

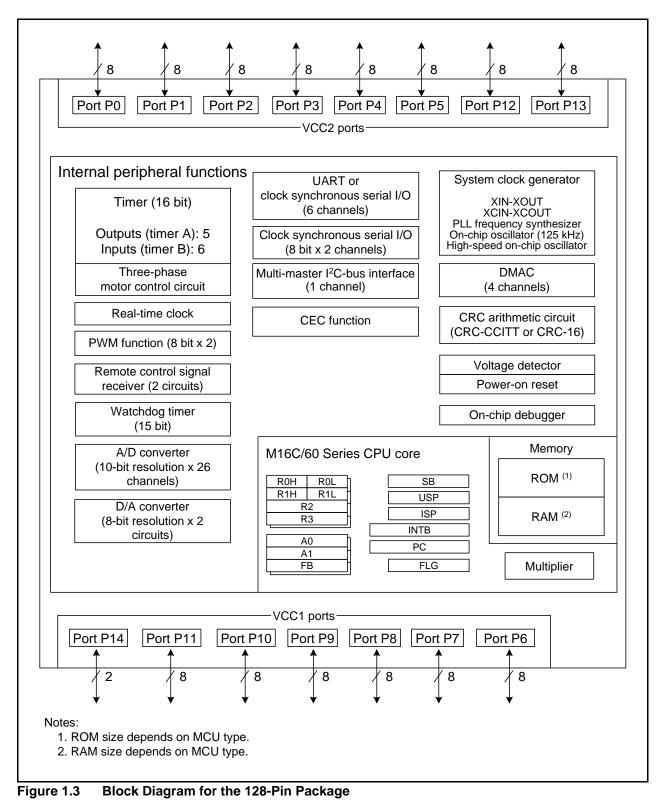
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3650enfa-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Block Diagram

Figure 1.3 to Figure 1.4 show block diagrams.

Pin	No.				I/O P	in for Peripheral Fund	ction	
FA	FB	Control Pin	Port	Interrupt		Serial interface	A/D converter, D/A converter	Bus Control Pin
51	49		P4_3					A19
52	50		P4_2					A18
53	51		P4_1					A17
54	52		 P4_0					A16
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13
58	56		P3_4					A12
59	57		P3_3					A11
60	58		P3_2					A10
61	59		P3_1					A9
62	60	VCC2						
63	61	1002	P3_0					A8, [A8/D7]
64	62	VSS						
65	63		P2_7				AN2_7	A7, [A7/D7], [A7/D6]
66 66	64		P2_6				AN2_6	A6, [A6/D6], [A6/D5]
67	65		P2_0 P2_5	INT7			AN2_5	A5, [A5/D5], [A5/D4]
68	66		P2_3	INT6			AN2_3	A4, [A4/D4], [A4/D3]
69	67		P2_4 P2_3				AN2_3	A3, [A3/D3], [A3/D2]
70	68		P2_3				AN2_3	A3, [A3/D3], [A3/D2] A2, [A2/D2], [A2/D1]
71	69		P2_2 P2_1				AN2_2 AN2_1	A2, [A2/D2], [A2/D1] A1, [A1/D1], [A1/D0]
72								
73	70 71		P2_0	INT5	IDU		AN2_0	A0, [A0/D0], A0 D15
	71		P1_7					
74			P1_6	INT4	IDW			D14
75	73		P1_5	INT3	IDV			D13
76	74		P1_4					D12
77	75		P1_3			TXD6/SDA6		D11
78	76		P1_2			RXD6/SCL6		D10
79	77		P1_1			CLK6		D9
80	78		P1_0			CTS6/RTS6		D8
81	79		P0_7				AN0_7	D7
82	80		P0_6				AN0_6	D6
83	81		P0_5				AN0_5	D5
84	82		P0_4				AN0_4	D4
85	83		P0_3				AN0_3	D3
86	84		P0_2				AN0_2	D2
87	85		P0_1				AN0_1	D1
88	86		P0_0				AN0_0	D0
89	87		P10_7				AN7	
90	88		P10_6				AN6	
91	89		P10_5				AN5	
92	90		P10_4	KI0			AN4	
93	91		P10_3				AN3	
94	92		P10_2				AN2	
95	93		P10_1				AN1	
96	94	AVSS						
97	95		P10_0				AN0	
98	96	VREF						
99	97	AVCC						
100	98		P9_7			SIN4	ADTRG	

 Table 1.11
 Pin Names for the 100-Pin Package (2/2)

