

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	47K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3650nnfb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Function	Description		
	Timer A	16-bit timer x 5 Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode Event counter two-phase pulse signal processing (two-phase encoder input) x 3 Programmable output mode x 3		
	Timer B	16-bit timer × 6 Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode		
Timers	Three-phase motor control timer functions	 Three-phase inverter control (timer A1, timer A2, timer A4, timer B2) On-chip dead time timer 		
	Real-time clock	Count: seconds, minutes, hours, days of the week		
	PWM function	8 bits × 2		
	Remote control signal receiver	 2 circuits 4 wave pattern matchings (differentiate wave pattern for headers, data 0, data 1, and special data) 6-byte receive buffer (1 circuit only) Operating frequency of 32 kHz 		
Serial Interface	UART0 to UART2, UART5 to UART7	Clock synchronous/asynchronous × 6 channels I ² C-bus, IEBus, special mode 2 SIM (UART2)		
	SI/O3, SI/O4	Clock synchronization only × 2 channels		
Multi-master	I ² C-bus Interface	1 channel		
CEC Functio	ns ⁽²⁾	CEC transmit/receive, arbitration lost detection, ACK automatic output, operation frequency of 32 kHz		
A/D Converte	er	10-bit resolution × 26 channels, including sample and hold function Conversion time: 1.72 μs		
D/A Converte	ər	8-bit resolution × 2 circuits		
CRC Calcula	itor	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1), CRC-16 (X ¹⁶ + X ¹⁵ + X ² + 1) compliant		
Flash Memo	ry	 Program and erase power supply voltage: 2.7 to 5.5 V Program and erase cycles: 1,000 times (program ROM 1, program ROM 2), 10,000 times (data flash) Program security: ROM code protect, ID code check 		
Debug Funct	tions	On-chip debug, on-board flash rewrite, address match interrupt × 4		
Operation Fr	equency/Supply Voltage	32 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1		
Current Cons		Described in Electrical Characteristics		
Operating Te		-20°C to 85°C, -40°C to 85°C ⁽¹⁾		
Package		128-pin LQFP: PLQP0128KB-A (Previous package code: 128P6Q-A)		

Table 1.2	Specifications for the 128-Pin Package (2/2)
-----------	--

Notes:

1. See Table 1.5 "Product List (1/2)" and Table 1.6 "Product List (2/2)" for the operating temperature.

2. The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

Item	Function	Description
CPU	Central processing unit	 M16C/60 Series core (multiplier: 16 bit × 16 bit → 32 bit, multiply and accumulate instruction: 16 bit × 16 bit + 32 bit → 32 bit) Number of basic instructions: 91 Minimum instruction execution time: 31.25 ns (f(BCLK) = 32 MHz, VCC1 = VCC2 = 2.7 to 5.5 V) Operating modes: Single-chip, memory expansion, and microprocessor
Memory	ROM, RAM, data flash	See Table 1.5 "Product List (1/2)" and Table 1.6 "Product List (2/2)".
Voltage Detection	Voltage detector	 Power-on reset 3 voltage detection points (detection level of voltage detection 0 and 1 selectable)
Clock	Clock generator	 5 circuits: Main clock, sub clock, low-speed on-chip oscillator (125 kHz), high-speed on-chip oscillator (40 MHz ±10%), PLL frequency synthesizer Oscillation stop detection: Main clock oscillation stop/restart detection function Frequency divider circuit: Divide ratio selectable from 1, 2, 4, 8, and 16 Power saving features: Wait mode, stop mode Real-time clock
External Bus Expansion	Bus memory expansion	 Address space: 1 MB External bus interface: 0 to 8 waits inserted, 4 chip select outputs, memory area expansion function (expandable to 4 MB), 3 V and 5 V interfaces Bus format: Separate bus or multiplexed bus selectable, data bus width selectable (8 or 16 bits), number of address buses selectable (12, 16, or 20)
I/O Ports	Programmable I/O ports	CMOS I/O ports: 85 (selectable pull-up resistors) N-channel open drain ports: 3
Interrupts	·	 Interrupt vectors: 70 External interrupt inputs: 13 (NMI, INT × 8, key input × 4) Interrupt priority levels: 7
Watchdog Tir	ner	15-bit timer × 1 (with prescaler) Automatic reset start function selectable
DMA	DMAC	 4 channels, cycle steal mode Trigger sources: 43 Transfer modes: 2 (single transfer, repeat transfer)

