

Welcome to E-XFL.COM

Renesas Electronics America Inc - R5F3650NDFB#30 Datasheet

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	47K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3650ndfb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Specifications

The M16C/65 Group includes 128-pin and 100-pin packages. Table 1.1 to Table 1.4 list specifications.

	•	
Item	Function	Description
CPU	Central processing unit	 M16C/60 Series core (multiplier: 16 bit × 16 bit → 32 bit, multiply and accumulate instruction: 16 bit × 16 bit + 32 bit → 32 bit) Number of basic instructions: 91 Minimum instruction execution time: 31.25 ns (f(BCLK) = 32 MHz, VCC1 = VCC2 = 2.7 to 5.5 V) Operating modes: Single-chip, memory expansion, and microprocessor
Memory	ROM, RAM, data flash	See Table 1.5 "Product List (1/2)" and Table 1.6 "Product List (2/2)".
Voltage Detection	Voltage detector	 Power-on reset 3 voltage detection points (detection level of voltage detection 0 and 1 selectable)
Clock	Clock generator	 5 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), high-speed on-chip oscillator (40 MHz ±10%), PLL frequency synthesizer Oscillation stop detection: Main clock oscillation stop/restart detection function Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, and 16 Power saving features: Wait mode, stop mode Real-time clock
External Bus Expansion	Bus memory expansion	 Address space: 1 MB External bus interface: 0 to 8 waits inserted, 4 chip select outputs, memory area expansion function (expandable to 4 MB), 3 V and 5 V interfaces Bus format: Separate bus or multiplexed bus selectable, data bus width selectable (8 or 16 bits), number of address buses selectable (12, 16, or 20)
I/O Ports	Programmable I/O ports	 CMOS I/O ports: 111 (selectable pull-up resistors) N-channel open drain ports: 3
Interrupts	·	 Interrupt vectors: 70 External interrupt inputs: 13 (NMI, INT × 8, key input × 4) Interrupt priority levels: 7
Watchdog Tir	ner	15-bit timer × 1 (with prescaler) Automatic reset start function selectable
DMA	DMAC	 4 channels, cycle steal mode Trigger sources: 43 Transfer modes: 2 (single transfer, repeat transfer)

Table 1.1Specifications for the 128-Pin Package (1/2)

Figure 1.1 Part No., with Memory Size and Package

Pin	No.	Control			I/O Pi	n for Peripheral Func	ction	
FA	FB	Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter	Bus Control Pin
51	49		P4_3					A19
52	50		P4_2					A18
53	51		P4_1					A17
54	52		P4_0					A16
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13
58	56		P3_4					A12
59	57		P3_3					A11
60	58		P3_2					A10
61	59		P3_1					A9
62	60	VCC2						
63	61		P3_0					A8, [A8/D7]
64	62	VSS						
65	63		P2_7				AN2_7	A7, [A7/D7], [A7/D6]
66	64		P2_6				AN2_6	A6, [A6/D6], [A6/D5]
67	65		P2_5	INT7			AN2_5	A5, [A5/D5], [A5/D4]
68	66		P2_4	INT6			AN2_4	A4, [A4/D4], [A4/D3]
69	67		P2_3				AN2_3	A3, [A3/D3], [A3/D2]
70	68		P2_2				AN2_2	A2, [A2/D2], [A2/D1]
71	69		P2_1				AN2_1	A1, [A1/D1], [A1/D0]
72	70		P2_0				AN2_0	A0, [A0/D0], A0
73	71		P1_7	INT5	IDU			D15
74	72		P1_6	INT4	IDW			D14
75	73		P1_5	ĪNT3	IDV			D13
76	74		P1_4					D12
77	75		P1_3			TXD6/SDA6		D11
78	76		P1_2			RXD6/SCL6		D10
79	77		P1_1			CLK6		D9
80	78		P1_0			CTS6/RTS6		D8
81	79		P0_7				AN0_7	D7
82	80		P0_6				AN0_6	D6
83	81		P0_5				AN0_5	D5
84	82		P0_4				AN0_4	D4
85	83		P0_3				AN0_3	D3
86	84		P0_2				AN0_2	D2
87	85		P0_1				AN0_1	D1
88	86		P0_0				AN0_0	D0
89	87		P10_7	KI3			AN7	
90	88		P10_6	KI2			AN6	
91	89		P10_5	KI1			AN5	
92	90		P10_4	KI0			AN4	
93	91		P10_3				AN3	
94	92		P10_2				AN2	
95	93		P10_1				AN1	
96	94	AVSS						
97	95		P10_0	1			AN0	
98	96	VREF		1				
99	97	AVCC						
100	98		P9_7	1		SIN4	ADTRG	