Signal Name	Pin Name	I/O	Power Supply	Description		
Main clock input	XIN	1	VCC1	I/O for the main clock oscillator. Connect a ceramic		
		I	VCCT	resonator or crystal between pins XIN and XOUT. (1)		
Main clock output	XOUT	0	VCC1	Input an external clock to XIN pin and leave XOUT pin open.		
Sub clock input	XCIN	I	VCC1	I/O for a sub clock oscillator. Connect a crystal between pins XCIN and XCOUT. ⁽¹⁾ Input an external		
Sub clock output	XCOUT	0	VCC1	clock to XCIN pin and leave XCOUT pin open.		
BCLK output	BCLK	0	VCC2	Outputs the BCLK signal.		
Clock output	CLKOUT	0	VCC2	Outputs a clock with the same frequency as fC, f1, f8, or f32.		
INT interrupt input	INTO to INT2	I	VCC1	Input for the INT interrupt.		
in i interrupt input	INT3 to INT7	I	VCC2			
NMI interrupt input	NMI	Ι	VCC1	Input for the MI interrupt.		
Key input interrupt input	KI0 to KI3	I	VCC1	Input for the key input interrupt.		
	TA0OUT to TA4OUT	I/O	VCC1	I/O for timers A0 to A4 (TA0OUT is N-channel open drain output).		
Timer A	TA0IN to TA4IN	I	VCC1	Input for timers A0 to A4.		
	ZP	I	VCC1	Input for Z-phase.		
Timer B	TB0IN to TB5IN	I	VCC1	Input for timers B0 to B5.		
	$U,\overline{U},V,\overline{V},W,\overline{W}$	0	VCC1	Output for the three-phase motor control timer.		
Three-phase motor control timer	SD	I	VCC1	Forced cutoff input.		
	IDU, IDV, IDW	I	VCC2	Input for the position data.		
Real-time clock output	RTCOUT	0	VCC1	Output for the real-time clock.		
PWM output	PWM0, PWM1	0	VCC1, VCC2	PWM output.		
Remote control signal receiver input	PMC0, PMC1	Ι	VCC1	Input for the remote control signal receiver.		
	CTS0 to CTS2, CTS5	I	VCC1	Input pins to control data transmission.		
	CTS6, CTS7	Ι	VCC2			
	RTS0 to RTS2, RTS5	0	VCC1	Output pins to control data reception.		
	RTS6, RTS7	0	VCC2			
Serial interface	CLK0 to CLK2, CLK5	I/O	VCC1	Transmit/receive clock I/O.		
UART0 to UART2, UART5 to UART7	CLK6, CLK7	I/O	VCC2			
UART5 to UART7	RXD0 to RXD2, RXD5	I	VCC1	Serial data input.		
	RXD6, RXD7	I	VCC2			
	TXD0 to TXD2, TXD5	0	VCC1	Serial data output. ⁽²⁾		
	TXD6, TXD7	0	VCC2			
	CLKS1	0	VCC1	Output for the transmit/receive clock multiple-pin output function.		

Table 1.13	Pin Functions for the 128-Pin Package (2/3)

Notes:

 Contact the manufacturer of crystal/ceramic resonator regarding the oscillation characteristics.
 TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi (i = 0, 1, 5 to 7), SDAi, and SCLi can be selected as CMOS output pins or N-channel open drain output pins.

Signal Name	Pin Name	I/O	Power Supply	Description
UART0 to	SDA0 to SDA2, SDA5	I/O	VCC1	Serial data I/O.
UART2, UART5 to	SDA6, SDA7	I/O	VCC2	
UART7 I ² C mode	SCL0 to SCL2, SCL5	I/O	VCC1	Transmit/receive clock I/O.
	SCL6, SCL7	I/O	VCC2	
	CLK3, CLK4	I/O	VCC1	Transmit/receive clock I/O.
Serial interface SI/O3, SI/O4	SIN3, SIN4	I	VCC1	Serial data input.
	SOUT3, SOUT4	0	VCC1	Serial data output.
Multi-master I ² C-	SDAMM	I/O	VCC1	Serial data I/O (N-channel open drain output).
bus interface	SCLMM	I/O	VCC1	Transmit/receive clock I/O (N-channel open drain output).
CEC I/O	CEC	I/O	VCC1	CEC I/O (N-channel open drain output).
Reference voltage input	VREF	I	VCC1	Reference voltage input for the A/D and D/A converters.
	AN0 to AN7	Ι	VCC1	
A/D converter	AN0_0 to AN0_7 AN2_0 to AN2_7	I	VCC2	Analog input.
	ADTRG	Ι	VCC1	External trigger input.
	ANEX0, ANEX1	I	VCC1	Extended analog input.
D/A converter	DA0, DA1	0	VCC1	Output pin the D/A converter.
I/O ports	P0_0 to P0_7 P1_0 to P1_7 P2_0 to P2_7 P3_0 to P3_7 P4_0 to P4_7 P5_0 to P5_7 P12_0 to P12_7 P13_0 to P13_7	I/O	VCC2	8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.
	P6_0 to P6_7 P7_0 to P7_7 P8_0 to P8_7 P9_0 to P9_7 P10_0 to P10_7 P11_0 to P11_7	I/O	VCC1	8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1, and P8_5 are N-channel open drain output ports. No pull-up resistor is provided. P8_5 is an input port for verifying the NMI pin level and shares a pin with NMI.
	P14_0, P14_1	I/O	VCC1	I/O ports having equivalent functions to P0.

