

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3650mnfb-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Function	Description		
		16-bit timer × 5		
	Timer A	Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode		
		Event counter two-phase pulse signal processing (two-phase encoder		
		Programmable output mode × 3		
		16-bit timer × 6		
	Timer B	Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode		
Timers	Three-phase motor control	• Three-phase inverter control (timer A1, timer A2, timer A4, timer B2)		
	timer functions	 On-chip dead time timer 		
	Real-time clock	Count: seconds, minutes, hours, days of the week		
	PWM function	8 bits × 2		
		• 2 circuits		
		• 4 wave pattern matchings (differentiate wave pattern for headers, data		
	Remote control signal receiver	0, data 1, and special data)		
		• 6-byte receive buffer (1 circuit only)		
		• Operating frequency of 32 kHz		
.	UART0 to UART2, UART5 to	Clock synchronous/asynchronous × 6 channels		
Serial	UART7	SIM (UART2)		
Interface	SI/O3, SI/O4	Clock synchronization only × 2 channels		
Multi-master I	² C-bus Interface	1 channel		
	(2)	CEC transmit/receive, arbitration lost detection, ACK automatic output,		
CEC Function	15 (2)	operation frequency of 32 kHz		
A/D Converte	r	10-bit resolution × 26 channels, including sample and hold function Conversion time: 1.72 μs		
D/A Converte	r	8-bit resolution x 2 circuits		
CPC Colculat	ior.	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1),		
	.01	CRC-16 ($X^{16} + X^{15} + X^2 + 1$) compliant		
		 Program and erase power supply voltage: 2.7 to 5.5 V 		
Flash Memor	V	 Program and erase cycles: 1,000 times (program ROM 1, program 		
	,	ROM 2), 10,000 times (data flash)		
		Program security: ROM code protect, ID code check		
Debug Functi	ons	On-chip debug, on-board flash rewrite, address match interrupt × 4		
Operation Fre	equency/Supply Voltage	32 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1		
Current Cons	umption	Described in Electrical Characteristics		
Operating Ter	mperature	-20°C to 85°C, -40°C to 85°C ⁽¹⁾		
Package		128-pin LQFP: PLQP0128KB-A (Previous package code: 128P6Q-A)		

Table 1.2	Specifications for the 128-Pin Package (2)	/2)
-----------	--	-----

Notes:

1. See Table 1.5 "Product List (1/2)" and Table 1.6 "Product List (2/2)" for the operating temperature.

2. The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

				Bus Control			
Pin No.	Control Pin	Port	Interrupt	Timer	Serial interface	A/D converter,	Pin
4				-		D/A converter	
1	VREF						
2	AVCC						
3		P9_7					
4		P9_6					
о С		P9_5			CLK4		
0		P9_4					
/		P9_3				DAU	
0		P9_2					
9		P9_1					
10		P9_0		IDUIN	CLK3		
11		P14_1					
12	DVTC	P14_0					
13							
14							
10		P0_/					
10		P0_0					
17	KESEI						
10	X001						
19	V 3 3						
20							
21	VCCI		NINAL				
22		P0_0			CEC		
23		P0_4		28			
24		P0_3					
20		F0_2					
20							
21		F0_0					
20		F/_/					
29		F7_0			1×D3/3DA3		
30		D7 /					
32		D7 3					
32 33		P7 2			CI K2		
34		P7 1					
35		P7 0					
36		P6 7		17.0001			
37	VCC1	10_7					
38		P6 6			RXD1/SCI 1		
39	VSS	10_0					
40		P6 5					
41		P6_4			CTS1/BTS1/CTS0/CLKS1		
42		P6_3					
43		P6_2			RXD0/SCL0		
44		P6_1					
45		P6 0	1	RTCOUT	CTS0/RTS0		
46		P13 7					
47		P13_6	1				
48	1	P13 5	1				<u> </u>
49		P13_4					
50	CLKOUT	P5_7					RDY

 Table 1.7
 Pin Names for the 128-Pin Package (1/3)