 Table 1.11
 Pin Names for the 100-Pin Package (2/2)

2.8.7 Interrupt Enable Flag (I Flag)

The I flag enables maskable interrupts.

Maskable interrupts are disabled when the I flag is 0, and enabled when it is 1. The I flag becomes 0 when an interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0. USP is selected when the U flag is 1. The U flag becomes 0 when a hardware interrupt request is accepted, or the INT instruction of software interrupt number 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from 0 to 7. If a requested interrupt has higher priority than IPL, the interrupt request is enabled.

2.8.10 Reserved Areas

Only set these bits to 0. The read value is undefined.

3.2 Memory Map

Special function registers (SFRs) are allocated from address 00000h to 003FFh and from 0D000h to 0D7FFh. Peripheral function control registers are located here. All blank areas within SFRs are reserved. Do not access these areas.

Internal RAM is allocated from address 00400h and higher, with 10 KB of internal RAM allocated from 00400h to 02BFFh. Internal RAM is used not only for data storage, but also for the stack area when subroutines are called or when an interrupt request is accepted.

The internal ROM is flash memory. Three internal ROM areas are available: data flash, program ROM 1, and program ROM 2.

The data flash is allocated from 0E000h to 0FFFFh. This data flash area is mostly used for data storage, but can also store programs.

Program ROM 2 is allocated from 10000h to 13FFFh. Program ROM 1 is allocated from FFFFFh and lower, with the 64 KB program ROM 1 area allocated from address F0000h to FFFFFh.

The special page vectors are allocated from FFE00h to FFFD7h. They are used for the JMPS and JSRS instructions. Refer to the M16C/60, M16C/20, M16C/Tiny Series Software Manual for details.

The fixed vector table for interrupts is allocated from FFFDCh to FFFFFh.

The 256 bytes beginning with the start address set in the INTB register compose the relocatable vector table for interrupts.

Figure 3.2 shows the Memory Map.

3.3 Accessible Area in Each Mode

Areas that can be accessed vary depending on processor mode and the status of each control bit. Figure 3.3 shows the Accessible Area in Each Mode.

In single-chip mode, the SFRs, internal RAM, and internal ROM can be accessed.

In memory expansion mode, the SFRs, internal RAM, internal ROM, and external areas can be accessed. Address space is expandable to 4 MB with the memory area expansion function.

In microprocessor mode, the SFRs, internal RAM, and external areas can be accessed. Address space is expandable to 4 MB with the memory area expansion function. Allocate ROM to the fixed vector table from FFFDCh to FFFFFh.

Address	Register	Symbol	Reset Value
0020h			
0021h			
0022h	40 MHz On-Chip Oscillator Control Register 0	FRA0	XXXX XX00b
0023h			
0024h			
0025h			
0026h	Voltage Monitor Function Select Register	VWCE	00h
0027h			
0028h	Voltage Detector 1 Level Select Register	VD1LS	0000 1010b ⁽²⁾
0029h			
002Ah	Voltage Monitor 0 Control Register	VW0C	1000 XX10b (2)
002Bh	Voltage Monitor 1 Control Register	VW1C	1000 1010b ⁽²⁾
002Ch	Voltage Monitor 2 Control Register	VW2C	1000 0X10b ⁽²⁾
002Dh			
002Eh			
002Fh			
0030h			
0031h			
0032h			
0033h			
0034h			
0035h			
0036h			
0037h			
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			
<u>-</u>		· · ·	X: Undefined