Table 1.3	Specifications for the 100-Pin Package (1/2	2)
-----------	---	----

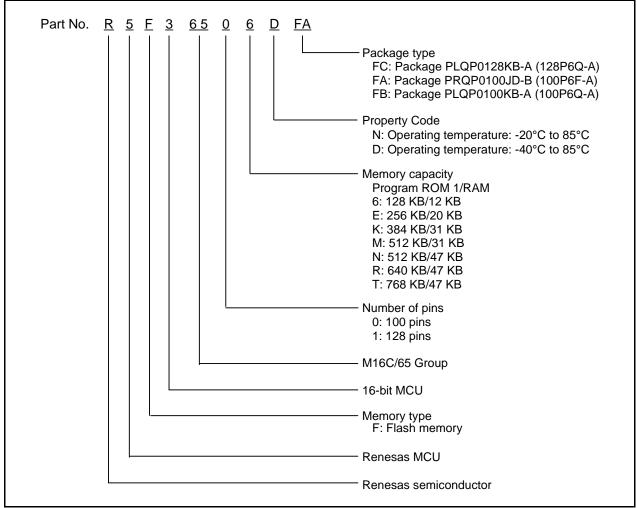
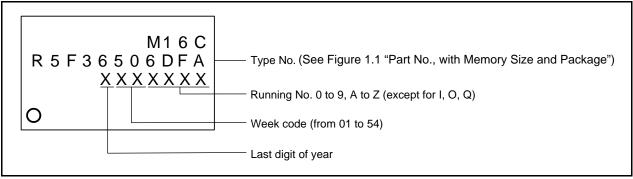
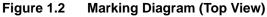




Figure 1.1 Part No., with Memory Size and Package

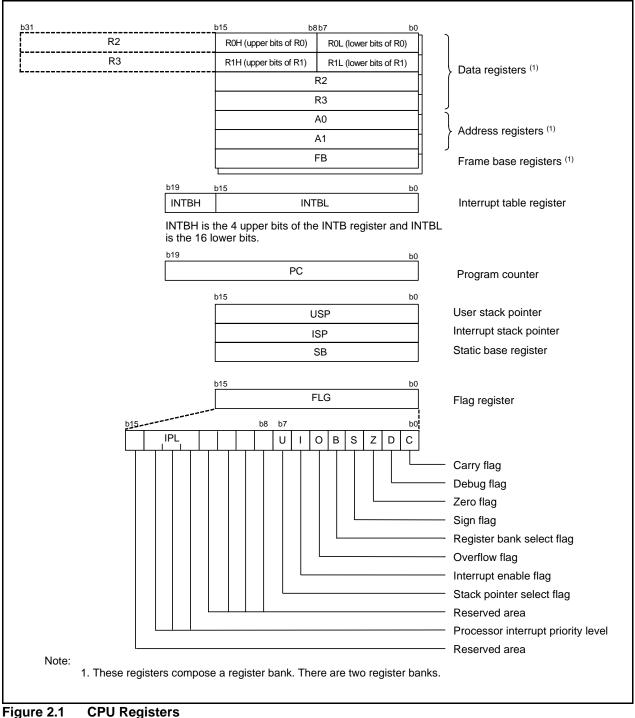

Pin	Control			I/O F	Pin for Peripheral Fund		
No.	Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter	Bus Control Pin
101		P1_2			RXD6/SCL6		D10
102		P1_1			CLK6		D9
103		P1_0			CTS6/RTS6		D8
104		P0_7				AN0_7	D7
105		P0_6				AN0_6	D6
106		P0_5				AN0_5	D5
107		P0_4				AN0_4	D4
108		P0_3				AN0_3	D3
109		P0_2				AN0_2	D2
110		P0_1				AN0_1	D1
111		P0_0				AN0_0	D0
112		P11_7					
113		P11_6					
114		P11_5					
115		P11_4					
116		P11_3					
117		P11_2					
118		P11_1					
119		P11_0					
120		P10_7	KI3			AN7	
121		P10_6	KI2			AN6	
122		P10_5	KI1			AN5	
123		P10_4	KI0			AN4	
124		P10_3				AN3	
125		P10_2				AN2	
126		P10_1				AN1	
127	AVSS						
128		P10_0				AN0	

 Table 1.9
 Pin Names for the 128-Pin Package (3/3)

Central Processing Unit (CPU) 2.