	Control		I/O Pin for Peripheral Function				
Pin No.	Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter	Bus Control Pin
51		P5_6					ALE
52		P5_5					HOLD
53		P5_4					HLDA
54		P13_3					
55		P13_2					
56		P13_1					
57		P13_0					
58		P5_3					BCLK
59		P5_2					RD
60		P5_1					WRH/BHE
61		P5_0					WRL/WR
62		P12_7					
63		P12_6					
64		P12_5					
65		P4_7		PWM1	TXD7/SDA7		CS3
66		P4_6		PWM0	RXD7/SCL7		CS2
67		P4_5			CLK7		CS1
68		P4_4			CTS7/RTS7		CS0
69		P4_3					A19
70		P4_2					A18
71		P4_1					A17
72		P4_0					A16
73		P3_7					A15
74		P3_6					A14
75		P3_5					A13
76		P3_4					A12
77		P3_3					A11
78		P3_2					A10
79		P3_1					A9
80		P12_4					
81		P12_3					
82		P12_2					
83		P12_1					
84		P12_0					
85	VCC2						
86		P3_0					A8, [A8/D7]
87	VSS						
88		P2_7				AN2_7	A7, [A7/D7], [A7/D6]
89		P2_6				AN2_6	A6, [A6/D6], [A6/D5]
90		P2_5	INT7			AN2_5	A5, [A5/D5], [A5/D4]
91		P2_4	INT6			AN2_4	A4[A4/D4], [A4/D3]
92		P2_3				AN2_3	A3, [A3/D3], [A3/D2]
93		P2_2				AN2_2	A2, [A2/D2], [A2/D1]
94		P2_1				AN2_1	A1, [A1/D1], [A1/D0]
95		P2_0	IN IT C			AN2_0	AU, [AU/D0], A0
96		P1_7	IN15				D15
97		P1_6	INT4	IDW			D14
98		P1_5	INT3	IDV	1		D13

Table 1.8 Pin Names for the 128-Pin Package (2/3)

P1_4

P1_3

99

100

TXD6/SDA6

D12

D11

Figure 1.7 Pin Assignment for the 100-Pin Package

2.1 Data Registers (R0, R1, R2, and R3)

R0, R1, R2, and R3 are 16-bit registers used for transfer, arithmetic, and logic operations. R0 and R1 can be split into upper (R0H/R1H) and lower (R0L/R1L) bits to be used separately as 8-bit data registers. R0 can be combined with R2, and R3 can be combined with R1 and be used as 32-bit data registers R2R0 and R3R1, respectively.

2.2 Address Registers (A0 and A1)

A0 and A1 are 16-bit registers used for indirect addressing, relative addressing, transfer, arithmetic, and logic operations. A0 can be combined with A1 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register that is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of a relocatable interrupt vector table.

2.5 Program Counter (PC)

The PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The USP and ISP stack pointers (SP) are each comprised of 16 bits. The U flag is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register used for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register that indicates the CPU state.

2.8.1 Carry Flag (C Flag)

The C flag retains a carry, borrow, or shift-out bit generated by the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z Flag)

The Z flag becomes 1 when an arithmetic operation results in 0. Otherwise, it becomes 0.

2.8.4 Sign Flag (S Flag)

The S flag becomes 1 when an arithmetic operation results in a negative value. Otherwise, it becomes 0.

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is 1.

2.8.6 Overflow Flag (O Flag)

The O flag becomes 1 when an arithmetic operation results in an overflow. Otherwise, it becomes 0.

