_0 to P10_7 P12_0 to P12_7, P13_0 to P13 XIN, RESET, CNVSS, BYTE	P2_0 to P2_7, P5_0 to P5_7, P8_0 to P8_7, 7, P11_0 to P11_7, 8_7, P14_0, P14_1	V ₁ = 3 V			4.0	μΑ
-	Leakage cu	rrent in powered-off state	CEC	V _{CC1} = 0 V			1.8	μΑ
Ι _{ΙL}	Low input current	P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P6_0 to P6_7, P7_0 to P7_7, F P9_0 to P9_7, P10_0 to P10_7 P12_0 to P12_7, P13_0 to P13 XIN, RESET, CNVSS, BYTE	P2_0 to P2_7, P5_0 to P5_7, P8_0 to P8_7, 7, P11_0 to P11_7, 8_7, P14_0, P14_1	V ₁ = 0 V			-4.0	μΑ
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P6_0 to P6_7, P7_2 to P7_7, F P8_6, P8_7, P9_0 to P9_7, P1 P11_0 to P11_7, P12_0 to P12 P13_7, P14_0, P14_1	P2_0 to P2_7, P5_0 to P5_7, P8_0 to P8_4, 0_0 to P10_7, P_7, P13_0 to	$V_1 = 0 V$	50	80	150	kΩ
R _{fXIN}	Feedback re	esistance XIN				3.0		MΩ
V _{RAM}	RAM retent	on voltage		In stop mode	1.8			V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

 $V_{CC1} = V_{CC2} = 3 V$

5.3.2 Timing Requirements (Peripheral Functions and Others)

(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.3.2.1 Reset Input (RESET Input)

Table 5.47 Reset Input (RESET Input)

Symbol	Parameter	Stan	Linit		
Symbol	i arameter	Min.	Max.	Onic	
t _{w(RSTL)}	RESET input low pulse width	10		μS	

Figure 5.20 Reset Input (RESET Input)

5.3.2.2 External Clock Input

Table 5.48 External Clock Input (XIN Input) ⁽¹⁾

Symbol	Parameter	Stan	Unit	
Cymbol	i didificici	Min.	Max.	Onic
t _c	External clock input cycle time	50		ns
t _{w(H)}	External clock input high pulse width	20		ns
t _{w(L)}	External clock input low pulse width	20		ns
t _r	External clock rise time		9	ns
t _f	External clock fall time		9	ns

Note:

1. The condition is $V_{CC1} = V_{CC2} = 2.7$ to 3.0 V.

 $V_{CC1} = V_{CC2} = 3 V$

Switching Characteristics

(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.3.4.4 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area

Table 5.64Memory Expansion and Microprocessor Modes (in Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$,
 $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area)

Symbol	Parameter	Measuring	Stan	Lloit		
Symbol	Falameter	Condition	Min.	Max.	Offic	
t _{d(BCLK-AD)}	Address output delay time			30	ns	
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns	
t _{h(RD-AD})	Address output hold time (in relation to RD)		0		ns	
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns	
t _{d(BCLK-CS)}	Chip select output delay time			30	ns	
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns	
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns	
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns	
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.29		30	ns	
t _{h(BCLK-RD)}	RD signal output hold time		0		ns	
t _{d(BCLK-WR)}	WR signal output delay time			30	ns	
t _{h(BCLK-WR)}	WR signal output hold time		0		ns	
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns	
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns	
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns	
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns	

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times 10^9}{f_{(BCLK)}} - 40[ns] \qquad \text{n is 3 for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and 5 for } 4\phi + 5\phi.$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pullup (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times \ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF \times 1 k $\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

REVISION HISTORY

M16C/65 Group Datasheet

Rov	Date		Description
NEV.	Dale	Page	Summary
2.00	Dec 10, 2010	Special Fu	nction Registers (SFRs)
		31	Table 4.1 SFR Information (1):Deleted "the VCR1 register, the VCR2 register" from note 2.Deleted notes 5 to 6 and added note 5.
		32	Table 4.2 SFR Information (2): Deleted notes 2 to 7 and added note 2.
		49	4.2.1 Register Settings: Added the description regarding read-modify-write instructions.
		50	Table 4.20 Read-Modify-Write Instructions: Added.
		Electrical	Characteristics
		51	Table 5.1 Absolute Maximum Ratings: Added a row for the data area value to T _{opr} (Flash program erase).
		52	Table 5.2 Recommended Operating Conditions (1/3): Added rows for the CEC value to V_{CC1} , V_{CC2} , V_{IH} , and V_{IL} .
		57	Table 5.9 Flash Memory (Program ROM 1, 2) Electrical Characteristics: Added a condition to the Read voltage row.
		60	Table 5.14 Power-On Reset Circuit:
			 Added the t_{w(por)} row.
			Added the last line in note 1.
		60	Figure 5.3 Power-On Reset Circuit Electrical Characteristics: Deleted note 2.
		64	Table 5.20 Electrical Characteristics (2): Added "ZP, IDU, IDV, IDW" to the $V_{T+} - V_{T-}$ row.
		65	Table 5.21 Electrical Characteristics (3): Moved R5F3651ENFC and R5F3651EDFC to Table 5.22 Electrical Characteristics (4).
		73, 96	5.2.2.7 and 5.3.2.7 Multi-master I ² C-bus: Added.
		74 to 81,	Table 5.37 to Table 5.42 and Table 5.60 to Table 5.65 Memory Expansion Mode and
		97 to 104	Microprocessor Mode: Deleted the following: • HOLD input setup time • HOLD input hold time
			HLDA output delay time
		74	Table 5.37 Memory Expansion Mode and Microprocessor Mode:
			Changed RDY input setup time from 30.
		75, 98	Figure 5.13 and Figure 5.28 Timing Diagram: Deleted lower figure (Common to wait state and no wait state settings).
		86, 109	Figure 5.19 and Figure 5.34 Timing Diagram: Changed the width of th(RD-AD).
		87	 Table 5.43 Electrical Characteristics (1): Added rows for the CEC value to V_{OL}, V_{T+}-V_{T-}, and Leakage current in powered-off state. Added "ZP, IDU, IDV, IDW" to the V_{T+} - V_{T-} row.
		88	Table 5.44 Electrical Characteristics (2): Moved R5F3651ENFC and R5F3651EDFC to Table 5.45 Electrical Characteristics (3).
		88 to 90	Table 5.44 to Table 5.46 Electrical Characteristics (2) to (4): Changed "VCC1 = 5.0 V" to "VCC1 =3.0 V" in the During flash memory program and During flash memory erase rows.
		97	Table 5.60 Memory Expansion Mode and Microprocessor Mode: Changed RDY input setup time from 40.
2.10	Ju. 31, 2012	Electrical	Characteristics
		Vcc = 5V	
		65, 66, 67	Table 5.21 Electrical Characteristics (3), Table 5.22 Electrical Characteristics (4), and Table 5.23Electrical Characteristics (5): Changed the Measuring Condition column of 40 MHz on-chiposcillator for the 40 MHz on-chip oscillator mode in the I _{CC} .
		Vcc = 3 V	
		88, 89, 90	Table 5.44 Electrical Characteristics (2), Table 5.45 Electrical Characteristics (3), and Table 5.46Electrical Characteristics (4): Changed the Measuring Condition column of 40 MHz on-chiposcillator for the 40 MHz on-chip oscillator mode in the I _{CC} .
L			1

All trademarks and registered trademarks are the property of their respective owners. HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.