Figure 2.1 shows the CPU registers. Seven registers (R0, R1, R2, R3, A0, A1, and FB) out of 13 compose a register bank, and there are two register banks.

Address	Register	Symbol	Reset Value
01B0h			XXh
01B1h	DMA3 Source Pointer	SAR3	XXh
01B2h			0Xh
01B3h			-
01B4h			XXh
01B5h	DMA3 Destination Pointer	DAR3	XXh
01B6h			0Xh
01B7h			07.11
01B8h			XXh
01B9h	DMA3 Transfer Counter	TCR3	XXh
01BAh			7041
01BBh			
01BCh	DMA3 Control Register	DM3CON	0000 0X00b
01BDh		DIVISOON	0000 07000
01BEh			
01BEh			
01DFI			XXh
01C0h	Timer B0-1 Register	TB01	XXh
01C1h			XXh
01C2h	Timer B1-1 Register	TB11	XXh
01C4h	Timer B2-1 Register	TB21	XXh
01C5h			XXh
01C6h	Pulse Period/Pulse Width Measurement Mode Function Select Register 1	PPWFS1	XXXX X000b
01C7h			
01C8h	Timer B Count Source Select Register 0	TBCS0	00h
01C9h	Timer B Count Source Select Register 1	TBCS1	X0h
01CAh			
01CBh	Timer AB Division Control Register 0	TCKDIVC0	0000 X000b
01CCh			
01CDh			
01CEh			
01CFh			
01D0h	Timer A Count Source Select Register 0	TACS0	00h
01D1h	Timer A Count Source Select Register 1	TACS1	00h
01D2h	Timer A Count Source Select Register 2	TACS2	X0h
01D3h			
01D4h	16-bit Pulse Width Modulation Mode Function Select Register	PWMFS	0XX0 X00Xb
01D5h	Timer A Waveform Output Function Select Register	TAPOFS	XXX0 0000b
01D6h			
01D7h			
01D8h	Timer A Output Waveform Change Enable Register	TAOW	XXX0 X00Xb
01D9h			
01DAh	Three-Phase Protect Control Register	TPRC	00h
01DBh			
01DDh			
01DDh		+ +	
01DDh 01DEh		+ +	
01DEn 01DFh			
UIDEN			X: Undefine

Table 4.6SFR Information (6) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
03C0h	A/D Register 0	AD0	XXXX XXXXb
03C1h	A/D Register 0	ADU	0000 00XXb
03C2h	A/D Desister 4	4.54	XXXX XXXXb
03C3h	A/D Register 1	AD1	0000 00XXb
03C4h		4.02	XXXX XXXXb
03C5h	A/D Register 2	AD2	0000 00XXb
03C6h		4.52	XXXX XXXXb
03C7h	A/D Register 3	AD3	0000 00XXb
03C8h		4.5.4	XXXX XXXXb
03C9h	A/D Register 4	AD4	0000 00XXb
03CAh		105	XXXX XXXXb
03CBh	A/D Register 5	AD5	0000 00XXb
03CCh			XXXX XXXXb
03CDh	A/D Register 6	AD6	0000 00XXb
03CEh			XXXX XXXXb
03CFh	A/D Register 7	AD7	0000 00XXb
03D0h		+ + +	
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	0000 X00Xb
03D5h			
03D6h	A/D Control Register 0	ADCON0	0000 0XXXb
03D7h	A/D Control Register 1	ADCON1	0000 X000b
03D8h	D/A0 Register	DA0	00h
03D9h			
03DAh	D/A1 Register	DA1	00h
03DBh			
03DCh	D/A Control Register	DACON	00h
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EAn	Port P5 Direction Register	PD4 PD5	00h
03ECh	Port P6 Register	PD5	XXh
002011	Port P7 Register	P0	XXh
03EDP			
03EDh 03EEh	Port P6 Direction Register	PD6	00h

Table 4.16SFR Information (16) (1)