Address	Register	Symbol	Reset Value
01E0h	Times D2 4 De sister	TDOA	XXh
01E1h	Timer B3-1 Register	TB31	XXh
01E2h			XXh
01E3h	Timer B4-1 Register	TB41	XXh
01F4h			XXh
01E5h	Timer B5-1 Register	TB51	XXh
01E6h	Pulse Period/Pulse Width Measurement Mode Function Select Reg-	PPWFS2	XXXX X000b
01E7h			
01E8h	Timer B Count Source Select Register 2	TBCS2	00h
01E0h	Timer B Count Source Select Register 3	TBCS3	X0h
01EAh		12000	Xon
01ERh			
01EDh			
01001			
01EEN			
01E0h	PMC0 Eurotion Select Projector 0	BMCOCONO	00b
01F00	PMC0 Function Select Register 0	PMC0CON0	
	PMC0 Function Select Register 1	PMCOCONT	
	PMC0 Function Select Register 2	PMC0C0N2	
01F3N	PMC0 Function Select Register 3	PMC0CON3	00h
01F4h	PMC0 Status Register	PMC0STS	00h
01F5h	PMC0 Interrupt Source Select Register	PMC0INT	00h
01F6h	PMC0 Compare Control Register	PMC0CPC	XXX0 X000b
01F7h	PMC0 Compare Data Register	PMC0CPD	00h
01F8h	PMC1 Function Select Register 0	PMC1CON0	XXX0 X000b
01F9h	PMC1 Function Select Register 1	PMC1CON1	XXXX 0X00b
01FAh	PMC1 Function Select Register 2	PMC1CON2	0000 00X0b
01FBh	PMC1 Function Select Register 3	PMC1CON3	00h
01FCh	PMC1 Status Register	PMC1STS	X000 X00Xb
01FDh	PMC1 Interrupt Source Select Register	PMC1INT	X000 X00Xb
01FEh			
01FFh			
0200h			
0201h			
0202h			
0203h			
0204h			
0205h	Interrupt Source Select Register 3	IFSR3A	00h
0206h	Interrupt Source Select Register 2	IFSR2A	00h
0207h	Interrupt Source Select Register	IFSR	00h
0208h			
0209h			
020Ah			
020Bh			
020Ch			
020Dh			
020Eh	Address Match Interrupt Enable Register	AIER	XXXX XX00b
020Fh	Address Match Interrupt Enable Register 2	AIER2	XXXX XX00b
u			X: Undefined

Table 4.7SFR Information (7) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
02A0h			
02A1h			
02A2h			
02A3h			
02A4h	UART7 Special Mode Register 4	U7SMR4	00h
02A5h	UART7 Special Mode Register 3	U7SMR3	000X 0X0Xb
02A6h	UART7 Special Mode Register 2	U7SMR2	X000 0000b
02A7h	UART7 Special Mode Register	U7SMR	X000 0000b
02A8h	UART7 Transmit/Receive Mode Register	U7MR	00h
02A9h	UART7 Bit Rate Register	U7BRG	XXh
02AAh	LIA BTZ Transmit Buffer Degister	LIZTR	XXh
02ABh		0/16	XXh
02ACh	UART7 Transmit/Receive Control Register 0	U7C0	0000 1000b
02ADh	UART7 Transmit/Receive Control Register 1	U7C1	0000 0010b
02AEh		LIZER	XXh
02AFh	OART Receive Buller Register	UIRB	XXh
02B0h	I2C0 Data Shift Register	S00	XXh
02B1h			
02B2h	I2C0 Address Register 0	S0D0	0000 000Xb
02B3h	I2C0 Control Register 0	S1D0	00h
02B4h	I2C0 Clock Control Register	S20	00h
02B5h	I2C0 Start/Stop Condition Control Register	S2D0	0001 1010b
02B6h	I2C0 Control Register 1	S3D0	0011 0000b
02B7h	I2C0 Control Register 2	S4D0	00h
02B8h	I2C0 Status Register 0	S10	0001 000Xb
02B9h	I2C0 Status Register 1	S11	XXXX X000b
02BAh	I2C0 Address Register 1	S0D1	0000 000Xb
02BBh	I2C0 Address Register 2	S0D2	0000 000Xb
02BCh			
02BDh			
02BEh			
02BFh			
02C0h to			
02FFh			
			X: Undefined