 Table 1.14
 Pin Functions for the 128-Pin Package (3/3)

Signal Name	Pin Name	I/O	Power Supply	Description
Main clock input	XIN	Ι	VCC1	I/O for the main clock oscillator. Connect a ceramic resonator or crystal between pins XIN and XOUT. ⁽¹⁾
Main clock output	XOUT	0	VCC1	Input an external clock to XIN pin and leave XOUT pin open.
Sub clock input	XCIN	Ι	VCC1	I/O for a sub clock oscillator. Connect a crystal between XCIN pin and XCOUT pin. ⁽¹⁾ Input an external clock to
Sub clock output	XCOUT	0	VCC1	XCIN pin and leave XCOUT pin open.
BCLK output	BCLK	0	VCC2	Outputs the BCLK signal.
Clock output	CLKOUT	0	VCC2	Outputs a clock with the same frequency as fC, f1, f8, or f32.
INT interrupt input	INTO to INT2	Ι	VCC1	Input for the INT interrupt.
	INT3 to INT7	Ι	VCC2	
NMI interrupt input	NMI	Ι	VCC1	Input for the MMI interrupt.
Key input interrupt input	KI0 to KI3	Ι	VCC1	Input for the key input interrupt.
	TA0OUT to TA4OUT	I/O	VCC1	I/O for timers A0 to A4 (TA0OUT is N-channel open drain output).
Timer A	TA0IN to TA4IN	Ι	VCC1	Input for timers A0 to A4.
	ZP	Ι	VCC1	Input for Z-phase.
Timer B	TB0IN to TB5IN	Ι	VCC1	Input for timers B0 to B5.
	U, \overline{U} , V, \overline{V} , W, \overline{W}	0	VCC1	Output for the three-phase motor control timer.
Three-phase motor control timer	SD	Ι	VCC1	Forced cutoff input.
	IDU, IDV, IDW	Ι	VCC2	Input for the position data.
Real-time clock output	RTCOUT	0	VCC1	Output for the real-time clock.
PWM output	PWM0, PWM1	0	VCC1, VCC2	PWM output.
Remote control signal receiver input	PMC0, PMC1	I	VCC1	Input for the remote control signal receiver.
	$\frac{\overline{\text{CTS0}} \text{ to } \overline{\text{CTS2}},}{\overline{\text{CTS5}}}$	I	VCC1	Input pins to control data transmission.
	CTS6, CTS7	Ι	VCC2	
	RTS0 to RTS2, RTS5	0	VCC1	Output pins to control data reception.
	RTS6, RTS7	0	VCC2	
Serial interface	CLK0 to CLK2, CLK5	I/O	VCC1	Transmit/receive clock I/O.
UART0 to UART2, UART5 to UART7	CLK6, CLK7	I/O	VCC2	
	RXD0 to RXD2, RXD5	I	VCC1	Serial data input.
	RXD6, RXD7	Ι	VCC2	
	TXD0 to TXD2, TXD5	0	VCC1	Serial data output. ⁽²⁾
	TXD6, TXD7	0	VCC2	
	CLKS1	0	VCC1	Output for the transmit/receive clock multiple-pin output function.

 Table 1.16
 Pin Functions for the 100-Pin Package (2/3)

Notes:

1. Contact the manufacturer of crystal/ceramic resonator regarding the oscillation characteristics.

 TXD2, SDA2, and SCL2 are N-channel open drain output pins. TXDi (i = 0, 1, 5 to 7), SDAi, and SCLi can be selected as CMOS output pins or N-channel open drain output pins.

Address	Register	Symbol	Reset Value
0360h	Pull-Up Control Register 0	PUR0	00h
0361h	Pull-Up Control Register 1	PUR1	0000 0000b ⁽²⁾
			0000 0010b
0362h	Pull-Up Control Register 2	PUR2	00h
0363h	Pull-Up Control Register 3	PUR3	00h
0364h			
0365h			
0366h	Port Control Register	PCR	0000 0XX0b
0367h			
0368h			
0369h	NMI/SD Digital Filter Register	NMIDF	XXXX X000b
036Ah			
036Bh			
036Ch			
036Dh			
036Eh			
036Fh			
0370h	PWM Control Register 0	PWMCON0	00h
0371h			
0372h	PWM0 Prescaler	PWMPRE0	00h
0373h	PWM0 Register	PWMREG0	00h
0374h	PWM1 Prescaler	PWMPRE1	00h
0375h	PWM1 Register	PWMREG1	00h
0376h	PWM Control Register 1	PWMCON1	00h
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch	Count Source Protection Mode Register	CSPR	00h ⁽³⁾
037Dh	Watchdog Timer Refresh Register	WDTR	XXh
037Eh	Watchdog Timer Start Register	WDTS	XXh
037Fh	Watchdog Timer Control Register	WDC	00XX XXXXb
0380h to			
038Fh			X: Unde

Table 4.14SFR Information (14) (1)

Notes:

2. Values after hardware reset, power-on reset, or voltage monitor 0 reset are as follows:

- 00000000b when a low-level signal is input to the CNVSS pin

- 00000010b when a high-level signal is input to the CNVSS pin

Values after voltage monitor 1 reset, voltage monitor 2 reset, software reset, watchdog timer reset, or oscillation stop detect reset are as follows:

- 00000000b when bits PM01 and PM00 in the PM0 register are 00b (single-chip mode).