X: Undefined

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
D080h	DMC0 Hooder Pottern Set Presister (Min)	PMC0HDPMIN	0000 0000b
D081h	PMC0 Header Pattern Set Register (Min)		XXXX X000b
D082h	PMC0 Header Dettern Set Register (Max)	PMC0HDPMAX	0000 0000b
D083h	PMC0 Header Pattern Set Register (Max)	PINCONDPINAL	XXXX X000b
D084h	PMC0 Data 0 Pattern Set Register (Min)	PMC0D0PMIN	00h
D085h	PMC0 Data 0 Pattern Set Register (Max)	PMC0D0PMAX	00h
D086h	PMC0 Data 1 Pattern Set Register (Min)	PMC0D1PMIN	00h
D087h	PMC0 Data 1 Pattern Set Register (Max)	PMC0D1PMAX	00h
D088h	PMC0 Measurements Register	PMC0TIM	00h
D089h	PMC0 Measurements Register	PINCOTIM	00h
D08Ah			
D08Bh			
D08Ch	PMC0 Receive Data Store Register 0	PMC0DAT0	00h
D08Dh	PMC0 Receive Data Store Register 1	PMC0DAT1	00h
D08Eh	PMC0 Receive Data Store Register 2	PMC0DAT2	00h
D08Fh	PMC0 Receive Data Store Register 3	PMC0DAT3	00h
D090h	PMC0 Receive Data Store Register 4	PMC0DAT4	00h
D091h	PMC0 Receive Data Store Register 5	PMC0DAT5	00h
D092h	PMC0 Receive Bit Count Register	PMC0RBIT	XX00 0000b
D093h			
D094h	DMC1 Llander Dettern Set Desister (Min)	PMC1HDPMIN	0000 0000b
D095h	PMC1 Header Pattern Set Register (Min)		XXXX X000b
D096h	DMC1 Llander Dettern Set Desister (Max)		0000 0000b
D097h	PMC1 Header Pattern Set Register (Max)	PMC1HDPMAX	XXXX X000b
D098h	PMC1 Data 0 Pattern Set Register (Min)	PMC1D0PMIN	00h
D099h	PMC1 Data 0 Pattern Set Register (Max)	PMC1D0PMAX	00h
D09Ah	PMC1 Data 1 Pattern Set Register (Min)	PMC1D1PMIN	00h
D09Bh	PMC1 Data 1 Pattern Set Register (Max)	PMC1D1PMAX	00h
D09Ch	DMC1 Massurements Desister	DMCATINA	00h
D09Dh	PMC1 Measurements Register	PMC1TIM	00h
D09Eh			
D09Fh			

Table 4.18SFR Information (18) (1)

Note:

1. The blank areas are reserved. No access is allowed.

4.2 Notes on SFRs

4.2.1 Register Settings

Table 4.19 lists Registers with Write-Only Bits and registers whose function differs between reading and writing. Set these registers with immediate values. Do not use read-modify-write instructions. When establishing the next value by altering the existing value, write the existing value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM. Read-modify-write instructions can be used when writing to the no register bits.

Address	Register	Symbol
0249h	UART0 Bit Rate Register	U0BRG
024Bh to 024Ah	UART0 Transmit Buffer Register	U0TB
0259h	UART1 Bit Rate Register	U1BRG
025Bh to 025Ah	UART1 Transmit Buffer Register	U1TB
0269h	UART2 Bit Rate Register	U2BRG
026Bh to 026Ah	UART2 Transmit Buffer Register	U2TB
0273h	SI/O3 Bit Rate Register	S3BRG
0277h	SI/O4 Bit Rate Register	S4BRG
0289h	UART5 Bit Rate Register	U5BRG
028Bh to 028Ah	UART5 Transmit Buffer Register	U5TB
0299h	UART6 Bit Rate Register	U6BRG
029Bh to 029Ah	UART6 Transmit Buffer Register	U6TB
02A9h	UART7 Bit Rate Register	U7BRG
02ABh to 02AAh	UART7 Transmit Buffer Register	U7TB
02B6h	I2C0 Control Register 1	S3D0
02B8h	I2C0 Status Register 0	S10
0303h to 0302h	Timer A1-1 Register	TA11
0305h to 0304h	Timer A2-1 Register	TA21
0307h to 0306h	Timer A4-1 Register	TA41
030Ah	Three-Phase Output Buffer Register 0	IDB0
030Bh	Three-Phase Output Buffer Register 1	IDB1
030Ch	Dead Time Timer	DTT
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2
0327h to 0326h	Timer A0 Register	TA0
0329h to 0328h	Timer A1 Register	TA1
032Bh to 032Ah	Timer A2 Register	TA2
032Dh to 032Ch	Timer A3 Register	TA3
032Fh to 032Eh	Timer A4 Register	TA4
037Dh	Watchdog Timer Refresh Register	WDTR
037Eh	Watchdog Timer Start Register	WDTS

Table 4.19	Registers with Write-Only Bits
------------	--------------------------------

Table 5.15 Power Supply Circuit Timing Characteristics

The measurement condition is V_{CC1} = 2.7 to 5.5 V and T_{opr} = 25°C, unless otherwise specified.

