

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	47K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f3650tdfa-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 Pin Functions

Signal Name	Pin Name	I/O	Power Supply	Description	
Power supply input	VCC1, VCC2, VSS	I	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \geq VCC2), and 0 V to the VSS pin.	
Analog power supply input	AVCC, AVSS	I	VCC1	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \ge VCC2), and 0 V to the VSS pin. This is the power supply for the A/D and D/A converters.	
Reset input	RESET	I	VCC1	Driving this pin low resets the MCU.	
CNVSS	CNVSS	I	VCC1	operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor	
External data bus width select input	BYTE	I	VCC1	bus is 16 bits when it is low and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to	
	D0 to D7	I/O	VCC2		
	D8 to D15	I/O	VCC2		
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.	
	A0/D0 to A7/D7	I/O	VCC2	(A0 to A7) by timesharing, while accessing an external area	
	A1/D0 to A8/D7	I/O	VCC2	(A1 to A8) by timesharing, while accessing an external area	
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2		
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WR is driven low. Data in an external area is read when RD is driven low. An odd address is accessed when BHE is driven low. Select 	
	ALE	0	VCC2	Outputs an ALE signal to latch the address.	
	HOLD	Ι	VCC2		
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.	
	RDY	I	VCC2	The MCU bus is placed in wait state while the $\overline{\text{RDY}}$ pin is driven low.	

Table 1.12Pin Functions for the 128-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1, VCC2, VSS	I	-	Apply 2.7 to 5.5 V to pins VCC1 and VCC2 (VCC1 \geq VCC2) and 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	I	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.
Reset input	RESET	I	VCC1	Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor. To start operating in microprocessor mode, connect the pin to VCC1.
External data bus width select input	BYTE	I	VCC1	Input pin to select the data bus of the external area. The data bus is 16 bits when it is low, and 8 bits when it is high. This pin must be fixed either high or low. Connect the BYTE pin to VSS in single-chip mode.
	D0 to D7	I/O	VCC2	Inputs or outputs data (D0 to D7) while accessing an external area with a separate bus.
	D8 to D15	I/O	VCC2	Inputs or outputs data (D8 to D15) while accessing an external area with a 16-bit separate bus.
	A0 to A19	0	VCC2	Outputs address bits A0 to A19.
	A0/D0 to A7/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A0 to A7) by timesharing, while accessing an external area with an 8-bit multiplexed bus.
	A1/D0 to A8/D7	I/O	VCC2	Inputs or outputs data (D0 to D7) and outputs address bits (A1 to A8) by timesharing, while accessing an external area with a 16-bit multiplexed bus.
	$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	0	VCC2	Outputs chip-select signals $\overline{CS0}$ to $\overline{CS3}$ to specify an external area.
Bus control pins	WRL/WR WRH/BHE RD	0	VCC2	 Outputs WRL, WRH, (WR, BHE), and RD signals. WRL and WRH can be switched with BHE and WR. WRL, WRH, and RD selected If the external data bus is 16 bits, data is written to an even address in an external area when WRL is driven low. Data is written to an odd address when WRH is driven low. Data is read when RD is driven low. WR, BHE, and RD selected Data is written to an external area when WRH is driven low. Data is written to an external area when WRH is driven low. An odd address is accessed when RD is driven low. Select WR, BHE, and RD when using an 8-bit external data bus.
	ALE	0	VCC2	Outputs an ALE signal to latch the address.
	HOLD	ļ	VCC2	$\overline{\text{HOLD}}$ input is unavailable. Connect the $\overline{\text{HOLD}}$ pin to VCC2 via a resistor (pull-up).
	HLDA	0	VCC2	In a hold state, HLDA outputs a low-level signal.
	RDY	I	VCC2	The MCU bus is placed in a wait state while the $\overline{\text{RDY}}$ pin is driven low.

Table 1.15 Pin Functions for the 100-Pin Package (1/3)

Power supply: VCC2 is used to supply power to the external bus associated pins. The dual power supply configuration allows VCC2 to interface at a different voltage than VCC1.

