E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 20x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f340-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14.5.2.USB Clock Selection 139 15. Port Input/Output 142 15.1.Priority Crossbar Decoder 144 15.2.Port I/O Initialization 147 15.3.General Purpose Port I/O 150 16. Universal Serial Bus Controller (USB0) 159 16.1.Endpoint Addressing 160 16.2.USB Transceiver 160 16.3.USB Register Access 162 16.4.USB Clock Configuration 166 16.5.7.FIFO Management 167 16.5.2.FIFO Double Buffering 168 16.5.2.FIFO Double Buffering 168 16.5.3.FIFO Access 168 16.6.Function Addressing 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 176 16.10.Endpoint0 SETUP Transactions 177 16.10.Endpoint0 IN Transactions 177 16.10.Endpoint0 OUT Transactions 178 16.11.Configuring Endpoints1-3 180 16.12.Endpoint0 IN Transactions 177 16.10.Endpoint1-3 IN Interrupt or Bulk Mode 181 16.13.Lendpoints1-3 IN Interrupt or Bulk Mode 181 16.13.Lendpoints1-3 OUT Interrupt	14.5.1.System Clock Selection	139
15. Port Input/Output. 142 15. 1. Priority Crossbar Decoder 144 15.2. Port I/O Initialization 147 15.3. General Purpose Port I/O. 150 16. Universal Serial Bus Controller (USB0). 159 16.1. Andpoint Addressing 160 16.2. USB Transceiver 160 16.3. USB Register Access 162 16.4. USB Clock Configuration 166 16.5. FIFO Management 167 16.5.2. FIFO Double Buffering 168 16.5.3. FIFO Access 168 16.6. Function Addressing 169 16.7. Function Configuration and Control 169 16.3.0. Endpoint0 172 16.9. The Serial Interface Engine 176 16.10. Endpoint0 IN Transactions 177 16.10.2. Endpoint0 SETUP Transactions 177 16.10.2. Endpoint0 IN Transactions 177 16.10.2. Endpoint0 IN Transactions 177 16.12. Controlling Endpoints1-3 IN 180 16.12. Controlling Endpoints1-3 IN Interrupt or Bulk Mode 181 16.13. Controlling Endpoints1-3 OUT 183 16.13.2. Endpoints1-3 OUT Interrupt or Bulk Mode 183 </td <td></td> <td></td>		
15.1.Priority Crossbar Decoder 144 15.2.Port I/O Initialization 147 15.3.General Purpose Port I/O 150 16. Universal Serial Bus Controller (USB0) 159 16.1.Endpoint Addressing 160 16.2.USB Transceiver 160 16.3.USB Register Access 162 16.4.USB Clock Configuration 166 16.5.FIFO Management 167 16.5.2.FIFO Double Buffering 168 16.5.2.FIFO Access 168 16.6.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 177 16.10.1.Endpoint0 NI Transactions 177 16.10.2.Endpoint0 NI Transactions 177 16.10.2.Endpoint0 NI Transactions 178 16.11.Configuring Endpoints1-3 180 16.12.2.Endpoint0 NI Transactions 178 16.12.Endpoint0 NI Transactions 178 16.12.Endpoint1-3 IN Interrupt or Bulk Mode 180 16.12.Endpoints1-3 IN Interrupt or Bulk Mode 181 16.13.Endpoints1-3 OUT Interrupt or Bulk Mode 183		
15.2.Port I/O 147 15.3.General Purpose Port I/O 150 16. Universal Serial Bus Controller (USB0) 159 16.1.Endpoint Addressing 160 16.2.USB Transceiver 160 16.3.USB Register Access 162 16.4.USB Clock Configuration 166 16.3.USB Cock Configuration 166 16.5.FIFO Management 167 16.5.2.FIFO Double Buffering 168 16.5.3.FIFO Access 168 16.6.Function Addressing 169 16.7.Function Configuration and Control 169 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 SETUP Transactions 177 16.10.2.Endpoint0 IN Transactions 177 16.10.2.Endpoint0 OUT Transactions 177 16.10.2.Endpoints1-3 IN 180 16.12.1.Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.1.Endpoints1-3 OUT Interrupt or Bulk Mode 181 16.13.Controlling Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 183 <		
15.3.General Purpose Port I/O. 150 16.Universal Serial Bus Controller (USB0). 159 16.1.Endpoint Addressing 160 16.2.USB Transceiver 160 16.3.USB Register Access 162 16.4.USB Clock Configuration 166 16.5.FIFO Management 167 16.5.1.FIFO Split Mode 167 16.5.2.FIFO Access 168 16.6.Function Addressing 169 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 SETUP Transactions 177 16.10.2.Endpoint0 IN Transactions 177 16.10.2.Endpoint0 UT Transactions 178 16.11.Configuring Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.Controlling Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 184 17.SMBus Onfiguration 189 <t< td=""><td></td><td></td></t<>		