Symbol	Parameter	Condition	Standard			Unit
Symbol Parameter		Condition	Min.	Тур.	Max.	Onit
t _{d(P-R)}	Internal power supply stability time when power is on $^{(1)}$				5	ms
t _{d(R-S)}	STOP release time				150	μS
t _{d(W-S)}	Low power mode wait mode release time				150	μS

Note:

1. Waiting time until the internal power supply generator stabilizes when power is on.

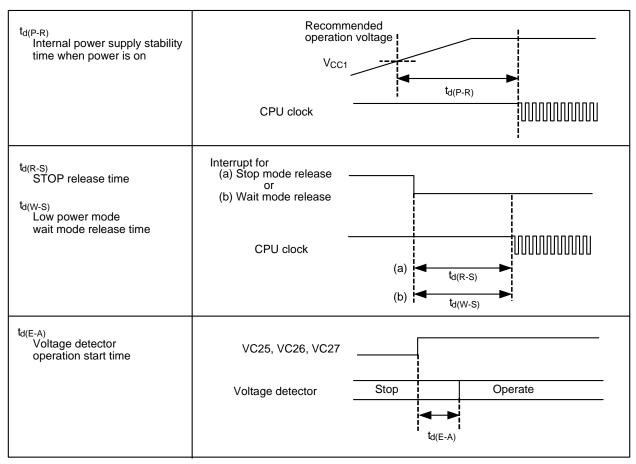


Figure 5.4 Power Supply Circuit Timing Diagram

$V_{CC1} = V_{CC2} = 5 V$

Electrical Characteristics (4) Table 5.22

R5F3651ENFC, R5F3651EDFC, R5F3651KNFC, R5F3650KNFA, R5F3650KNFB, R5F3651KDFC, R5F3650KDFB, R5F3650KDFA, R5F3651MNFC, R5F3650MNFA, R5F3650MNFB, R5F3651MDFC, R5F3650MDFA,

```
R5F3650MDFB, R5F3651NNFC, R5F3650NNFA, R5F3650NNFB, R5F3651NDFC, R5F3650NDFA, R5F3650NDFB
```

 $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, \text{ } f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol	Parameter		Measuring Condition	Min.	Standard	l Max.	Uni
R _{fXCIN}	Feedback resistance			IVIII I.	Тур.	IVIAX.	Ma
1X0III	XCIN				8		MΩ
сс	Power supply current	High-speed mode	$f_{(BCLK)} = 32 \text{ MHz}$				
			XIN = 4 MHz (square wave), PLL multiplied by 8		26.0		m/
	In single-chip, mode,		125 kHz on-chip oscillator stopped				
	the output pin are		f _(BCLK) = 32 MHz, A/D conversion				
	open and other pins		XIN = 4 MHz (square wave), PLL multiplied by 8		27.0		m
	are V _{SS}		125 kHz on-chip oscillator stopped				
			$f_{(BCLK)} = 20 \text{ MHz}$				
			XIN = 20 MHz (square wave)		17.0		m
			125 kHz on-chip oscillator stopped				
		40 MHz on-chip	Main clock stopped				
		oscillator mode	40 MHz on-chip oscillator on,		10.0		-
			divide-by-4 (f(BCLK) = 10 MHz)		18.0		m
			125 kHz on-chip oscillator stopped				
		125 kHz on-chip	Main clock stopped				
		oscillator mode	40 MHz on-chip oscillator stopped		550.0		μ
			125 kHz on-chip oscillator on, no division		550.0		μι
			FMR22 = 1 (slow read mode)				
		Low-power mode	f _(BCLK) = 32 kHz				
			In low-power mode		170.0		
			FMR22 = FMR23 = 1		170.0		μ
			on flash memory ⁽¹⁾				
			$f_{(BCLK)} = 32 \text{ kHz}$				
			In low-power mode		45.0		μ
			on RAM ⁽¹⁾				•
		Wait mode	Main clock stopped				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator on		20.5		μ
			Peripheral clock operating		2010		
			$T_{opr} = 25^{\circ}C$				
			$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity High)				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped		11.0		μ
			Peripheral clock operating		11.0		μ
			$T_{opr} = 25^{\circ}C$				
			$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity low)				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped		6.0		μ
			Peripheral clock operating				
		0.	$T_{opr} = 25^{\circ}C$				
		Stop mode	Main clock stopped				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped		1.7		μ
			Peripheral clock stopped				
			$T_{opr} = 25^{\circ}C$				
		During flash memory	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$		20.0		m
		program	$V_{CC1} = 5.0 V$		20.0		
		During flash memory	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$	t			
		erase	$V_{CC1} = 5.0 V$		30.0		m