Table 4.11SFR Information (11) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
03C0h		4.00	XXXX XXXXb
03C1h	A/D Register 0	ADU	0000 00XXb
03C2h		4.04	XXXX XXXXb
03C3h	A/D Register 1	AD1	0000 00XXb
03C4h		4.00	XXXX XXXXb
03C5h	A/D Register 2	AD2	0000 00XXb
03C6h		1.50	XXXX XXXXb
03C7h	A/D Register 3	AD3	0000 00XXb
03C8h		4.5.4	XXXX XXXXb
03C9h	A/D Register 4	AD4	0000 00XXb
03CAh	A/D Derinter F	ADE	XXXX XXXXb
03CBh	A/D Register 5	AD5	0000 00XXb
03CCh		100	XXXX XXXXb
03CDh	A/D Register 6	AD6	0000 00XXb
03CEh		407	XXXX XXXXb
03CFh	A/D Register 7	AD7	0000 00XXb
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	0000 X00Xb
03D5h			
03D6h	A/D Control Register 0	ADCON0	0000 0XXXb
03D7h	A/D Control Register 1	ADCON1	0000 X000b
03D8h	D/A0 Register	DA0	00h
03D9h			
03DAh	D/A1 Register	DA1	00h
03DBh			
03DCh	D/A Control Register	DACON	00h
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EBh	Port P5 Direction Register	PD5	00h
03ECh	Port P6 Register	P6	XXh
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD7	00h

Table 4.16SFR Information (16) (1)

X: Undefined

Note:

1. The blank areas are reserved. No access is allowed.

5.1.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions (1/3)

 $V_{CC1} = V_{CC2} = 2.7$ to 5.5 V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter				Standard			
U U U		T didiffeter		Min.	Тур.	Max.	Unit	
V _{CC1} ,	Supply volta	age ($V_{CC1} \ge V_{CC2}$)	CEC function is not used	2.7	5.0	5.5	V	
V _{CC2}			CEC function is used	2.7		3.63	V	
AV _{CC}	Analog sup	ply voltage			V _{CC1}		V	
V _{SS}	Supply volta	age			0		V	
AV _{SS}	Analog sup	ply voltage			0		V	
V _{IH}	High input voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 P12_0 to P12_7, P13_0 to P13_7) to P5_7,	0.8V _{CC2}		V _{CC2}	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 (in single-chip mode)) to P2_7, P3_0	0.8V _{CC2}		V _{CC2}	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 (data input in memory expansion a modes)) to P2_7, P3_0 nd microprocessor	0.5V _{CC2}		V _{CC2}	V	
		P6_0 to P6_7, P7_2 to P7_7, P8_0 P9_0 to P9_7, P10_0 to P10_7, P1 P14_1 XIN, RESET, CNVSS, BYTE) to P8_4, P8_6, P8_7, I1_0 to P11_7, P14_0,	0.8V _{CC1}		V _{CC1}	V	
		P7_0, P7_1, P8_5				6.5	V	
		CEC					V	
V _{IL}	Low input voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7				0.2V _{CC2}	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 (in single-chip mode)) to P2_7, P3_0	0		0.2V _{CC2}	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 (data input in memory expansion ar) to P2_7, P3_0 nd microprocessor mode)	0		0.16V _{CC2}	V	
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,P11_0 to P11_7, P14_0, P14_1 XIN, RESET, CNVSS, BYTE		0		0.2V _{CC1}	V	
		CEC			0.26V _{CC1}	V		
I _{OH(sum)}	High peak output	^{Ik} Sum of I _{OH(peak)} at P0_0 to P0_7, P1_0 to P1_7,				-40.0	mA	
	current	Sum of I _{OH(peak)} at P3_0 to P3_7, I P5_0 to P5_7, P12_0 to P12_7, an	P4_0 to P4_7, id P13_0 to P13_7			-40.0	mA	
		Sum of I _{OH(peak)} at P6_0 to P6_7, I P8_0 to P8_4	P7_2 to P7_7,			-40.0	mA	
		Sum of I _{OH(peak)} at P8_6, P8_7, P9 P10_0 to P10_7, P11_0 to P11_7,	9_0 to P9_7, P14_0 to P14_1			-40.0	mA	
I _{OH(peak)}	High peak output current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1				-10.0	mA	
I _{OH(avg)}	High average output current ⁽¹⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 P3_0 to P3_7, P4_0 to P4_7, P5_0 P6_0 to P6_7, P7_2 to P7_7, P8_0 P9_0 to P9_7, P10_0 to P10_7, P1 P12_0 to P12_7, P13_0 to P13_7,) to P2_7,) to P5_7,) to P8_4, P8_6, P8_7, 1_0 to P11_7, P14_0, P14_1			-5.0	mA	