- 00000010b when bits PM01 and PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode).

3. When the CSPROINI bit in the OFS1 address is 0, the reset value is 1000 0000b.

^{1.} The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0390h	DMA2 Source Select Register	DM2SL	00h
0391h		DIVIZOL	0011
0392h	DMA3 Source Select Register	DM3SL	00h
0393h		DIVISOE	0011
0393h 0394h			
039411 0395h			
0396h			
0397h			2.21
0398h	DMA0 Source Select Register	DM0SL	00h
0399h			
039Ah	DMA1 Source Select Register	DM1SL	00h
039Bh			
039Ch			
039Dh			
039Eh			
039Fh			
03A0h			
03A1h			
03A2h	Open-Circuit Detection Assist Function Register	AINRST	XX00 XXXXb
03A3h			
03A4h			
03A5h			
03A6h			
03A7h			
03A8h			
03A9h			
03AAh			
03ABh			
03ACh			
03ADh			
03AEh			
03AEh 03AFh			
03A0h			
03B0n 03B1h			
03B2h			
03B3h			
03B4h	SFR Snoop Address Register	CRCSAR	XXXX XXXXb
03B5h			00XX XXXXb
03B6h	CRC Mode Register	CRCMR	0XXX XXX0b
03B7h			
03B8h			
03B9h			
03BAh			
03BBh			
03BCh	CRC Data Register	CRCD	XXh
03BDh			XXh
03BEh	CRC Input Register	CRCIN	XXh
03BFh			

Table 4.15SFR Information (15) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Function	Mnemonic
Transfer	MOVDir
Bit processing	BCLR, BMCnd, BNOT, BSET, BTSTC, and BTSTS
Shifting	ROLC, RORC, ROT, SHA, and SHL
Arithmetic operation	ABS, ADC, ADCF, ADD, DEC, DIV, DIVU, DIVX, EXTS, INC, MUL, MULU, NEG, SBB, and SUB
Decimal operation	DADC, DADD, DSBB, and DSUB
Logical operation	AND, NOT, OR, and XOR
Jump	ADJNZ, SBJNZ

Table 4.20 Read-Modify-Write Instructions

5.1.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions (1/3)