Table 4.7	SFR Information (7)		
Address	Register	Symbol	Reset Value
01E0h	Timer B3-1 Register	TB31	XXh
01E1h	Timer B3-1 Register		XXh
01E2h	Timor P4 4 Decision	TD 44	XXh
01E3h	Timer B4-1 Register	TB41	XXh
01E4h	Times DE 4 De sister		XXh
01E5h	Timer B5-1 Register	TB51	XXh
01E6h	Pulse Period/Pulse Width Measurement Mode Function Select Reg- ister 2	PPWFS2	XXXX X000b
01E7h			
01E8h	Timer B Count Source Select Register 2	TBCS2	00h
01E9h	Timer B Count Source Select Register 3	TBCS3	X0h
01EAh	5		
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
01F0h	PMC0 Function Select Register 0	PMC0CON0	00h
01F1h	PMC0 Function Select Register 1	PMC0CON1	00XX 0000b
01F2h	PMC0 Function Select Register 2	PMC0CON2	0000 00X0b
01F3h	PMC0 Function Select Register 3	PMC0CON3	00h
01F4h	PMC0 Status Register	PMC0STS	00h
01F5h	PMC0 Interrupt Source Select Register	PMC0INT	00h
01F6h	PMC0 Compare Control Register	PMC0CPC	XXX0 X000b
01F7h	PMC0 Compare Data Register	PMC0CPD	00h
01F8h	PMC1 Function Select Register 0	PMC1CON0	XXX0 X000b
01F9h	PMC1 Function Select Register 1	PMC1CON1	XXXX 0X00b
01FAh	PMC1 Function Select Register 2	PMC1CON1 PMC1CON2	0000 00X0b
01FBh	PMC1 Function Select Register 3	PMC1CON2 PMC1CON3	0000 00X00 00h
01FBh	PMC1 Status Register	PMC1STS	X000 X00Xb
01FDh	PMC1 Interrupt Source Select Register	PMC1313 PMC1INT	X000 X00Xb
01FEh		PINCTINT	
01FFh			
0200h			
0201h			
0202h			
0203h			
0204h		150004	0.01
0205h	Interrupt Source Select Register 3	IFSR3A	00h
0206h	Interrupt Source Select Register 2	IFSR2A	00h
0207h	Interrupt Source Select Register	IFSR	00h
0208h			
0209h			
020Ah			
020Bh			
020Ch			
020Dh			
020Eh	Address Match Interrupt Enable Register	AIER	XXXX XX00b
020Fh	Address Match Interrupt Enable Register 2	AIER2	XXXX XX00b

Table 4.7SFR Information (7) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0390h	DMA2 Source Select Register	DM2SL	00h
0391h		DIVIZOL	0011
0392h	DMA3 Source Select Register	DM3SL	00h
0393h		DIVISOE	0011
0393h 0394h			
039411 0395h			
0396h			
0397h			2.21
0398h	DMA0 Source Select Register	DM0SL	00h
0399h			
039Ah	DMA1 Source Select Register	DM1SL	00h
039Bh			
039Ch			
039Dh			
039Eh			
039Fh			
03A0h			
03A1h			
03A2h	Open-Circuit Detection Assist Function Register	AINRST	XX00 XXXXb
03A3h			
03A4h			
03A5h			
03A6h			
03A7h			
03A8h			
03A9h			
03AAh			
03ABh			
03ACh			
03ADh			
03AEh			
03AEh 03AFh			
03A0h			
03B0n 03B1h			
03B2h			
03B3h			
03B4h	SFR Snoop Address Register	CRCSAR	XXXX XXXXb
03B5h			00XX XXXXb
03B6h	CRC Mode Register	CRCMR	0XXX XXX0b
03B7h			
03B8h			
03B9h			
03BAh			
03BBh			
03BCh	CRC Data Register	CRCD	XXh
03BDh			XXh
03BEh	CRC Input Register	CRCIN	XXh
03BFh			

Table 4.15SFR Information (15) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
03F0h	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00h
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03F5h	Port P11 Register	P11	XXh
03F6h	Port P10 Direction Register	PD10	00h
03F7h	Port P11 Direction Register	PD11	00h
03F8h	Port P12 Register	P12	XXh
03F9h	Port P13 Register	P13	XXh
03FAh	Port P12 Direction Register	PD12	00h
03FBh	Port P13 Direction Register	PD13	00h
03FCh	Port P14 Register	P14	XXh
03FDh			
03FEh	Port P14 Direction Register	PD14	XXXX XX00b
03FFh			

Table 4.17SFR Information (17) (1)

Note:

1. The blank areas are reserved. No access is allowed.

4.2 Notes on SFRs

4.2.1 Register Settings

Table 4.19 lists Registers with Write-Only Bits and registers whose function differs between reading and writing. Set these registers with immediate values. Do not use read-modify-write instructions. When establishing the next value by altering the existing value, write the existing value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM. Read-modify-write instructions can be used when writing to the no register bits.

Address	Register	Symbol
0249h	UART0 Bit Rate Register	U0BRG
024Bh to 024Ah	UART0 Transmit Buffer Register	U0TB
0259h	UART1 Bit Rate Register	U1BRG
025Bh to 025Ah	UART1 Transmit Buffer Register	U1TB
0269h	UART2 Bit Rate Register	U2BRG
026Bh to 026Ah	UART2 Transmit Buffer Register	U2TB
0273h	SI/O3 Bit Rate Register	S3BRG
0277h	SI/O4 Bit Rate Register	S4BRG
0289h	UART5 Bit Rate Register	U5BRG
028Bh to 028Ah	UART5 Transmit Buffer Register	U5TB
0299h	UART6 Bit Rate Register	U6BRG
029Bh to 029Ah	UART6 Transmit Buffer Register	U6TB
02A9h	UART7 Bit Rate Register	U7BRG
02ABh to 02AAh	UART7 Transmit Buffer Register	U7TB
02B6h	I2C0 Control Register 1	S3D0
02B8h	I2C0 Status Register 0	S10
0303h to 0302h	Timer A1-1 Register	TA11
0305h to 0304h	Timer A2-1 Register	TA21
0307h to 0306h	Timer A4-1 Register	TA41
030Ah	Three-Phase Output Buffer Register 0	IDB0
030Bh	Three-Phase Output Buffer Register 1	IDB1
030Ch	Dead Time Timer	DTT
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2
0327h to 0326h	Timer A0 Register	TA0
0329h to 0328h	Timer A1 Register	TA1
032Bh to 032Ah	Timer A2 Register	TA2
032Dh to 032Ch	Timer A3 Register	TA3
032Fh to 032Eh	Timer A4 Register	TA4
037Dh	Watchdog Timer Refresh Register	WDTR
037Eh	Watchdog Timer Start Register	WDTS