16. Universal Serial Bus Controller (USB0) 159 16.1. Endpoint Addressing 160 16.2. USB Transceiver 160 16.3. USB Register Access 162 16.4. USB Clock Configuration 166 16.5. FIFO Management 167 16.5.2. FIFO Double Buffering 168 16.5.2. FIFO Double Buffering 168 16.5.2. FIFO Access 168 16.6. Function Addressing 169 16.7. Inction Configuration and Control 169 16.8. Interrupts 172 16.9. The Serial Interface Engine 176 16.10. Endpoint0 177 16.10.2. Endpoint0 IN Transactions 177 16.10.3. Endpoint0 OUT Transactions 177 16.10.2. Endpoint0 IN Transactions 177 16.10.2. Endpoints1-3 IN 180 16.12.1. Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.2. Endpoints1-3 UT Interrupt or Bulk Mode 181 16.13.2. Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2. Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2. Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2. Endpoints1-3 OUT Interrupt or		
16.1.Endpoint Addressing 160 16.2.USB Transceiver 160 16.3.USB Register Access 162 16.4.USB Clock Configuration 166 16.5.USB Clock Configuration 166 16.5.FIFO Management 167 16.5.1.FIFO Split Mode 167 16.5.2.FIFO Double Buffering 168 16.5.3.FIFO Access 168 16.6.Function Addressing 169 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 176 16.10.1.Endpoint0 SETUP Transactions 177 16.10.2.Endpoint0 IN Transactions 177 16.10.3.Endpoint0 OUT Transactions 178 16.11.Configuring Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.Endpoints1-3 IN Isochronous Mode 181 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 184 <td></td> <td></td>		
16.2.USB Transceiver 160 16.3.USB Register Access 162 16.4.USB Clock Configuration 166 16.5.FIFO Management 167 16.5.1.FIFO Split Mode 167 16.5.2.FIFO Double Buffering 168 16.5.3.FIFO Access 168 16.5.1.FIFO Access 168 16.5.1.FIFO Access 168 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 176 16.10.Endpoint0 IN Transactions 177 16.10.3.Endpoint0 IN Transactions 177 16.10.2.Endpoint0 IN Transactions 177 16.10.3.Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Endpoints1-3 IN Interrupt or Bulk Mode 181 16.13.Controlling Endpoints1-3 OUT 183 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 184 17.SMBus 189 17.3.SMBus Configuration 189		
16.3.USB Register Access 162 16.4.USB Clock Configuration 166 16.5.FIFO Management 167 16.5.FIFO Split Mode 167 16.5.2.FIFO Double Buffering 168 16.5.3.FIFO Access 168 16.5.4.FIFO Mode 167 16.5.3.FIFO Access 168 16.6.Function Addressing 169 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 SETUP Transactions 177 16.10.Endpoint0 IN Transactions 177 16.10.Sendpoint0 OUT Transactions 177 16.10.Sendpoint0 OUT Transactions 177 16.11.Configuring Endpoints1-3 180 16.12.Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.Endpoints1-3 IN Interrupt or Bulk Mode 183 16.13.Controlling Endpoints1-3 OUT 183 16.13.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.Endpoints1-3 OUT Interrupt or Bulk Mode 184 17.SMBus Configuration 189 17.2.SMBus Configuration 189 17.3.Arbitration </td <td></td> <td></td>		
16.4.USB Clock Configuration 166 16.5.FIFO Management 167 16.5.FIFO Double Buffering 167 16.5.2.FIFO Double Buffering 168 16.5.3.FIFO Access 168 16.5.1.FIFO Access 168 16.5.3.FIFO Access 169 16.7.Function Configuration and Control 169 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 176 16.10.I.Endpoint0 SETUP Transactions 177 16.10.Lendpoint0 OUT Transactions 177 16.10.Lendpoint0 IN Transactions 177 16.11.Configuring Endpoints1-3 IN 180 16.12.Centrolling Endpoints1-3 IN 180 16.12.Lendpoints1-3 IN Interrupt or Bulk Mode 181 16.13.Controlling Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.Lendpoints1-3 OUT Isochronous Mode 184 17.SMBus 189 17.2.SMBus Onfiguration 189 17.3.Arbitration 190 17.3.1.Arbitration <td></td> <td></td>		