Table 4.2SFR Information (2) (1)

Notes:

2. This is the reset value after hardware reset. Refer to the explanation of each register for details.

^{1.} The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
01E0h	Times D2 4 De sister	TDOA	XXh
01E1h	Timer B3-1 Register	TB31	XXh
01E2h			XXh
01E3h	Timer B4-1 Register	TB41	XXh
01F4h			XXh
01E5h	Timer B5-1 Register	TB51	XXh
01E6h	Pulse Period/Pulse Width Measurement Mode Function Select Reg-	PPWFS2	XXXX X000b
01E7h			
01E8h	Timer B Count Source Select Register 2	TBCS2	00h
01E0h	Timer B Count Source Select Register 3	TBCS3	X0h
01EAh		12000	Xon
01ERh			
01EDh			
01001			
01EEN			
01E0h	PMC0 Eurotion Select Projector 0	BMCOCONO	00b
01F00	PMC0 Function Select Register 0	PMC0CON0	
	PMC0 Function Select Register 1	PMCOCONT	
	PMC0 Function Select Register 2	PMC0C0N2	
01F3N	PMC0 Function Select Register 3	PMC0CON3	00h
01F4h	PMC0 Status Register	PMC0STS	00h
01F5h	PMC0 Interrupt Source Select Register	PMC0INT	00h
01F6h	PMC0 Compare Control Register	PMC0CPC	XXX0 X000b
01F7h	PMC0 Compare Data Register	PMC0CPD	00h
01F8h	PMC1 Function Select Register 0	PMC1CON0	XXX0 X000b
01F9h	PMC1 Function Select Register 1	PMC1CON1	XXXX 0X00b
01FAh	PMC1 Function Select Register 2	PMC1CON2	0000 00X0b
01FBh	PMC1 Function Select Register 3	PMC1CON3	00h
01FCh	PMC1 Status Register	PMC1STS	X000 X00Xb
01FDh	PMC1 Interrupt Source Select Register	PMC1INT	X000 X00Xb
01FEh			
01FFh			
0200h			
0201h			
0202h			
0203h			
0204h			
0205h	Interrupt Source Select Register 3	IFSR3A	00h
0206h	Interrupt Source Select Register 2	IFSR2A	00h
0207h	Interrupt Source Select Register	IFSR	00h
0208h			
0209h			
020Ah			
020Bh			
020Ch			
020Dh			
020Eh	Address Match Interrupt Enable Register	AIER	XXXX XX00b
020Fh	Address Match Interrupt Enable Register 2	AIER2	XXXX XX00b
u			X: Undefined

Table 4.7SFR Information (7) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Table 5.3