Table 4.19	Registers with Write-Only Bits
------------	--------------------------------

5. Electrical Characteristics

5.1 Electrical Characteristics (Common to 3 V and 5 V)

5.1.1 Absolute Maximum Rating

Table 5.1Absolute Maximum Ratings

Symbol		Parameter	Condition	Rated Value	Unit
V _{CC1}	Supply voltage		$V_{CC1} = AV_{CC}$	-0.3 to 6.5	V
V _{CC2}	Supply voltage		$V_{CC1} = AV_{CC}$	-0.3 to V _{CC1} + 0.1 ⁽¹⁾	V
AV _{CC}	Analog supply	voltage	$V_{CC1} = AV_{CC}$	-0.3 to 6.5	V
V _{REF}	Analog referen	ce voltage	$V_{CC1} = AV_{CC}$	-0.3 to V _{CC1} + 0.1 ⁽¹⁾	V
Vı	Input voltage	RESET, CNVSS, BYTE, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 XIN		-0.3 to V _{CC1} + 0.3 ⁽¹⁾	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		-0.3 to V _{CC2} + 0.3 ⁽¹⁾	V
		P7_0, P7_1, P8_5		-0.3 to 6.5	V
Vo	Output voltage	P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 XOUT		-0.3 to V _{CC1} + 0.3 ⁽¹⁾	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7		-0.3 to V _{CC2} + 0.3 ⁽¹⁾	V
		P7_0, P7_1, P8_5		-0.3 to 6.5	V
P _d	Power consum	ption	$-40^{\circ}\text{C} < \text{T}_{opr} \le 85^{\circ}\text{C}$	300	mW
T _{opr}	Operating	When the MCU is operating		-20 to 85/-40 to 85	°C
- r	temperature	Flash program erase	Program area	0 to 60	
			Data area	-20 to 85/-40 to 85	
T _{stg}	Storage tempe	rature		–65 to 150	°C

Note:

1. Maximum value is 6.5 V.

5.1.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions (1/3)

 $V_{CC1} = V_{CC2} = 2.7$ to 5.5 V at $T_{opr} = -20^{\circ}$ C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol		Parameter	Standard				
Cymbol			Min.	Тур.	Max.	Unit	
V _{CC1} ,	Supply volt	age ($V_{CC1} \ge V_{CC2}$) CE	EC function is not used	2.7	5.0	5.5	V
V _{CC2}		CE	EC function is used	2.7		3.63	V
AV _{CC}	Analog sup	ply voltage			V _{CC1}		V
V _{SS}	Supply volt	age			0		V
AV _{SS}	Analog sup	ply voltage		0		V	
V _{IH}	High input voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P12_0 to P12_7, P13_0 to P13_7	P5_7,	0.8V _{CC2}		V _{CC2}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to (in single-chip mode)	P2_7, P3_0	0.8V _{CC2}		V _{CC2}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to (data input in memory expansion and modes)		0.5V _{CC2}		V _{CC2}	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P9_0 to P9_7, P10_0 to P10_7, P11_0 P14_1 XIN, RESET, CNVSS, BYTE		0.8V _{CC1}		V _{CC1}	V
		P7_0, P7_1, P8_5	0.8V _{CC1}		6.5	V	
		CEC		0.7V _{CC1}			V
V _{IL} Low input voltage		P3_1 to P3_7, P4_0 to P4_7, P5_0 to P12_0 to P12_7, P13_0 to P13_7	0		0.2V _{CC2}	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to (in single-chip mode)	0		0.2V _{CC2}	V	
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to (data input in memory expansion and I	0		0.16V _{CC2}	V	
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P10_0 to P10_7,P11_0 to P11_7, P14 XIN, RESET, CNVSS, BYTE	0		0.2V _{CC1}	V	
		CEC			0.26V _{CC1}	V	
I _{OH(sum)}	High peak output	Sum of I _{OH(peak)} at P0_0 to P0_7, P1_ P2_0 to P2_7	_0 to P1_7,			-40.0	mA
	current	Sum of $I_{OH(peak)}$ at P3_0 to P3_7, P4_ P5_0 to P5_7, P12_0 to P12_7, and F				-40.0	mA
		Sum of I _{OH(peak)} at P6_0 to P6_7, P7_ P8_0 to P8_4				-40.0	mA
		Sum of I _{OH(peak)} at P8_6, P8_7, P9_0 P10_0 to P10_7, P11_0 to P11_7, P14				-40.0	mA
I _{OH(peak)}	High peak output current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P9_0 to P9_7, P10_0 to P10_7, P11_0 P12_0 to P12_7, P13_0 to P13_7, P13_0			-10.0	mA	
I _{OH(avg)}	High average output current ⁽¹⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P3_0 to P3_7, P4_0 to P4_7, P5_0 to P6_0 to P6_7, P7_2 to P7_7, P8_0 to P9_0 to P9_7, P10_0 to P10_7, P11_1 P12_0 to P12_7, P13_0 to P13_7, P12_0	P5_7, P8_4, P8_6, P8_7, 0 to P11_7,			-5.0	mA