16.5.FIFO Management 167 16.5.1.FIFO Split Mode 167 16.5.2.FIFO Double Buffering 168 16.5.2.FIFO Access 168 16.6.Function Addressing 169 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 176 16.10.Endpoint0 SETUP Transactions 177 16.10.2.Endpoint0 IN Transactions 177 16.10.2.Endpoint0 OUT Transactions 177 16.10.2.Endpoint0 OUT Transactions 177 16.10.2.Endpoint0 OUT Transactions 177 16.10.Configuring Endpoints1-3 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 OUT 183 16.13.Controlling Endpoints1-3 OUT 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.12.2.Endpoints1-3 OUT Isochronous Mode 184 17.SMBus Configuration 189 17.3.SMBus Operation 189	•	
16.5.1.FIFO Split Mode 167 16.5.2.FIFO Double Buffering 168 16.5.3.FIFO Access 168 16.6.Function Addressing 169 16.7.Function Configuration and Control 169 16.7.Function Configuration and Control 169 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 176 16.10.1.Endpoint0 SETUP Transactions 177 16.10.2.Endpoint0 OUT Transactions 177 16.10.3.Endpoint0 OUT Transactions 177 16.10.Configuring Endpoints1-3 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 IN Interrupt or Bulk Mode 181 16.13.Controlling Endpoints1-3 OUT 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 184 17.SMBus 189 17.3.SMBus Operation 189 17.3.SMBus Operation 191 17.3.SCL Low Timeout 191 17.4.1.SMBus Configuration Register 192	•	
16.5.2.FIFO Double Buffering 168 16.5.3.FIFO Access 168 16.6.Function Addressing 169 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 176 16.10.1.Endpoint0 NETUP Transactions 177 16.10.2.Endpoint0 IN Transactions 177 16.10.3.Endpoint0 OUT Transactions 177 16.10.2.Endpoint0 UUT Transactions 177 16.10.2.Endpoint0 UUT Transactions 177 16.10.2.Endpoint0 UUT Transactions 177 16.11.Configuring Endpoints1-3 180 16.12.Controlling Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.2.Endpoints1-3 IN Interrupt or Bulk Mode 181 16.13.Controlling Endpoints1-3 OUT 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 184 17.SMBus 189 17.3.Arbitration 190 17.3.2.Clock Low Extension 191 17.3.4xBus Configuration Register 191 17.4.1.SMBus Configuration Register 192	•	
16.5.3.FIFO Access 168 16.6.Function Addressing 169 16.7.Function Configuration and Control 169 16.8.Interrupts 172 16.9.The Serial Interface Engine 176 16.10.Endpoint0 176 16.10.1.Endpoint0 SETUP Transactions 177 16.10.2.Endpoint0 IN Transactions 177 16.10.3.Endpoint0 OUT Transactions 177 16.10.Configuring Endpoints1-3 180 16.12.Controlling Endpoints1-3 180 16.12.Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.Controlling Endpoints1-3 OUT 180 16.13.Controlling Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Isochronous Mode 184 17.SMBus 189 17.3.SMBus Operation 189 17.3.2.Clock Low Extension 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.1.SMBus Configuration Register 192 17.4.2.SMBOCN Control Register 192 17.4.3.Data Register 198 17.5.1.Master Transmitter Mode 198		
16.6. Function Addressing. 169 16.7. Function Configuration and Control. 169 16.8. Interrupts 172 16.9. The Serial Interface Engine. 176 16.10. Endpoint0 176 16.10.1. Endpoint0 SETUP Transactions 177 16.10.2. Endpoint0 OUT Transactions 177 16.10.3. Endpoint0 OUT Transactions 177 16.10.3. Endpoint0 OUT Transactions 177 16.10.4. Endpoint0 OUT Transactions 177 16.10.3. Endpoint0 OUT Transactions 177 16.10.3. Endpoints 1-3 180 16.12.1. Endpoints 1-3 IN 180 16.12.2. Endpoints 1-3 IN Interrupt or Bulk Mode 180 16.12.2. Endpoints 1-3 OUT 183 16.13.1. Endpoints 1-3 OUT Interrupt or Bulk Mode 183 16.13.2. Endpoints 1-3 OUT Isochronous Mode 184 17. SMBus 189 17.3. Arbitration 190 17.3.2. Clock Low Extension 191 17.3.3. SCL Low Timeout 191 17.4.1. SMBus Configuration Register 192 17.4.2. SMBOCN Control Register 192 17.4.3. Data Register 198		