able 5.3 Recommended Operating Conditions (2/3) $V_{CC1} = V_{CC2} = 2.7$ to 5.5 V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter		Standard			Unit	
Symbol			Falameter	Min.	Тур.	Max.	Unit
I _{OL(sum)}	Low peak output current	Sum of I _{OL(r} P2_0 to P2_ P10_0 to P1	_{beak)} at P0_0 to P0_7, P1_0 to P1_7, _7, P8_6, P8_7, P9_0 to P9_7, 10_7, P11_0 to P11_7, P14_0 to P14_1			80.0	mA
		Sum of I _{OL(r} P5_0 to P5_ P8_0 to P8_	_{beak)} at P3_0 to P3_7, P4_0 to P4_7, _7, P6_0 to P6_7, P7_0 to P7_7, _5, P12_0 to P12_7, P13_0 to P13_7			80.0	mA
I _{OL(peak)}	Low peak output current	P0_0 to P0_ P3_0 to P3_ P6_0 to P6_ P9_0 to P9_ P12_0 to P1	7, P1_0 to P1_7, P2_0 to P2_7, 7, P4_0 to P4_7, P5_0 to P5_7, 7, P7_0 to P7_7, P8_0 to P8_7, 7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1			10.0	mA
I _{OL(avg)}	Low average output current ⁽¹⁾	P0_0 to P0_ P3_0 to P3_ P6_0 to P6_ P9_0 to P9_ P12_0 to P1	7, P1_0 to P1_7, P2_0 to P2_7, 7, P4_0 to P4_7, P5_0 to P5_7, 7, P7_0 to P7_7, P8_0 to P8_7, 7, P10_0 to P10_7, P11_0 to P11_7, 12_7, P13_0 to P13_7, P14_0, P14_1			5.0	mA
f _(XIN)	Main clock oscillation f	input frequency	V _{CC1} = 2.7 V to 5.5 V	2		20	MHz
f _(XCIN)	Sub clock of	oscillation fre	quency		32.768	50	kHz
f _(PLL)	PLL clock of frequency	oscillation	V _{CC1} = 2.7 V to 5.5 V	10		32	MHz
f _(BCLK)	CPU opera	tion clock		2		32	MHz
t _{SU(PLL)}	PLL freque	ency	V _{CC1} = 5.0 V			2	ms
	synthesize	r n wait time	V _{CC1} = 3.0 V			3	ms

Note:

The average output current is the mean value within 100 ms. 1.

5.1.5 Flash Memory Electrical Characteristics

Table 5.8 CPU Clock When Operating Flash Memory (f_(BCLK))

V_{CC1} = 2.7 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Paramotor	Conditions		Linit			
Symbol	Falameter	Conditions		Min. Typ. Max.		01111	
-	CPU rewrite mode				10 (1)	MHz	
f(SLOW_R)	Slow read mode				5 (3)	MHz	
-	Low current consumption read mode			fC(32.768)	35	kHz	
-	Data flash read	$2.7 \text{ V} \leq \text{V}_{\text{CC1}} \leq 3.0 \text{ V}$			16 ⁽²⁾	MHz	
		3.0 V < V _{CC1} ≤ 5.5 V			20 (2)	MHz	

Notes:

1. Set the PM17 bit in the PM1 register to 1 (one wait).

2. When the frequency is over this value, set the FMR17 bit in the FMR1 register to 0 (one wait) or the PM17 bit in the PM1 register to 1 (one wait)

3. Set the PM17 bit in the PM1 register to 1 (one wait). When using 125 kHz on-chip oscillator clock or sub clock as the CPU clock source, a wait is not necessary.

Table 5.9 Flash Memory (Program ROM 1, 2) Electrical Characteristics

V_{CC1} = 2.7 to 5.5 V at T_{opr} = 0°C to 60°C (option: -40°C to 85°C), unless otherwise specified.

Symbol	Parameter	Conditions		Llnit		
Gymbol	1 didificter	Conditions	Min.	Тур.	Max.	Onit
-	Program and erase cycles (1), (3), (4)	V _{CC1} = 3.3 V, T _{opr} = 25°C	1,000 (2)			times
-	2 word program time	V _{CC1} = 3.3 V, T _{opr} = 25°C		150	4000	μs
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		70	3000	μs
-	Block erase time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		0.2	3.0	S
-	Program, erase voltage		2.7		5.5	V
-	Read voltage	T_{opr} = -20°C to 85°C/-40°C to 85°C	2.7		5.5	V
-	Program, erase temperature		0		60	°C
t _{PS}	Flash memory circuit stabilization wa	ait time			50	μS
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year

Notes:

1. Definition of program and erase cycles:

The program and erase cycles refer to the number of per-block erasures. If the program and erase cycles are n (n = 1,000), each block can be erased n times. For example, if a block is erased after writing 2 word data 16,384 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. It is advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.