 $V_{CC1} = V_{CC2} = 2.7$ to 5.5 V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol		Parameter			Standard	ł	Unit
Cymbol				Min.	Тур.	Max.	Onit
V _{CC1} ,	Supply volt	age ($V_{CC1} \ge V_{CC2}$) CE	EC function is not used	2.7	5.0	5.5	V
V _{CC2}		CE	EC function is used	2.7		3.63	V
AV _{CC}	Analog sup	ply voltage			V _{CC1}		V
V _{SS}	Supply volt	age			0		V
AV _{SS}	Analog sup	ply voltage			0		V
V _{IH}	High input voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P12_0 to P12_7, P13_0 to P13_7	P5_7,	0.8V _{CC2}		V _{CC2}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to (in single-chip mode)	P2_7, P3_0	0.8V _{CC2}		V _{CC2}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to (data input in memory expansion and modes)	Min. Typ. Max. CEC function is not used 2.7 5.0 5.5 CEC function is used 2.7 3.63 0 0 0 0 0 0 0.0 to P4_7, P5_0 to P5_7, 13_0 to P13_7 0.8V _{CC2} V _{CC2} V _{CC2} 0 to P1_7, P2_0 to P2_7, P3_0 0.8V _{CC2} V _{CC2} V _{CC2} 0 to P1_7, P2_0 to P2_7, P3_0 0.8V _{CC2} V _{CC2} V _{CC2} 0 to P1_7, P2_0 to P2_7, P3_0 0.8V _{CC1} V _{CC1} V _{CC1} 0 to P1_7, P2_0 to P2_7, P3_0 0.8V _{CC1} V _{CC1} V _{CC1} 0 to P1_7, P1_0 to P11_7, P14_0, SS, BYTE 0.8V _{CC1} 6.5 0.2V _{CC2} 0 to P1_7, P2_0 to P2_7, P3_0 0 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0 to P1_7, P2_0 to P2_7, P3_0 0 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0 to P1_7, P2_0 to P2_7, P3_0 0 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0 to P1_7, P2_0 to P2_7, P3_0 0 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0.00	V			
				0.8V _{CC1}		Typ. Max. 5.0 5.5 3.63 $(Cc1)$ 0 $(Cc1)$ 0 $(Cc1)$ 0 $(Cc2)$ V_{CC2} V_{CC2} V_{CC2} V_{CC1} V_{CC1} $(Cc1)$ $0.2V_{CC2}$ $(Cc2)$ $0.2V_{CC1}$ $(Cc2)$ $0.2V_{CC1}$ $(Cc2)$ $0.2V_{CC1}$ $(Cc2)$ $0.2V_{CC1}$ $(Cc2)$ $0.20V_{CC1}$ $(Cc2)$ $(Cc2)$ $(Cc2)$ $(Cc2)$ $(Cc2)$ $(Cc2)$ $(Cc2)$ $(Cc2)$ $(Cc2)$ $(C$	V
		P7_0, P7_1, P8_5		0.8V _{CC1}		6.5	V
		CEC				0.2V _{CC2}	V
V _{IL}	Low input voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P12_0 to P12_7, P13_0 to P13_7	P5_7,			0.2V _{CC2}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to (in single-chip mode)	P2_7, P3_0	0		$ \begin{array}{c ccccc} & V_{CC2} \\ & V_{CC1} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC1} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC2} \\ & 0.2V_{CC1} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC1} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC1} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC2} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC1} \\ & 0.2V_{CC2} \\ & 0.2V_{CC2} \\ & 0.2V_{CC1} \\ &$	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to	-	0			V
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P10_0 to P10_7,P11_0 to P11_7, P14 XIN, RESET, CNVSS, BYTE		0		0.2V _{CC1}	V
		CEC				Vcc2 Vcc2 Vcc2 Vcc2 Vcc1 6.5 0.2Vcc2 0.2Vcc2 0.2Vcc2 0.2Vcc2 0.2Vcc1 0.2Vcc1 0.2Vcc1 0.2Vcc1 0.2Vcc1 0.2Vcc1 0.2Vcc1 0.20Vcc1 -40.0 -40.0 -40.0 -10.0	V
I _{OH(sum)}	High peak output	Sum of I _{OH(peak)} at P0_0 to P0_7, P1_ P2_0 to P2_7	_0 to P1_7,			-40.0	mA
	current	Sum of $I_{OH(peak)}$ at P3_0 to P3_7, P4_ P5_0 to P5_7, P12_0 to P12_7, and F				-40.0	mA
		Sum of I _{OH(peak)} at P6_0 to P6_7, P7_ P8_0 to P8_4				5.5 3.63 V _{CC2} V _{CC2} V _{CC2} V _{CC2} V _{CC2} V _{CC1} 6.5 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2} 0.2V _{CC2}	mA
		Sum of I _{OH(peak)} at P8_6, P8_7, P9_0 P10_0 to P10_7, P11_0 to P11_7, P14				-40.0	mA
I _{OH(peak)}	High peak output current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P9_0 to P9_7, P10_0 to P10_7, P11_0 P12_0 to P12_7, P13_0 to P13_7, P13_0	P8_4, P8_6, P8_7, 0 to P11_7,			-10.0	mA
I _{OH(avg)}	High average output current ⁽¹⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P3_0 to P3_7, P4_0 to P4_7, P5_0 to P6_0 to P6_7, P7_2 to P7_7, P8_0 to P9_0 to P9_7, P10_0 to P10_7, P11_1 P12_0 to P12_7, P13_0 to P13_7, P12_0	P5_7, P8_4, P8_6, P8_7, 0 to P11_7,			-5.0	mA

Note:

1. The average output current is the mean value within 100 ms.

5.1.5 Flash Memory Electrical Characteristics

Table 5.8 CPU Clock When Operating Flash Memory (f_(BCLK))

V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter	Conditions		Unit		
Symbol	i didificter	Conditions	Min.	Тур.	Max.	01111
-	CPU rewrite mode				10 (1)	MHz
f(SLOW_R)	Slow read mode				5 (3)	MHz
-	Low current consumption read mode			fC(32.768)	35	kHz
-	Data flash read	$2.7 \text{ V} \le \text{V}_{\text{CC1}} \le 3.0 \text{ V}$			16 ⁽²⁾	MHz
		$3.0 \text{ V} < \text{V}_{\text{CC1}} \le 5.5 \text{ V}$			20 (2)	MHz

Notes:

1. Set the PM17 bit in the PM1 register to 1 (one wait).

2. When the frequency is over this value, set the FMR17 bit in the FMR1 register to 0 (one wait) or the PM17 bit in the PM1 register to 1 (one wait)

3. Set the PM17 bit in the PM1 register to 1 (one wait). When using 125 kHz on-chip oscillator clock or sub clock as the CPU clock source, a wait is not necessary.

Table 5.9 Flash Memory (Program ROM 1, 2) Electrical Characteristics

V_{CC1} = 2.7 to 5.5 V at T_{opr} = 0°C to 60°C (option: -40°C to 85°C), unless otherwise specified.