Note:

1. The average output current is the mean value within 100 ms.

5.1.3 A/D Conversion Characteristics

Table 5.5 A/D Conversion Characteristics (1/2) ⁽¹⁾

 $V_{CC1} = AV_{CC} = 3.0$ to $5.5 \text{ V} \ge V_{CC2} \ge V_{REF}$, $V_{SS} = AV_{SS} = 0 \text{ V}$ at $T_{opr} = -20^{\circ}C$ to $85^{\circ}C/-40^{\circ}C$ to $85^{\circ}C$ unless otherwise specified.

Symbol	Parameter		N	leasuring Condition		Standar	b	Unit
Symbol	i didilletei		IV	Medsuning Condition		Тур.	Max.	01111
-	Resolution		$AV_{CC} =$	$V_{CC1} \ge V_{CC2} \ge V_{REF}$			10	Bits
I _{NL}	Integral non-linearity error	10 bits	V _{CC1} = 5.0 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
			V _{CC1} = 3.3 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
			V _{CC1} = 3.0 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
-	Absolute accuracy	10 bits	V _{CC1} = 5.0 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
			V _{CC1} = 3.3 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB
			V _{CC1} = 3.0 V	AN0 to AN7 input, AN0_0 to AN0_7 input, AN2_0 to AN2_7 input, ANEX0, ANEX1 input (Note 2)			±3	LSB

Notes:

1. Use when $AV_{CC} = V_{CC1}$.

2. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to V_{SS}. See Figure 5.2 "A/D Accuracy Measure Circuit".

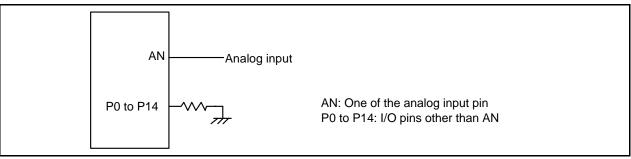


Figure 5.2 A/D Accuracy Measure Circuit

Table 5.6 A/D Conversion Characteristics (2/2) ⁽¹⁾

 $V_{CC1} = AV_{CC} = 3.0 \text{ to } 5.5 \text{ V} \ge V_{CC2} \ge V_{REF}, V_{SS} = AV_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified.}$

Symbol	Paran	actor	Magguring Condition	Standard			Unit
- Tolerand D _{NL} Different - Offset e - Gain err	Falal	leter	Measuring Condition	Min.	Тур.	Max.	Unit
	A/D operating clock		$4.0~V \leq V_{CC1} \leq 5.5~V$	2		25	MHz
	frequency	ANEX0 to ANEX1	$3.2~V \leq V_{CC1} \leq 4.0~V$	2		16	MHz
		input	$3.0~\text{V} \leq \text{V}_{\text{CC1}} \leq 3.2~\text{V}$	2		10	MHz
		AN0_0 to AN0_7	$4.0~\text{V} \leq \text{V}_{\text{CC2}} \leq 5.5~\text{V}$	2		25	MHz
		input, AN2_0 to	$3.2~\text{V} \leq \text{V}_{CC2} \leq 4.0~\text{V}$	2		16	MHz
	AN2_7 input	AN2_7 input	$3.0~\text{V} \leq \text{V}_{\text{CC2}} \leq 3.2~\text{V}$	2		10	MHz
-	Tolerance level impe	dance			3		kΩ
D _{NL}	Differential non-linea	rity error	(4)			±1	LSB
-	Offset error		(4)			±3	LSB
-	Gain error		(4)			±3	LSB
t _{CONV}	10-bit conversion tim	e	V _{CC1} = 5 V, φAD = 25 MHz	1.60			μS
t _{SAMP}	Sampling time			0.60			μS
V _{REF}	Reference voltage			3.0		V _{CC1}	V
V _{IA}	Analog input voltage	(2), (3)		0		V _{REF}	V

Notes:

1. Use when $AV_{CC} = V_{CC1}$.

2. When $V_{CC1} \ge V_{CC2}$, set as below: Analog input voltage (AN0 to AN7, ANEX0, and ANEX1) $\le V_{CC1}$ Analog input voltage (AN0_0 to AN0_7 and AN2_0 to AN2_7) $\le V_{CC2}$.

- 3. When analog input voltage is over reference voltage, the result of A/D conversion is 3FFh.
- 4. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to V_{SS}. See Figure 5.2 "A/D Accuracy Measure Circuit".