4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.10 Flash Memory (Data Flash) Electrical Characteristics

 V_{CC1} = 2.7 to 5.5 V at T_{opr} = -20 to 85°C/-40 to 85°C, unless otherwise specified.

Symbol	Parameter	Conditions		Unit		
Cymbol	i alameter	Conditions	Min.	Тур.	Max.	Onit
-	Program and erase cycles (1), (3), (4)	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$	10,000 (2)			times
-	2 word program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		300	4000	μS
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		140	3000	μS
-	Block erase time	V _{CC1} = 3.3 V, T _{opr} = 25°C		0.2	3.0	S
-	Program, erase voltage		2.7		5.5	V
-	Read voltage		2.7		5.5	V
-	Program, erase temperature		-20/-40		85	°C
t _{PS}	lash memory circuit stabilization wait time				50	μS
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year

Notes:

1. Definition of program and erase cycles

The program and erase cycles refer to the number of per-block erasures.

If the program and erase cycles are n (n = 10,000), each block can be erased n times.

For example, if a 4 KB block is erased after writing 2 word data 1,024 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 256 groups before erasing them all in one operation. In addition, averaging the erasure cycles between blocks A and B can further reduce the actual erasure cycles. It is also advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.
- 4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

$V_{\rm CC1} = V_{\rm CC2} = 5 \text{ V}$

Table 5.20 Electrical Characteristics (2) ⁽¹⁾

 $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol	Parameter		Measuring	Standard			Unit
Symbol		Falameter	Condition	Min.	Тур.	Max.	Unit
V _{T+} - V _{T-}	Hysteresis	HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INTO to INT7, NMI, ADTRG, CTS0 to CTS2, CTS5 to CTS7, SCL0 to SCL2, SCL5 to SCL7, SDA0 to SDA2, SDA5 to SDA7, CLK0 to CLK7, TA0OUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, RXD5 to RXD7, SIN3, SIN4, SD, PMC0, PMC1, SCLMM, SDAMM, CEC, ZP, IDU, IDV, IDW		0.5		2.0	V
V _{T+} - V _{T-}	Hysteresis	RESET		0.5		2.5	V
I _{IH}	High input current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 XIN, RESET, CNVSS, BYTE	V _I = 5 V			5.0	μA
I _{IL}	Low input current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 XIN, RESET, CNVSS, BYTE	V _I = 0 V			-5.0	μA
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1	V ₁ = 0 V	30	50	100	kΩ
R _{fXIN}	Feedback re	esistance XIN			1.5		MΩ
V _{RAM}	RAM retenti	on voltage	In stop mode	1.8			V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

 $V_{CC1} = V_{CC2} = 5 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.2.7 Multi-master I²C-bus

Table 5.36Multi-master I²C-bus

Symbol	Parameter	Standard C	Clock Mode	Fast-	Linit	
Symbol		Min.	Max.	Min.	Max.	Unit
t _{BUF}	Bus free time	4.7		1.3		μS
t _{HD;STA}	Hold time in start condition	4.0		0.6		μS
t _{LOW}	Hold time in SCL clock 0 status	4.7		1.3		μS
t _R	SCL, SDA signals' rising time		1000	20 + 0.1 Cb	300	ns
t _{HD;DAT}	Data hold time	0		0	0.9	μS
t _{HIGH}	Hold time in SCL clock 1 status	4.0		0.6		μS
f _F	SCL, SDA signals' falling time		300	20 + 0.1 Cb	300	ns
t _{su;DAT}	Data setup time	250		100		ns
t _{su;STA}	Setup time in restart condition	4.7		0.6		μS
t _{su;STO}	Stop condition setup time	4.0		0.6		μS

Figure 5.12 Multi-master I²C-bus

$V_{CC1} = V_{CC2} = 5 V$

5.2.4 Switching Characteristics (Memory Expansion Mode and Microprocessor Mode)

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.1 In No Wait State Setting

Table 5.38 Memory Expansion Mode and Microprocessor Mode (in No Wait State Setting)