Note: 1. This indicates the memory in which the program to be executed exists.

 $V_{CC1} = V_{CC2} = 5 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.2.3 Timer A Input

Table 5.26 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Onit
t _{c(TA)}	TAilN input cycle time	100		ns
t _{w(TAH)}	TAilN input high pulse width	40		ns
t _{w(TAL)}	TAilN input low pulse width	40		ns

Table 5.27 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Unit	
Symbol	i didifeter	Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	400		ns
t _{w(TAH)}	TAilN input high pulse width	200		ns
t _{w(TAL)}	TAilN input low pulse width	200		ns

Table 5.28 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Offic
t _{c(TA)}	TAilN input cycle time	200		ns
t _{w(TAH)}	TAiIN input high pulse width	100		ns
t _{w(TAL)}	TAiIN input low pulse width	100		ns

Table 5.29Timer A Input (External Trigger Input in Pulse Width Modulation Mode and
Programmable Output Mode)

Symbol	Parameter	Standard		Unit
Symbol	i alameter	Min.	Max.	Onit
t _{w(TAH)}	TAilN input high pulse width	100		ns
t _{w(TAL)}	TAilN input low pulse width	100		ns

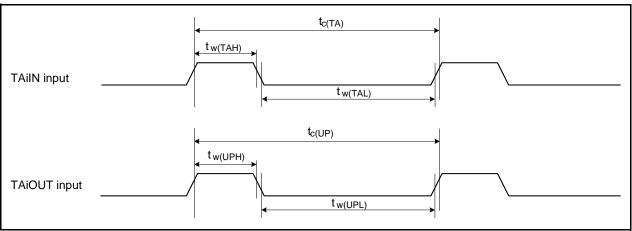


Figure 5.7 Timer A Input

 $V_{CC1} = V_{CC2} = 5 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.2.7 Multi-master I²C-bus

Table 5.36Multi-master I²C-bus

Cumhal	Parameter	Standard	Standard Clock Mode		Fast-mode	
Symbol		Min.	Max.	Min.	Max.	- Unit
t _{BUF}	Bus free time	4.7		1.3		μS
t _{HD;STA}	Hold time in start condition	4.0		0.6		μS
t _{LOW}	Hold time in SCL clock 0 status	4.7		1.3		μS
t _R	SCL, SDA signals' rising time		1000	20 + 0.1 Cb	300	ns
t _{HD;DAT}	Data hold time	0		0	0.9	μS
t _{HIGH}	Hold time in SCL clock 1 status	4.0		0.6		μS
f _F	SCL, SDA signals' falling time		300	20 + 0.1 Cb	300	ns
t _{su;DAT}	Data setup time	250		100		ns
t _{su;STA}	Setup time in restart condition	4.7		0.6		μS
t _{su;STO}	Stop condition setup time	4.0		0.6		μS