5.1.4 D/A Conversion Characteristics

Table 5.7 D/A Conversion Characteristics

 $V_{CC1} = AV_{CC} = V_{REF} = 3.0$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V at $T_{opr} = -20^{\circ}C$ to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter	Measuring Condition		Unit		
		Measuring Condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute Accuracy				2.5	LSB
t _{SU}	Setup Time				3	μS
R _O	Output Resistance		5	6	8.2	kΩ
I _{VREF}	Reference Power Supply Input Current	See Notes ¹ and ²			1.5	mA

Notes:

1. This applies when using one D/A converter, with the D/A register for the unused D/A converter set to 00h.

2. The current consumption of the A/D converter is not included. Also, the I_{VREF} of the D/A converter will flow even if the ADSTBY bit in the ADCON1 register is 0 (A/D operation stopped (standby)).

$V_{CC1} = V_{CC2} = 5 V$

Table 5.21

able 5.21 Electrical Characteristics (3) R5F36506NFA, R5F36506NFB, R5F36506DFA, R5F36506DFB, R5F3650ENFA, R5F3650ENFB, R5F3650EDFA, R5F3650EDFB

 $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 32 \text{ MHz unless otherwise specified.}$

Symbol	Parameter	Parameter Measuring Condition			Standar	d	Unit	
-			Measuring contaiton	Min.	Тур.	Max.	01110	
R _{fXCIN}	Feedback resistance XCIN				8		MΩ	
I _{CC}	Power supply current In single-chip, mode,	High-speed mode	f _(BCLK) = 32 MHz XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		24.0		mA	
	the output pin are open and other pins are V _{SS}		f _(BCLK) =32 MHz, A/D conversion XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		24.7		mA	
			f _(BCLK) = 20 MHz XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped		16.0		mA	
		40 MHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator on, divide-by-4 (f _(BCLK) = 10 MHz) 125 kHz on-chip oscillator stopped		17.0		mA	
		125 kHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator stopped, 125 kHz on-chip oscillator on, no division FMR22 = 1 (slow read mode)		500.0		μA	
		Low-power mode	$f_{(BCLK)} = 32 \text{ kHz}$ In low-power mode FMR22 = FMR23 = 1 On flash memory ⁽¹⁾		160.0		μΑ	
			f _(BCLK) = 32 kHz In low-power mode On RAM ⁽¹⁾		45.0		μA	
		Wait mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on Peripheral clock operating T _{opr} = 25°C		20.0		μΑ	
			$f_{(BCLK)} = 32 \text{ kHz} \text{ (oscillation capacity High)}$ 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		11.0		μΑ	
			$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity Low) 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		6.0		μΑ	
		Stop mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock stopped T _{opr} = 25°C		1.7		μΑ	
		During flash memory program	f _(BCLK) = 10 MHz, PM17 = 1 (one wait) V _{CC1} = 5.0 V		20.0		mA	
		During flash memory erase	f _(BCLK) = 10 MHz, PM17 = 1 (one wait) V _{CC1} = 5.0 V		30.0		mA	

Note: 1.

This indicates the memory in which the program to be executed exists.

$V_{CC1} = V_{CC2} = 5 V$

Table 5.23Electrical Characteristics (5)

R5F3651RNFC, R5F3650RNFA, R5F3650RNFB, R5F3651RDFC, R5F3650RDFA, R5F3650RDFB, R5F3651TNFC, R5F3650TNFA, R5F3650TNFB, R5F3651TDFC, R5F3650TDFA, R5F3650TDFB

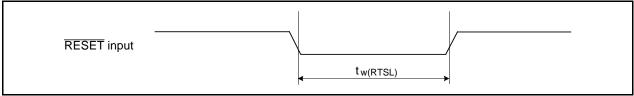
 $V_{CC1} = V_{CC2} = 4.2$ to 5.5 V, $V_{SS} = 0$ V at $T_{opr} = -20$ to 85°C/-40 to 85°C, $f_{(BCLK)} = 32$ MHz unless otherwise specified.