Symbol	Parameter	Conditions		Unit		
Symbol	i didificici	Conditions	Min.	Тур.	Max.	01111
-	Program and erase cycles ^{(1), (3), (4)}	V _{CC1} = 3.3 V, T _{opr} = 25°C	1,000 (2)			times
-	2 word program time	V _{CC1} = 3.3 V, T _{opr} = 25°C		150	4000	μS
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		70	3000	μs
-	Block erase time	V _{CC1} = 3.3 V, T _{opr} = 25°C		0.2	3.0	S
-	Program, erase voltage		2.7		5.5	V
-	Read voltage	T_{opr} = -20°C to 85°C/-40°C to 85°C	2.7		5.5	V
-	Program, erase temperature		0		60	°C
t _{PS}	Flash memory circuit stabilization wa	ait time			50	μs
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year

Notes:

1. Definition of program and erase cycles:

The program and erase cycles refer to the number of per-block erasures. If the program and erase cycles are n (n = 1,000), each block can be erased n times. For example, if a block is erased after writing 2 word data 16,384 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. It is advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.

4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.15 Power Supply Circuit Timing Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V and T_{opr} = 25°C, unless otherwise specified.

Symbol	Parameter	Condition	Standard			Unit
			Min.	Тур.	Max.	Offic
t _{d(P-R)}	Internal power supply stability time when power is on $^{(1)}$				5	ms
t _{d(R-S)}	STOP release time				150	μs
t _{d(W-S)}	Low power mode wait mode release time				150	μS

Note:

1. Waiting time until the internal power supply generator stabilizes when power is on.

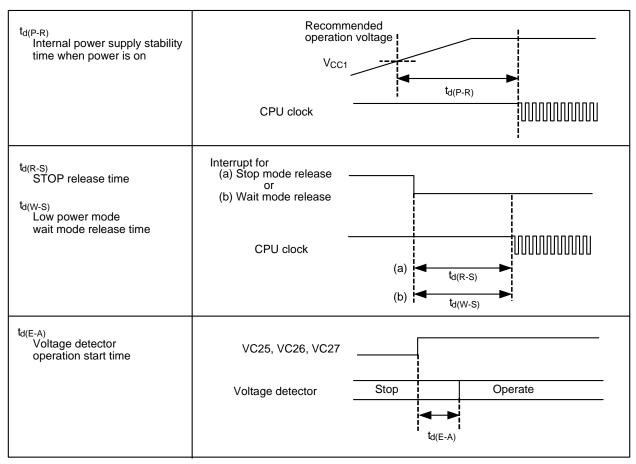


Figure 5.4 Power Supply Circuit Timing Diagram

$V_{\rm CC1} = V_{\rm CC2} = 5 \text{ V}$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

Table 5.30	Timer A Input (Two-Phase Pulse Input in Event Counter Mode)
------------	---

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onic
t _{c(TA)}	TAIIN input cycle time	800		ns
t _{su(TAIN-TAOUT)}	TAIOUT input setup time	200		ns
t _{su(TAOUT-TAIN)}	TAIIN input setup time	200		ns

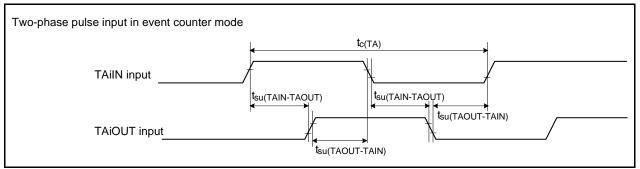


Figure 5.8 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

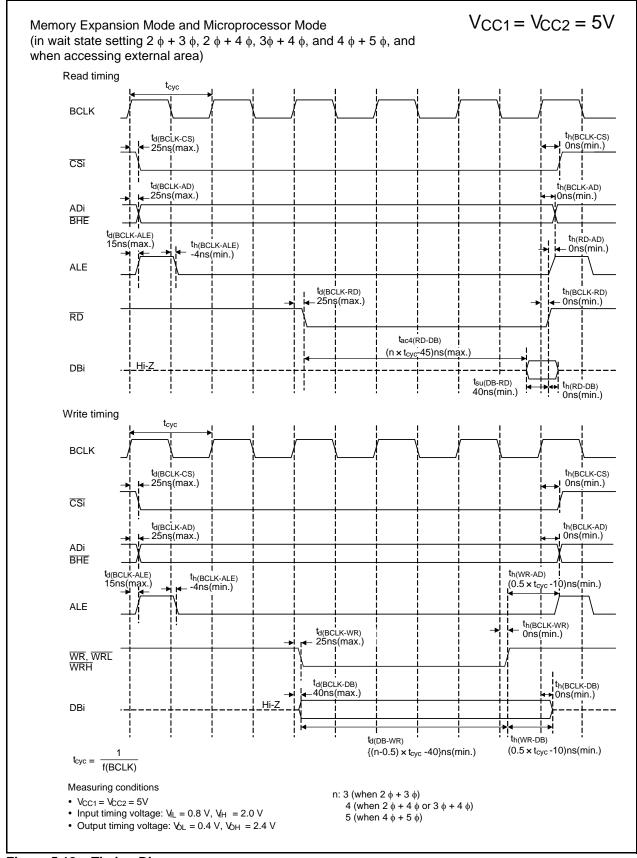


Figure 5.18 Timing Diagram

$V_{CC1} = V_{CC2} = 3 V$

Table 5.45 Electrical Characteristics (3)

R5F3651ENFC, R5F3651EDFC, R5F3651KNFC, R5F3650KNFA, R5F3650KNFB, R5F3651KDFC, R5F3650KDFA, R5F3650KDFB, R5F3651MNFC, R5F3650MNFA, R5F3650MNFB, R5F3651MDFC, R5F3650MDFA, R5F3650NNFA, R5F3650NNFB, R5F3651NDFC, R5F3650NDFA, R5F3650NDFB, R5F3650NDFA, R5F3650NDFB, V_{CC1} = V_{CC2} = 2.7 to 3.3 V, V_{SS} = 0 V at T_{opr} = -20°C to 85°C/-40°C to 85°C, $f_{(BCLK)}$ = 32 MHz unless otherwise specified.