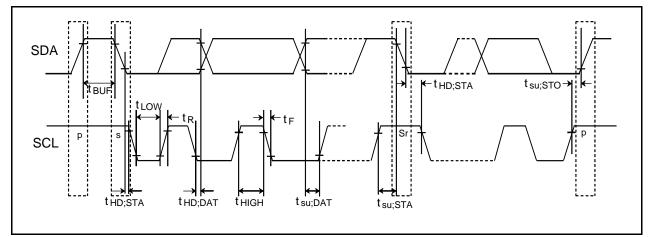


Figure 5.12 Multi-master I²C-bus

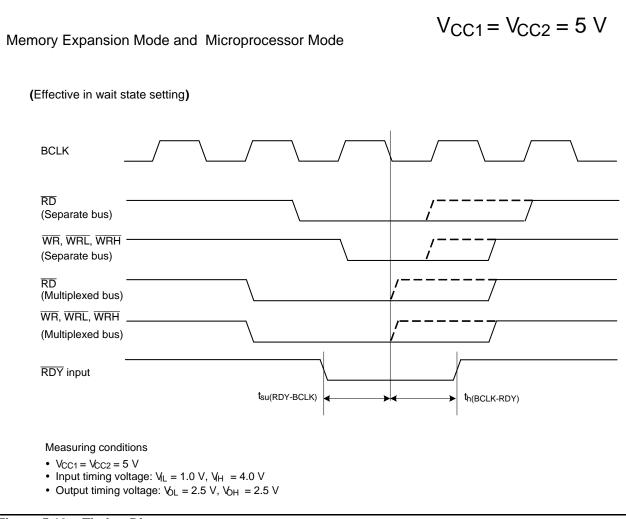
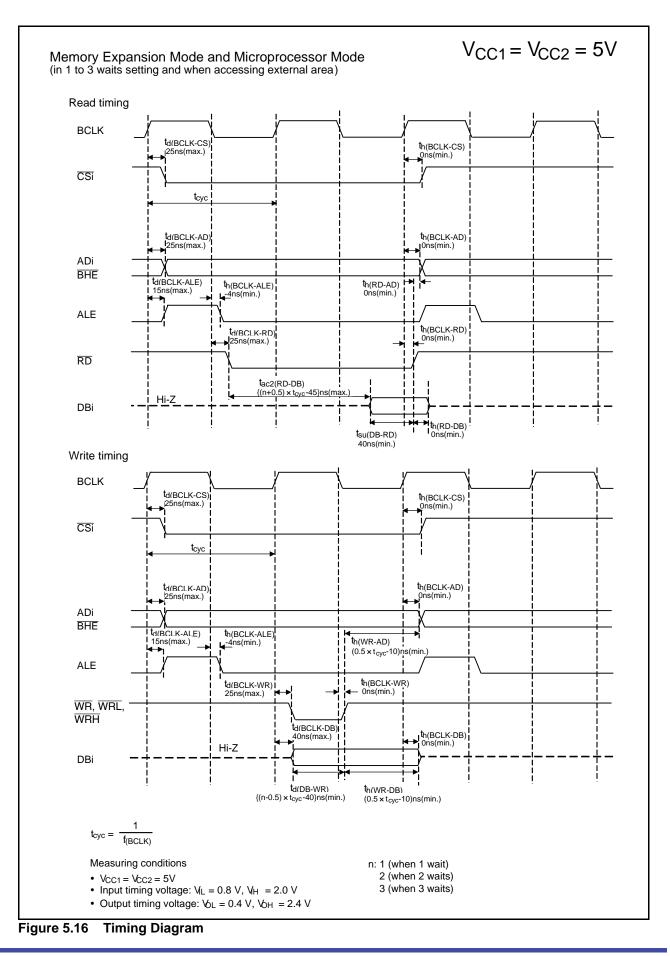