Symbol	Parameter	Measuring	Standard		Lloit	
Symbol	Falanielei	Condition	Min.	Max.	Onit	
t _{d(BCLK-AD)}	Address output delay time			25	ns	
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns	
t _{h(RD-AD)}	Address output hold time (in relation to RD)		0		ns	
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns	
t _{d(BCLK-CS)}	Chip select output delay time			25	ns	
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns	
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns	
t _{h(BCLK-ALE)}	ALE signal output hold time	See	-4		ns	
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.14		25	ns	
t _{h(BCLK-RD)}	RD signal output hold time		0		ns	
t _{d(BCLK-WR)}	WR signal output delay time			25	ns	
t _{h(BCLK-WR)}	WR signal output hold time		0		ns	
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns	
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns	
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns	
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns	

Notes:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 40[ns] \text{ f}_{(BCLK)} \text{ is 12.5 MHz or less}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times \ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.2.3 Timer A Input

Table 5.49 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Linit
		Min.	Max.	Onit
t _{c(TA)}	TAilN input cycle time	150		ns
t _{w(TAH)}	TAilN input high pulse width	60		ns
t _{w(TAL)}	TAilN input low pulse width	60		ns

Table 5.50 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Standard		Llnit
		Min.	Max.	Onic
t _{c(TA)}	TAIIN input cycle time	600		ns
t _{w(TAH)}	TAiIN input high pulse width	300		ns
t _{w(TAL)}	TAilN input low pulse width	300		ns

Table 5.51 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Standard		Linit
		Min.	Max.	Onic
t _{c(TA)}	TAiIN input cycle time	300		ns
t _{w(TAH)}	TAiIN input high pulse width	150		ns
t _{w(TAL)}	TAiIN input low pulse width	150		ns

Table 5.52Timer A Input (External Trigger Input in Pulse Width Modulation Mode and
Programmable Output Mode)

Symbol	Parameter	Standard		Lloit
		Min.	Max.	Onic
t _{w(TAH)}	TAiIN input high pulse width	150		ns
t _{w(TAL)}	TAilN input low pulse width	150		ns

Figure 5.22 Timer A Input

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.3 Timing Requirements (Memory Expansion Mode and Microprocessor Mode)

Table 5.60	Memory Ex	pansion Mode a	nd Microprocess	or Mode
------------	-----------	----------------	-----------------	---------

Symbol	Derometer	Standard		Linit
	Falanetei	Min.	Max.	Unit
t _{ac1(RD-DB)}	Data input access time (for setting with no wait)		(Note 1)	ns
t _{ac2(RD-DB)}	Data input access time (for setting with wait)		(Note 2)	ns
t _{ac3(RD-DB)}	Data input access time (when accessing multiplex bus area)		(Note 3)	ns
t _{ac4(RD-DB)}	Data input access time (for setting with 2 ϕ + 3 ϕ or more)		(Note 4)	ns
t _{su(DB-RD)}	Data input setup time	50		ns
t _{su(RDY-BCLK)}	RDY input setup time	85		ns
t _{h(RD-DB)}	Data input hold time	0		ns
t _{h(BCLK-RDY)}	RDY input hold time	0		ns

Notes:

1. Calculated according to the BCLK frequency as follows:

 $\frac{0.5 \times 10^9}{f_{(BCLK)}} - 60[ns]$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n+0.5) \times 10^9}{f_{(BCLK)}} - 60[ns]$ n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.

3. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 60[ns]$ n is 2 for 2 waits setting, 3 for 3 waits setting.

4. Calculated according to the BCLK frequency as follows:

 $\frac{n \times 10^9}{f_{(BCLK)}} - 60[ns] \qquad \text{n is 3 for 2} \phi + 3 \phi, 4 \text{ for 2} \phi + 4 \phi, 4 \text{ for 3} \phi + 4 \phi, 5 \text{ for 4} \phi + 5 \phi,.$

Figure 5.33 Timing Diagram