Symbol	Parameter		Measuring Condition		Standar	d	Unit
-				Min.	Тур.	Max.	
R _{fXCIN}	Feedback resistance XCIN				15		MΩ
сс	Power supply current	High-speed mode	f _(BCLK) = 32 MHz XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		32.0		mA
	the output pin are open and other pins are V _{SS}		$f_{(BCLK)} = 32 \text{ MHz}, \text{ A/D conversion}$ XIN = 4 MHz (square wave), PLL multiplied by 8 125 kHz on-chip oscillator stopped		32.7		mA
			f _(BCLK) = 20 MHz XIN = 20 MHz (square wave) 125 kHz on-chip oscillator stopped		21.0		mA
		40 MHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator on, divide-by-4 (f(BCLK) = 10 MHz) 125 kHz on-chip oscillator stopped		23.0		mA
		125 kHz on-chip oscillator mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on, no division FMR22 = 1 (slow read mode)		750.0		μΑ
	Low-power mode	$f_{(BCLK)} = 32 \text{ kHz}$ In low-power mode FMR22 = FMR23 = 1 on flash memory ⁽¹⁾		250.0		μΑ	
			f _(BCLK) = 32 kHz In low-power mode on RAM ⁽¹⁾		45.0		μA
	Wait mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator on Peripheral clock operating T _{opr} = 25°C		21.0		μΑ	
		$f_{(BCLK)} = 32 \text{ kHz}$ (oscillation capacity High) 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		11.0		μΑ	
			$f_{(BCLK)} = 32 \text{ kHz} \text{ (oscillation capacity Low)}$ 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock operating $T_{opr} = 25^{\circ}C$		6.0		μΑ
		Stop mode	Main clock stopped 40 MHz on-chip oscillator stopped 125 kHz on-chip oscillator stopped Peripheral clock stopped T _{opr} = 25°C		1.7		μA
		During flash memory program	$f_{(BCLK)}$ = 10 MHz, PM17 = 1 (one wait) V _{CC1} = 5.0 V		20.0		m/
		During flash memory erase	$f_{(BCLK)}$ = 10 MHz, PM17 = 1 (one wait) V _{CC1} = 5.0 V		30.0		m/

Note:

1. This indicates the memory in which the program to be executed exists.

 $V_{CC1} = V_{CC2} = 5 V$


5.2.2 Timing Requirements (Peripheral Functions and Others)

(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.2.2.1 Reset Input (RESET Input)

Table 5.24 Reset Input (RESET Input)

Symbol	Parameter	Stan	Unit	
	T drameter	Min.	Max.	Onit
t _{w(RSTL)}	RESET input low pulse width	10		μS

Figure 5.5 Reset Input (RESET Input)

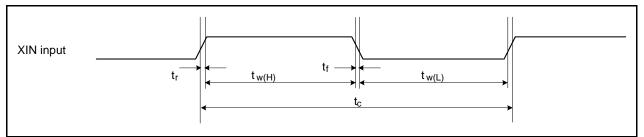

5.2.2.2 External Clock Input

Table 5.25 External Clock Input (XIN Input) ⁽¹⁾

Symbol	Parameter	Stan	Unit	
	i arameter		Max.	Onic
t _c	External clock input cycle time	50		ns
t _{w(H)}	External clock input high pulse width	20		ns
t _{w(L)}	External clock input low pulse width	20		ns
t _r	External clock rise time		9	ns
t _f	External clock fall time		9	ns

Note:

1. The condition is $V_{CC1} = V_{CC2} = 3.0$ to 5.0 V.

5.3 Electrical Characteristics (V_{CC1} = V_{CC2} = 3 V)

5.3.1 Electrical Characteristics

VCC1 = VCC2 = 3 V

Table 5.43 Electrical Characteristics (1) (1)

 $V_{CC1} = V_{CC2} = 2.7$ to 3.3 V, $V_{SS} = 0$ V at $T_{opr} = -20^{\circ}$ C to 85° C/- 40° C to 85° C, $f_{(BCLK)} = 32$ MHz unless otherwise specified.

Quarter		Demonster	Description	Managerine Constition	Standard			Linit
Symbol		Parameter		Measuring Condition	Min.	Тур.	Max.	Unit
	High P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, Ic output P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, voltage P11_0 to P11_7, P14_0, P14_1 P14_1		I _{OH} = -1 mA	V _{CC1} – 0.5		V _{CC1}	V	
		P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P12_0 to P12_7, P13_0 to P1	P5_0 to P5_7,	I _{OH} = -1 mA	V _{CC2} -0.5		V _{CC2}	
V _{OH}	High output	voltage XOUT	HIGH POWER	I _{OH} = -0.1 mA	V _{CC1} - 0.5		V _{CC1}	V
			LOW POWER	I _{OH} = -50 μA	V _{CC1} - 0.5		V _{CC1}	
	High output	voltage XCOUT	HIGH POWER	With no load applied		2.6		V
			LOW POWER	With no load applied		2.2		
V _{OL}	Low output voltage	P6_0 to P6_7, P7_0 to P7_7, P9_7, P10_0 to P10_7, P11_0					0.5	V
		P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P12_0 to P12_7, P13_0 to P1	P5_0 to P5_7,	I _{OL} = 1 mA			0.5	
		CEC		I _{OL} = 1 mA		0	0.5	V
V _{OL}	Low output	voltage XOUT	HIGH POWER	I _{OL} = 0.1 mA			0.5	V
Low out			LOW POWER	I _{OL} = 50 μA			0.5	
	Low output	voltage XCOUT	HIGH POWER	With no load applied		0		V
			LOW POWER	With no load applied		0		
V _{T+} -V _{T-} Hystere		INT7, NMI, ADTRG, CTS0 to SCL0 to SCL2, SCL5 to SCL2 to SDA7, CLK0 to CLK7, TA0 KI3, RXD0 to RXD2, RXD5 to PMC0, PMC1, SCLMM, SDA	7, SDA0 to SDA2, SDA5 OUT to TA4OUT, KI0 to RXD7, SIN3, SIN4, SD,					
		CEC			0.2	0.5	1.0	V
		RESET			0.2		1.8	V
IIH	High input current	P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_ P12_0 to P12_7, P13_0 to P1 XIN, RESET, CNVSS, BYTE	P5_0 to P5_7, P8_0 to P8_7, _7, P11_0 to P11_7,	V ₁ = 3 V			4.0	μA
_	Leakage cu	rrent in powered-off state	CEC	$V_{CC1} = 0 V$			1.8	μΑ
lıL	Low input current	P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_ P12_0 to P12_7, P13_0 to P1 XIN, RESET, CNVSS, BYTE	P5_0 to P5_7, P8_0 to P8_7, _7, P11_0 to P11_7, I3_7, P14_0, P14_1	V _I = 0 V			-4.0	μΑ
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P3_0 to P3_7, P4_0 to P4_7, P6_0 to P6_7, P7_2 to P7_7, P8_6, P8_7, P9_0 to P9_7, P P11_0 to P11_7, P12_0 to P1 P13_7, P14_0, P14_1	P5_0 to P5_7, P8_0 to P8_4, 10_0 to P10_7,	V ₁ = 0 V	50	80	150	kΩ
R _{fXIN}	Feedback re	esistance XIN				3.0		MΩ
V _{RAM}	BAM rotont	on voltage	In stop mode	1.8			V	