16.7. Function Configuration and Control 169 16.8. Interrupts 172 16.9. The Serial Interface Engine 176 16.10. Endpoint0 176 16.10. Endpoint0 SETUP Transactions 177 16.10.1. Endpoint0 SETUP Transactions 177 16.10.2. Endpoint0 IN Transactions 177 16.10.3. Endpoint0 OUT Transactions 177 16.10.2. Endpoint0 OUT Transactions 178 16.11. Configuring Endpoints1-3 180 16.12. Controlling Endpoints1-3 IN 180 16.12. Lendpoints1-3 IN Interrupt or Bulk Mode 180 16.12. Lendpoints1-3 IN Inscription Bulk Mode 183 16.13. Lendpoints1-3 OUT 183 16.13. Lendpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2. Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2. Endpoints1-3 OUT Isochronous Mode 184 17. SMBus 189 17.3. SMBus Configuration 189 17.3. SMBus Configuration 189 17.3. Arbitration 190 17.3. SCL Low Extension 191 17.4. SMBus 191 17.4.1. SMBus Configuration Register 192 17.4.2. SMB0CN Control Register 192<		
16.8. Interrupts 172 16.9. The Serial Interface Engine 176 16.10. Endpoint0 176 16.10.1. Endpoint0 SETUP Transactions 177 16.10.2. Endpoint0 IN Transactions 177 16.10.3. Endpoint0 OUT Transactions 177 16.10.3. Endpoint0 OUT Transactions 178 16.11. Configuring Endpoints1-3 IN 180 16.12. Controlling Endpoints1-3 IN 180 16.12.1. Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.2. Endpoints1-3 IN Isochronous Mode 181 16.13. Controlling Endpoints1-3 OUT 183 16.13.1. Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.1. Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.1. Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2. Endpoints1-3 OUT Isochronous Mode 184 17. SMBus 189 17.1. Supporting Documents 189 17.3. SMBus Configuration 189 17.3. Arbitration 190 17.3.2. Clock Low Extension 191 17.3.3. SCL Low Timeout 191 17.4.1. SMBus Configuration Register 192 17.4.2. SMBuC Configuration	•	
16.9. The Serial Interface Engine 176 16.10. Endpoint0 176 16.10.1. Endpoint0 SETUP Transactions 177 16.10.2. Endpoint0 IN Transactions 177 16.10.3. Endpoint0 OUT Transactions 177 16.10.3. Endpoint0 OUT Transactions 178 16.11. Configuring Endpoints1-3 180 16.12. Controlling Endpoints1-3 IN 180 16.12.1. Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.2. Endpoints1-3 IN Isochronous Mode 181 16.13. Controlling Endpoints1-3 OUT 183 16.13.1. Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.1. Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2. Endpoints1-3 OUT Isochronous Mode 184 17. SMBus 189 17.1. Supporting Documents 189 17.3. SMBus Configuration 189 17.3. Arbitration 190 17.3.2. Clock Low Extension 191 17.4.2. SMBUS Configuration Register 191 17.4.1. SMBus Configuration Register 192 17.4.2. SMBOC N Control Register 192 17.4.2. SMBOC N Control Register 192 17.4.3. Data Re		
16.10.Endpoint0 176 16.10.1.Endpoint0 SETUP Transactions 177 16.10.2.Endpoint0 IN Transactions 177 16.10.3.Endpoint0 OUT Transactions 178 16.11.Configuring Endpoints1-3 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 OUT 181 16.13.Controlling Endpoints1-3 OUT 183 16.13.LEndpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.LEndpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Isochronous Mode 184 17.SMBus 189 17.1.Supporting Documents 189 17.3.SMBus Configuration 189 17.3.1.Arbitration 190 17.3.2.Clock Low Extension 191 17.4.Using the SMBus 191 17.4.J.SMBus Configuration Register 192 17.4.1.SMBus Configuration Register 192 17.4.2.SMBOCN Control Register 192 17.4.3.Data Register 198		
16.10.1.Endpoint0 SETUP Transactions 177 16.10.2.Endpoint0 IN Transactions 177 16.10.3.Endpoint0 OUT Transactions 178 16.11.Configuring Endpoints1-3 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Controlling Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.Endpoints1-3 IN Interrupt or Bulk Mode 181 16.13.Controlling Endpoints1-3 OUT 183 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 183 17.SMBus 189 17.1.Supporting Documents 189 17.3.SMBus Configuration 189 17.3.LArbitration 190 17.3.2.Clock Low Extension 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.1.SMBus Configuration Register 192 17.4.2.SMBOCN Control Register 192 17.4.2.SMBUC Notrol Register 192 17.4.2.SMBUC Notrol Register 198 17.5.SMBus T		