Note:

1. The average output current is the mean value within 100 ms.

Table 5.3

able 5.3 Recommended Operating Conditions (2/3) $V_{CC1} = V_{CC2} = 2.7$ to 5.5 V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter		Standard			Linit	
Symbol			Falameter	Min.	Тур.	Max.	Unit
I _{OL(sum)}	Low peak output current	Sum of I _{OL(r} P2_0 to P2_ P10_0 to P1	_{beak)} at P0_0 to P0_7, P1_0 to P1_7, _7, P8_6, P8_7, P9_0 to P9_7, 10_7, P11_0 to P11_7, P14_0 to P14_1			80.0	mA
		Sum of I _{OL(r} P5_0 to P5_ P8_0 to P8_	_{beak)} at P3_0 to P3_7, P4_0 to P4_7, _7, P6_0 to P6_7, P7_0 to P7_7, _5, P12_0 to P12_7, P13_0 to P13_7			80.0	mA
I _{OL(peak)}	Low peak output current	P0_0 to P0_ P3_0 to P3_ P6_0 to P6_ P9_0 to P9_ P12_0 to P1	7, P1_0 to P1_7, P2_0 to P2_7, 7, P4_0 to P4_7, P5_0 to P5_7, 7, P7_0 to P7_7, P8_0 to P8_7, 7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1			10.0	mA
I _{OL(avg)}	Low average output current ⁽¹⁾	P0_0 to P0_ P3_0 to P3_ P6_0 to P6_ P9_0 to P9_ P12_0 to P1	7, P1_0 to P1_7, P2_0 to P2_7, 7, P4_0 to P4_7, P5_0 to P5_7, 7, P7_0 to P7_7, P8_0 to P8_7, 7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1			5.0	mA
f _(XIN)	Main clock input oscillation frequency		V _{CC1} = 2.7 V to 5.5 V	2		20	MHz
f _(XCIN)	Sub clock oscillation fre		quency		32.768	50	kHz
f _(PLL)	PLL clock oscillation frequency		V _{CC1} = 2.7 V to 5.5 V	10		32	MHz
f _(BCLK)	CPU opera	tion clock		2		32	MHz
t _{SU(PLL)}	PLL freque	ency	V _{CC1} = 5.0 V			2	ms
	synthesize	r n wait time	V _{CC1} = 3.0 V			3	ms

Note:

The average output current is the mean value within 100 ms. 1.

Table 5.4 Recommended Operating Conditions (3/3) ⁽¹⁾

 $V_{CC1} = 2.7$ to 5.5 V, $V_{SS} = 0$ V, and $T_{opr} = -20^{\circ}$ C to 85° C/ -40° C to 85° C unless otherwise specified. The ripple voltage must not exceed $V_{r(VCC1)}$ and/or $dV_{r(VCC1)}/dt$.

Symbol	Parameter			Standard			
Symbol				Тур.	Max.	Offic	
V _{r(VCC1)}	Allowable ripple voltage	V _{CC1} = 5.0 V			0.5	Vp-p	
		V _{CC1} = 3.0 V			0.3	Vp-p	
dV _{r(VCC1)} /dt	Ripple voltage falling gradient	V _{CC1} = 5.0 V			0.3	V/ms	
		V _{CC1} = 3.0 V			0.3	V/ms	

Note:

1. The device is operationally guaranteed under these operating conditions.

Figure 5.1 Ripple Waveform

Table 5.6 A/D Conversion Characteristics (2/2) ⁽¹⁾

 $V_{CC1} = AV_{CC} = 3.0 \text{ to } 5.5 \text{ V} \ge V_{CC2} \ge V_{REF}, V_{SS} = AV_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified.}$