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V or 3 V standard depending on the voltage.

 $V_{CC1} = V_{CC2} = 3 V$

5.3.2 Timing Requirements (Peripheral Functions and Others)

(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.3.2.1 Reset Input (RESET Input)

Table 5.47 Reset Input (RESET Input)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onit
t _{w(RSTL)}	RESET input low pulse width	10		μS

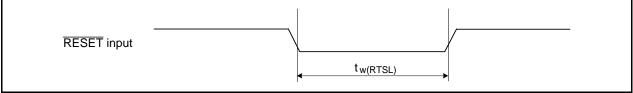


Figure 5.20 Reset Input (RESET Input)

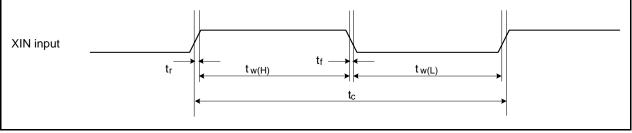

5.3.2.2 External Clock Input

Table 5.48 External Clock Input (XIN Input) ⁽¹⁾

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onit
t _c	External clock input cycle time	50		ns
t _{w(H)}	External clock input high pulse width	20		ns
t _{w(L)}	External clock input low pulse width	20		ns
t _r	External clock rise time		9	ns
t _f	External clock fall time		9	ns

Note:

1. The condition is $V_{CC1} = V_{CC2} = 2.7$ to 3.0 V.

$V_{CC1} = V_{CC2} = 3 V$

5.3.4 Switching Characteristics (Memory Expansion Mode and Microprocessor Mode)

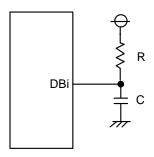
(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.3.4.1 In No Wait State Setting

Table 5.61 Memory Expansion and Microprocessor Modes (in No Wait State Setting)

Symbol	Parameter	Measuring	Standard		Unit
Symbol	i alameter	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			30	ns
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD)}	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			30	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns
t _{h(BCLK-ALE)}	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.29		30	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			30	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:


1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f} - 40[ns]$$
 f_(BCLK) is 12.5 MHz or less.

 $f_{(BCLK)}$ 2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

 $V_{CC1} = V_{CC2} = 3 V$

Switching Characteristics

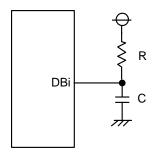
 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.4.2 In 1 to 3 Waits Setting and When Accessing External Area

Table 5.62 Memory Expansion Mode and Microprocessor Mode (in 1 to 3 Waits Setting and When Accessing External Area)

Symbol	Parameter	Measuring	Stan	Unit	
Symbol	Falanielei	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			30	ns
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD)}	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			30	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns
t _{h(BCLK-ALE)}	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.29		30	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			30	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:


1. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f_{(BCLK)}} - 40[ns]$$
 n is 1 for 1 wait setting, 2 for 2 waits setting and 3 for 3 waits setting.
When n = 1, f_(BCLK) is 12.5 MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times \ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