Symbol Parameter	r Measuring Condition			Standard		Unit	
Symbol			Measuring Condition	Min.	Тур.	Max.	0111
R _{fXCIN}	Feedback resistance XCIN				16		MΩ
I _{CC} Power s In single the outp open an	Power supply current In single-chip, mode, the output pin are open and other pins are V_{SS}	High-speed mode	f _(BCLK) = 32 MHz XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		26.0		mA
			f _(BCLK) = 32 MHz, A/D conversion XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		27.0		m/
			f _(BCLK) = 20 MHz XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped		17.0		m/
		40 MHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator on, divide-by-4 (f(BCLK) = 10 MHz) 125 kHz on-chip oscillator stopped		18.0		m/
		125 kHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on, no division FMR22 = 1 (slow read mode)		500.0		μA
	Low-power mode	$f_{(BCLK)} = 32 \text{ MHz}$ In low-power mode, FMR 22 = FMR23 = 1 on flash memory ⁽¹⁾		170.0		μ	
		$f_{(BCLK)} = 32 \text{ MHz}$ In low-power mode, on RAM ⁽¹⁾		40.0		μΑ	
	Wait mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on Peripheral clock operating T _{opr} = 25°C		20.0		μΑ	
			f _(BCLK) = 32 MHz (oscillation capacity High) 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating T _{opr} = 25°C		8.0		μA
Durin memo		$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity Low) 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		4.0		μA	
	Stop mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock stopped T _{opr} = 25°C		1.6		μA	
		During flash memory program	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$ $V_{CC1} = 3.0 \text{ V}$		20.0		m/
		During flash memory erase	f _(BCLK) = 10 MHz, PM17 = 1 (one wait) V _{CC1} = 3.0 V		30.0		m/

Note:

1. This indicates the memory in which the program to be executed exists.

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.2.4 Timer B Input

Table 5.54 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Standard		
		Min.	Max.	Unit	
t _{c(TB)}	TBiIN input cycle time (counted on one edge)	150		ns	
t _{w(TBH)}	TBiIN input high pulse width (counted on one edge)	60		ns	
t _{w(TBL)}	TBiIN input low pulse width (counted on one edge)	60		ns	
t _{c(TB)}	TBilN input cycle time (counted on both edges)	300		ns	
t _{w(TBH)}	TBiIN input high pulse width (counted on both edges)	120		ns	
t _{w(TBL)}	TBiIN input low pulse width (counted on both edges)	120		ns	

Table 5.55 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
t _{c(TB)}	TBiIN input cycle time	600		ns
t _{w(TBH)}	TBiIN input high pulse width	300		ns
t _{w(TBL)}	TBiIN input low pulse width	300		ns

Table 5.56 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onic
t _{c(TB)}	TBIIN input cycle time	600		ns
t _{w(TBH)}	TBiIN input high pulse width	300		ns
tw(TBL)	TBiIN input low pulse width	300		ns

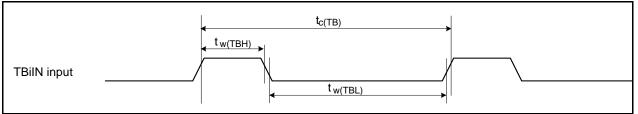


Figure 5.24 Timer B Input

$V_{CC1} = V_{CC2} = 3 V$

5.3.4 Switching Characteristics (Memory Expansion Mode and Microprocessor Mode)

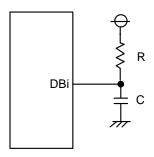
(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.3.4.1 In No Wait State Setting

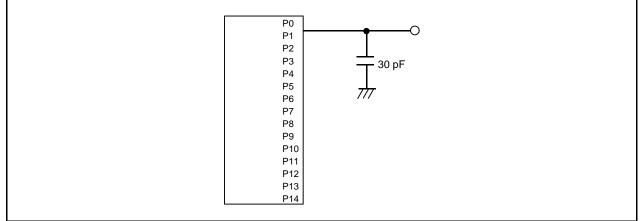
Table 5.61 Memory Expansion and Microprocessor Modes (in No Wait State Setting)

Symbol	Parameter	Measuring	Standard		Linit
Symbol	Parameter	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			30	ns
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD)}	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			30	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns
t _{h(BCLK-ALE)}	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.29		30	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			30	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:


1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f} - 40[ns]$$
 f_(BCLK) is 12.5 MHz or less.