Symbol	Deremeter		Manauring Condition	Standard			Linit
Symbol	Falain		weasuring condition	Min.	Тур.	Max.	Onit
φAD	A/D operating clock	AN0 to AN7 input,	$4.0~\text{V} \leq \text{V}_{\text{CC1}} \leq 5.5~\text{V}$	2		25	MHz
	frequency	ANEX0 to ANEX1	$3.2~\text{V} \leq \text{V}_{CC1} \leq 4.0~\text{V}$	2		16	MHz
		input	$3.0~\text{V} \leq \text{V}_{\text{CC1}} \leq 3.2~\text{V}$	2		10	MHz
		AN0_0 to AN0_7	$4.0~\text{V} \leq \text{V}_{\text{CC2}} \leq 5.5~\text{V}$	2		25	MHz
		input, AN2_0 to AN2_7 input	$3.2~\text{V} \leq \text{V}_{\text{CC2}} \leq 4.0~\text{V}$	2		16	MHz
			$3.0~\text{V} \leq \text{V}_{\text{CC2}} \leq 3.2~\text{V}$	2		10	MHz
-	Tolerance level impedance				3		kΩ
D _{NL}	Differential non-linear	ity error	(4)			±1	LSB
-	Offset error		(4)			±3	LSB
-	Gain error		(4)			±3	LSB
t _{CONV}	10-bit conversion time		V _{CC1} = 5 V, ϕ AD = 25 MHz	1.60			μS
t _{SAMP}	Sampling time			0.60			μS
V _{REF}	Reference voltage			3.0		V _{CC1}	V
V _{IA}	Analog input voltage (2), (3)		0		V_{REF}	V

Notes:

1. Use when $AV_{CC} = V_{CC1}$.

2. When $V_{CC1} \ge V_{CC2}$, set as below: Analog input voltage (AN0 to AN7, ANEX0, and ANEX1) $\le V_{CC1}$ Analog input voltage (AN0_0 to AN0_7 and AN2_0 to AN2_7) $\le V_{CC2}$.

- 3. When analog input voltage is over reference voltage, the result of A/D conversion is 3FFh.
- 4. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to V_{SS}. See Figure 5.2 "A/D Accuracy Measure Circuit".

5.1.4 D/A Conversion Characteristics

Table 5.7 D/A Conversion Characteristics

 $V_{CC1} = AV_{CC} = V_{REF} = 3.0$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V at $T_{opr} = -20^{\circ}C$ to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter	Moosuring Condition		Linit		
		Measuring Condition	Min.	Тур.	Max.	Offic
-	Resolution				8	Bits
-	Absolute Accuracy				2.5	LSB
t _{SU}	Setup Time				3	μS
R _O	Output Resistance		5	6	8.2	kΩ
I _{VREF}	Reference Power Supply Input Current	See Notes ¹ and ²			1.5	mA

Notes:

1. This applies when using one D/A converter, with the D/A register for the unused D/A converter set to 00h.

2. The current consumption of the A/D converter is not included. Also, the I_{VREF} of the D/A converter will flow even if the ADSTBY bit in the ADCON1 register is 0 (A/D operation stopped (standby)).

5.1.6 Voltage Detector and Power Supply Circuit Electrical Characteristics

Table 5.11 Voltage Detector 0 Electrical Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition	Ş	LInit		
		Condition	Min.	Тур.	Max.	Onit
V _{det0}	Voltage detection level Vdet0_0 ⁽¹⁾	When V _{CC1} is falling.	1.60	1.90	2.20	V
	Voltage detection level Vdet0_2 ⁽¹⁾	When V _{CC1} is falling.	2.55	2.85	3.15	V
-	Voltage detector 0 response time ⁽³⁾	When V _{CC1} falls from 5 V to (Vdet0_0 - 0.1) V			200	μs
-	Voltage detector self power consumption	VC25 = 1, V _{CC1} = 5.0 V		1.8		μA
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽²⁾				100	μS

Notes:

1. Select the voltage detection level with the VDSEL1 bit in the OFS1 address.

2. Necessary time until the voltage detector operates when setting to 1 again after setting the VC25 bit in the VCR2 register to 0.