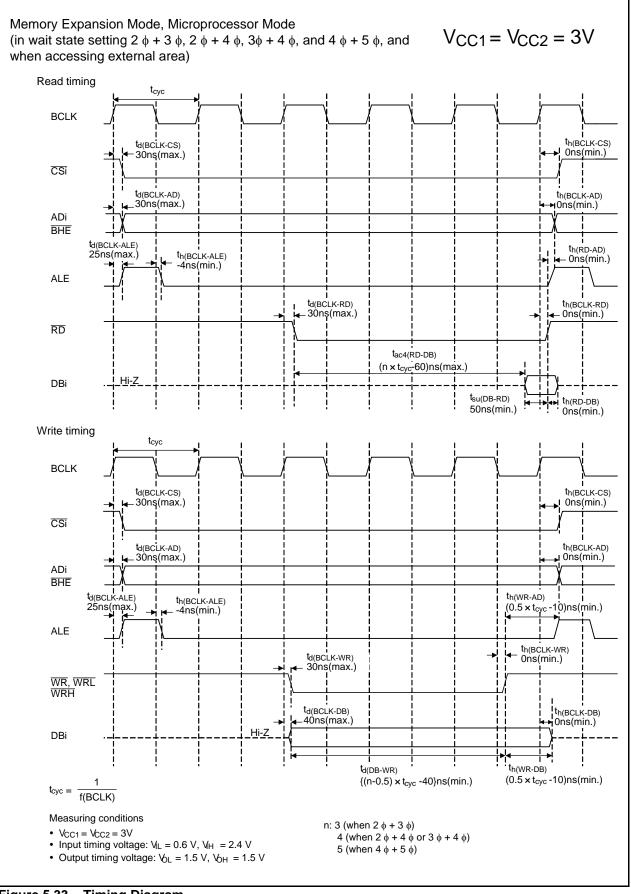
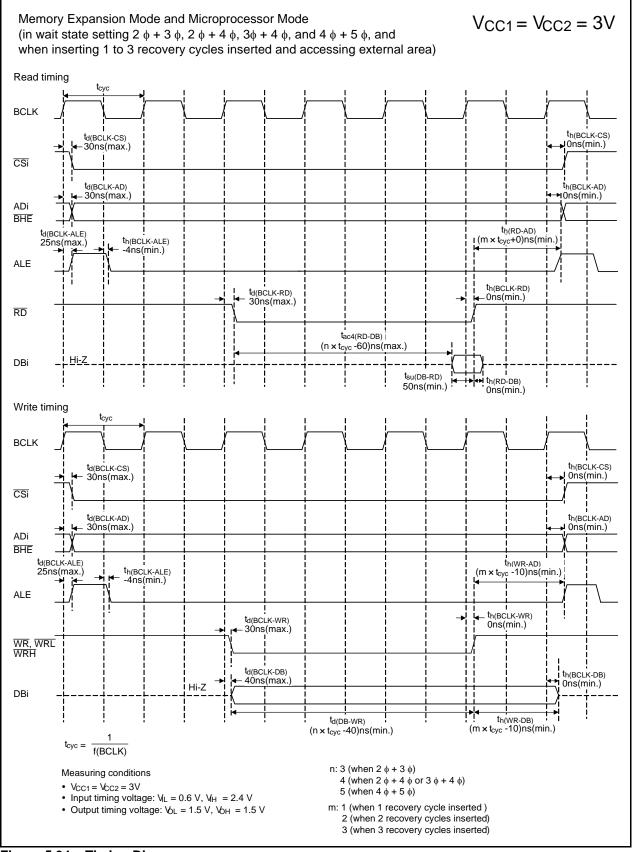
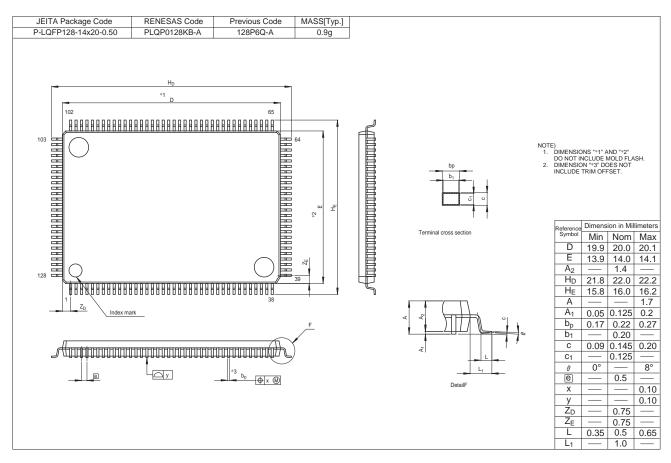
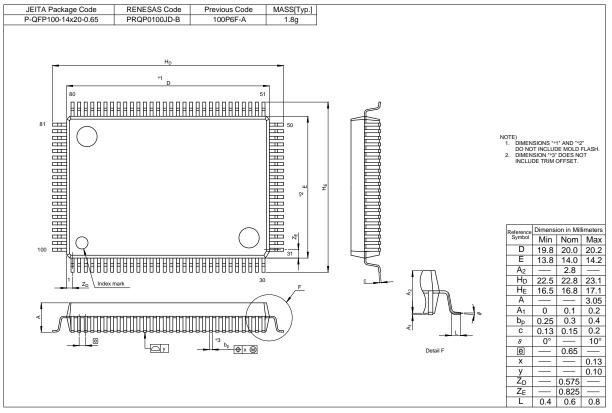


Figure 5.33 Timing Diagram


Figure 5.34 Timing Diagram

RENESAS

Appendix 1. Package Dimensions

The information on the latest package dimensions or packaging may be obtained from "Packages" on the Renesas Electronics website.