Figure 5.13 Timing Diagram

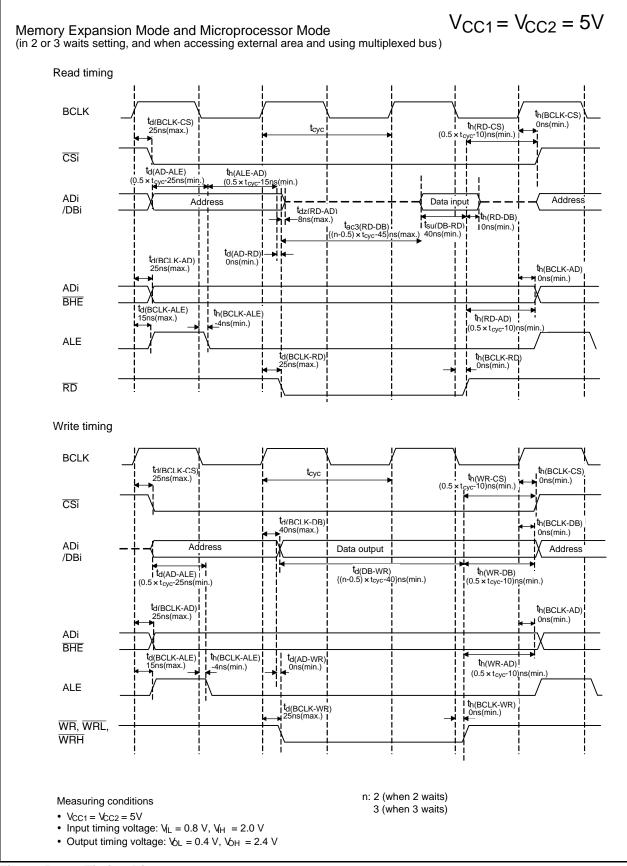


Figure 5.17 Timing Diagram

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.3 Timing Requirements (Memory Expansion Mode and Microprocessor Mode)

Table 5.60	Memory Ex	pansion Mode and	Microprocessor Mode
------------	-----------	------------------	---------------------

Symbol	Parameter	Star	Unit		
Symbol	Falameter	Min. Max.		Offic	
t _{ac1(RD-DB)}	Data input access time (for setting with no wait)		(Note 1)	ns	
t _{ac2(RD-DB)}	Data input access time (for setting with wait)		(Note 2)	ns	
t _{ac3(RD-DB)}	Data input access time (when accessing multiplex bus area)		(Note 3)	ns	
t _{ac4(RD-DB)}	Data input access time (for setting with 2 ϕ + 3 ϕ or more)		(Note 4)	ns	
t _{su(DB-RD)}	Data input setup time	50		ns	
t _{su(RDY-BCLK)}	RDY input setup time	85		ns	
t _{h(RD-DB)}	Data input hold time	0		ns	
t _{h(BCLK-RDY)}	RDY input hold time	0		ns	

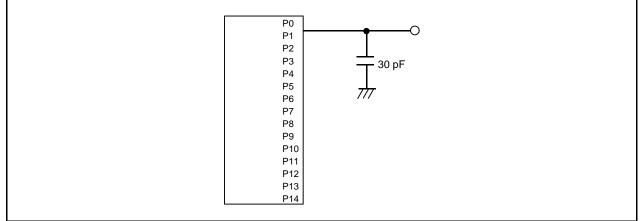
Notes:

1. Calculated according to the BCLK frequency as follows:

 $\frac{0.5 \times 10^9}{f_{(BCLK)}} - 60[ns]$

2. Calculated according to the BCLK frequency as follows:

 $\frac{(n+0.5) \times 10^9}{f_{(BCLK)}} - 60[ns]$ n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.


3. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 60[ns]$ n is 2 for 2 waits setting, 3 for 3 waits setting.

4. Calculated according to the BCLK frequency as follows:

 $\frac{n \times 10^9}{f_{(BCLK)}} - 60[ns] \qquad \text{n is 3 for 2} \phi + 3 \phi, 4 \text{ for 2} \phi + 4 \phi, 4 \text{ for 3} \phi + 4 \phi, 5 \text{ for 4} \phi + 5 \phi,.$

 $V_{CC1} = V_{CC2} = 3 V$

Switching Characteristics

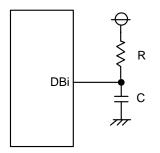
(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.3.4.4 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area

Table 5.64Memory Expansion and Microprocessor Modes (in Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$,
 $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area)

Symbol	Deremeter	Measuring	Standard		Unit	
Symbol	Parameter	Condition	Min.	Max.	Unit	
t _{d(BCLK-AD)}	Address output delay time			30	ns	
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns	
t _{h(RD-AD})	Address output hold time (in relation to RD)		0		ns	
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns	
t _{d(BCLK-CS)}	Chip select output delay time			30	ns	
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns	
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns	
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns	
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.29		30	ns	
t _{h(BCLK-RD)}	RD signal output hold time		0		ns	
t _{d(BCLK-WR)}	WR signal output delay time			30	ns	
t _{h(BCLK-WR)}	WR signal output hold time		0		ns	
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns	
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns	
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns	
t _{h(WR-DB)}	Data output hold time (in relation to WR) (3)		(Note 2)		ns	

Notes:


1. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 40[ns]$$
n is 3 for 2\phi + 3\phi, 4 for 2\phi + 4\phi, 4 for 3\phi + 4\phi, and 5 for 4\phi + 5\phi.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pullup (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times \ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF \times 1 k $\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.