3. Time from when passing the V_{det0} until when a voltage monitor 0 reset is generated.

Table 5.12 Voltage Detector 1 Electrical Characteristics

The measurement condition is $V_{CC1} = 2.7$ to 5.5 V, $T_{opr} = -20^{\circ}C$ to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Linit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onit
V _{det1}	Voltage detection level Vdet1_6 ⁽¹⁾	When V _{CC1} is falling.	2.79	3.09	3.39	V
	Voltage detection level Vdet1_B ⁽¹⁾	When V _{CC1} is falling.	3.54	3.84	4.14	V
	Voltage detection level Vdet1_F (1)	When V _{CC1} is falling.	3.94	4.44	4.94	V
-	Hysteresis width when V _{CC1} of voltage detector 1 is rising			0.15		V
-	Voltage detector 1 response time ⁽³⁾	When V _{CC1} falls from 5 V to (Vdet1_0 - 0.1) V			200	μS
-	Voltage detector self power consumption	VC26 = 1, V _{CC1} = 5.0 V		1.8		μΑ
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽²⁾				100	μS

Notes:

1. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

2. Necessary time until the voltage detector operates when setting to 1 again after setting the VC26 bit in the VCR2 register to 0.

3. Time from when passing the V_{det1} until when a voltage monitor 1 reset is generated.

RENESAS

 $V_{CC1} = V_{CC2} = 5 V$

Switching Characteristics

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.2 In 1 to 3 Waits Setting and When Accessing External Area

Table 5.39 Memory Expansion Mode and Microprocessor Mode (in 1 to 3 Waits Setting and When Accessing External Area)

Symbol	Parameter	Measuring	Standard		Lloit
Cymbol	Falanielei	Condition	Min.	Max.	Offic
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)	-	0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)	-	(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)	-	0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:

Calculated according to the BCLK frequency as follows: 1.

 $\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 40[ns]$ n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting. When n = 1, f_(BCLK) is 12.5 MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times \ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is $t = -30 \text{ pF} \times 1 \text{ k}\Omega \times \ln(1 - 0.2 \text{V}_{\text{CC2}}/\text{V}_{\text{CC2}})$ = 6.7 ns.

5.3 Electrical Characteristics (V_{CC1} = V_{CC2} = 3 V)

5.3.1 Electrical Characteristics

VCC1 = VCC2 = 3 V

Table 5.43 Electrical Characteristics (1) (1)