 $f_{(BCLK)}$ 2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times \ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 kΩ, hold time of output low level is t = -30 pF \times 1 kΩ \times ln(1 - 0.2V_{CC2}/V_{CC2}) = 6.7 ns.

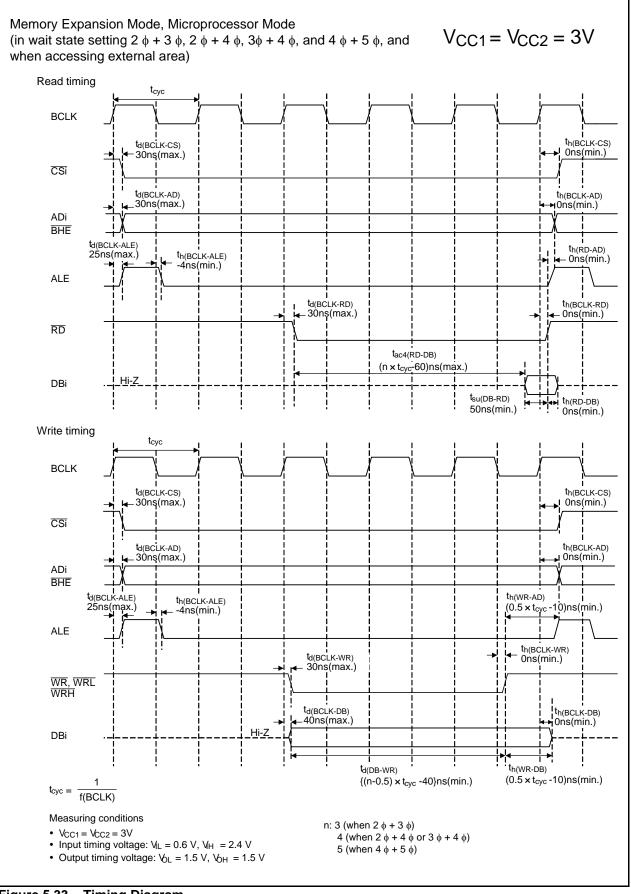


Figure 5.33 Timing Diagram

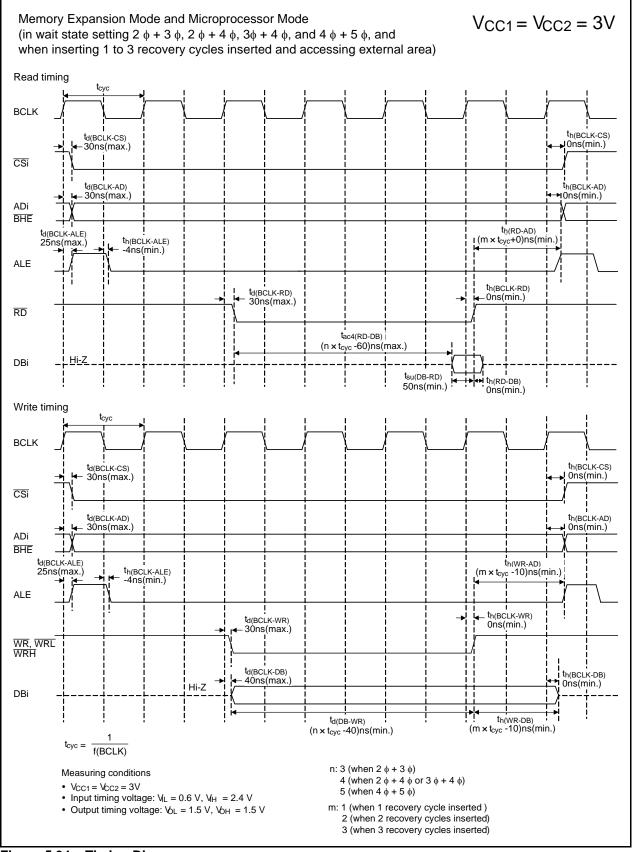


Figure 5.34 Timing Diagram

RENESAS

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious properly damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for which it is not intended. Renesas Electronics shall not be in any way liable for any application for which the product is not intended by Nenesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Ciara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-989-5441, Fax: +1-905-898-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +49-211-65030, Fax: +444-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Disseldorf, Germany

 Tel: +49-211-65030, Fax: +449-11-6503-1327

 Renesas Electronics (Shanghal) Co., Ltd.

 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +80-10-8235-1155, Fax: +862-10-8235-7679

 Renesas Electronics (Shanghal) Co., Ltd.

 Unit 204, 205, AZIA Center, No.1233 Lujiazui Bing Rd., Pudong District, Shanghai 200120, China

 Tel: +862-877-1818, Fax: +862-216887-7858

 Renesas Electronics Hong Kong Limited

 Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +862-84175-9600, Fax: +862-24675-9670

 Renesas Electronics Taiwan Co., Ltd.

 173F, No. 383, Fu Shing Noth Road, Taipei, Taiwan

 Tel: +862-74175-9670

 Renesas Elect