 $V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} - 40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol	Parameter		Measuring Condition	Standard			Unit	
Symbol		Farameter		Measuring Condition	Min.	Тур.	Max.	Onit
V _{OH}	High output voltage	P6_0 to P6_7, P7_2 to P7_7, F P8_6, P8_7, P9_0 to P9_7, P1 P11_0 to P11_7, P14_0, P14_	P8_0 to P8_4, 0_0 to P10_7, 1	I _{OH} = -1 mA	V _{CC1} – 0.5		V _{CC1}	V
		P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P12_0 to P12_7, P13_0 to P13	P2_0 to P2_7, P5_0 to P5_7, B_7	I _{OH} = -1 mA	V _{CC2} -0.5		V _{CC2}	
V _{OH}	High output	voltage XOUT	HIGH POWER	I _{OH} = -0.1 mA	$V_{CC1} - 0.5$		V _{CC1}	V
			LOW POWER	I _{OH} = -50 μA	$V_{CC1} - 0.5$		V _{CC1}	
	High output	voltage XCOUT	HIGH POWER	With no load applied		2.6		V
			LOW POWER	With no load applied		2.2		
V _{OL}	Low output voltage	P6_0 to P6_7, P7_0 to P7_7, F P9_7, P10_0 to P10_7, P11_0	P8_0 to P8_7, P9_0 to to P11_7, P14_0, P14_1	I _{OL} = 1 mA			0.5	V
		P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P12_0 to P12_7, P13_0 to P13	P2_0 to P2_7, P5_0 to P5_7, 3_7	I _{OL} = 1 mA			0.5	
		CEC		I _{OL} = 1 mA		0	0.5	V
V _{OL}	Low output	voltage XOUT	HIGH POWER	I _{OL} = 0.1 mA			0.5	V
			LOW POWER	I _{OL} = 50 μA			0.5	
	Low output	voltage XCOUT	HIGH POWER	With no load applied		0		V
			LOW POWER	With no load applied		0		
V _{T+} -V _{T-}	Hysteresis	HOLD, RDY, TAOIN to TA4IN, 1 INT7, NMI, ADTRG, CTS0 to C SCL0 to SCL2, SCL5 to SCL7, to SDA7, CLK0 to CLK7, TAOC KI3, RXD0 to RXD2, RXD5 to I PMC0, PMC1, SCLMM, SDAM	TBOIN to TB5IN, INTO to TS2, CTS5 to CTS7, SDA0 to SDA2, SDA5 DUT to TA4OUT, KIO to RXD7, SIN3, SIN4, SD, IM, ZP, IDU, IDV, IDW		0.2		1.0	V
		CEC			0.2	0.5	1.0	V
		RESET			0.2		1.8	V
l _{iH}	High input current	P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P6_0 to P6_7, P7_0 to P7_7, F P9_0 to P9_7, P10_0 to P10_7 P12_0 to P12_7, P13_0 to P13 XIN, RESET, CNVSS, BYTE	P2_0 to P2_7, P5_0 to P5_7, P8_0 to P8_7, 7, P11_0 to P11_7, 8_7, P14_0, P14_1	V ₁ = 3 V			4.0	μΑ
-	Leakage cu	rrent in powered-off state	CEC	V _{CC1} = 0 V			1.8	μΑ
Ι _{ΙL}	Low input current	P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P6_0 to P6_7, P7_0 to P7_7, F P9_0 to P9_7, P10_0 to P10_7 P12_0 to P12_7, P13_0 to P13 XIN, RESET, CNVSS, BYTE	P2_0 to P2_7, P5_0 to P5_7, P8_0 to P8_7, 7, P11_0 to P11_7, 8_7, P14_0, P14_1	V ₁ = 0 V			-4.0	μΑ
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, F P3_0 to P3_7, P4_0 to P4_7, F P6_0 to P6_7, P7_2 to P7_7, F P8_6, P8_7, P9_0 to P9_7, P1 P11_0 to P11_7, P12_0 to P12 P13_7, P14_0, P14_1	P2_0 to P2_7, P5_0 to P5_7, P8_0 to P8_4, 0_0 to P10_7, P_7, P13_0 to	$V_1 = 0 V$	50	80	150	kΩ
R _{fXIN}	Feedback re	esistance XIN				3.0		MΩ
V _{RAM}	RAM retent	on voltage		In stop mode	1.8			V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.2.3 Timer A Input

Table 5.49 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	150		ns
t _{w(TAH)}	TAiIN input high pulse width	60		ns
t _{w(TAL)}	TAilN input low pulse width	60		ns

Table 5.50 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Onit
t _{c(TA)}	TAIIN input cycle time	600		ns
t _{w(TAH)}	TAiIN input high pulse width	300		ns
t _{w(TAL)}	TAilN input low pulse width	300		ns

Table 5.51 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Offic
t _{c(TA)}	TAiIN input cycle time	300		ns
t _{w(TAH)}	TAiIN input high pulse width	150		ns
t _{w(TAL)}	TAiIN input low pulse width	150		ns

Table 5.52Timer A Input (External Trigger Input in Pulse Width Modulation Mode and
Programmable Output Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onic
t _{w(TAH)}	TAilN input high pulse width	150		ns
t _{w(TAL)}	TAilN input low pulse width	150		ns

Figure 5.22 Timer A Input

$V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

ode)
od

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	2		μS
t _{su(TAIN-TAOUT)}	TAiOUT input setup time	500		ns
t _{su(TAOUT-TAIN)}	TAiIN input setup time	500		ns

Figure 5.23 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

 $V_{CC1} = V_{CC2} = 3 V$

Switching Characteristics

(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.3.4.5 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and Inserting 1 to 3 Recovery Cycles and Accessing External Area

Table 5.65Memory Expansion Mode and Microprocessor Mode (in Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and Inserting 1 to 3 Recovery Cycles and Accessing External Area)

Symbol	Parameter	Measuring	Standard		Linit
	Falanielei	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			30	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		(Note 4)		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			30	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.29		30	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			30	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{n \times 10^9}{f_{(BCLK)}} - 40[ns] \qquad \text{n is 3 for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and 5 for } 4\phi + 5\phi.$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 10[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF x 1 k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} + 0[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.