16.10.2.Endpoint0 IN Transactions 177 16.10.3.Endpoint0 OUT Transactions 178 16.11.Configuring Endpoints1-3 180 16.12.Controlling Endpoints1-3 IN 180 16.12.Lendpoints1-3 IN Interrupt or Bulk Mode 180 16.12.Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.Endpoints1-3 IN Isochronous Mode 181 16.13.Controlling Endpoints1-3 OUT 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Isochronous Mode 184 17. SMBus 188 17.1.Supporting Documents 189 17.3.SMBus Configuration 189 17.3.2.Clock Low Extension 191 17.3.3.SCL Low Timeout 191 17.4.SMBus 191 17.4.SMBus Configuration Register 192 17.4.SMBus Configuration Register 192 17.4.SMBus Configuration Register 192 17.4.3.Data Register 198 17.5.MBus Transfer Modes 198 17.5.1.Master Transmitter Mode 198	16.10.1.Endpoint0 SETUP Transactions	177
16.10.3.Endpoint0 OUT Transactions 178 16.11.Configuring Endpoints1-3 180 16.12.Controlling Endpoints1-3 IN 180 16.12.I.Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.Endpoints1-3 IN Isochronous Mode 181 16.13.Controlling Endpoints1-3 OUT 183 16.13.Lendpoints1-3 OUT 183 16.13.Lendpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Isochronous Mode 184 17. SMBus 188 17.1.Supporting Documents 189 17.2.SMBus Configuration 189 17.3.SMBus Operation 189 17.3.2.Clock Low Extension 191 17.3.4.SCL Low Timeout 191 17.4.SMBus 191 17.4.SMBus Configuration Register 192 17.4.1.SMBus Configuration Register 192 17.4.2.SMBOCN Control Register 195 17.4.3.Data Register 198 17.5.1.Master Transmitter Mode 198		
16.11.Configuring Endpoints1-3 180 16.12.Controlling Endpoints1-3 IN 180 16.12.1.Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.2.Endpoints1-3 IN Isochronous Mode 181 16.13.Controlling Endpoints1-3 OUT 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Isochronous Mode 184 17.SMBus 188 17.1.Supporting Documents 189 17.3.SMBus Operation 189 17.3.LArbitration 190 17.3.2.Clock Low Extension 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.Using the SMBus 191 17.4.SMBus Configuration Register 192 17.4.2.SMB0CN Control Register 193 17.5.SMBus Transfer Modes 198 17.5.1.Master Transmitter Mode 198		
16.12.Controlling Endpoints1-3 IN 180 16.12.1.Endpoints1-3 IN Interrupt or Bulk Mode 180 16.12.2.Endpoints1-3 IN Isochronous Mode 181 16.13.Controlling Endpoints1-3 OUT 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Isochronous Mode 184 17.SMBus 188 17.1.Supporting Documents 189 17.2.SMBus Configuration 189 17.3.SMBus Operation 189 17.3.2.Clock Low Extension 191 17.3.3.SCL Low Timeout 191 17.4.Using the SMBus 191 17.4.SMBUS Configuration Register 192 17.4.2.SMBOCN Control Register 192 17.4.3.Data Register 198 17.5.SMBus Transfer Modes 198 17.5.1.Master Transmitter Mode 198		
16.12.1.Endpoints1-3 IN Interrupt or Bulk Mode. 180 16.12.2.Endpoints1-3 IN Isochronous Mode. 181 16.13.Controlling Endpoints1-3 OUT. 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode. 183 16.13.2.Endpoints1-3 OUT Isochronous Mode. 184 17.SMBus 188 17.1.Supporting Documents. 189 17.2.SMBus Configuration. 189 17.3.SMBus Operation 189 17.3.1.Arbitration. 190 17.3.2.Clock Low Extension. 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.Using the SMBus. 191 17.4.2.SMBOCN Control Register 192 17.4.2.SMBus Transfer Modes. 198 17.5.1.Master Transmitter Mode 198		
16.12.2.Endpoints1-3 IN Isochronous Mode. 181 16.13.Controlling Endpoints1-3 OUT. 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode. 183 16.13.2.Endpoints1-3 OUT Isochronous Mode. 184 17.SMBus 184 17.SMBus 189 17.1.Supporting Documents. 189 17.3.SMBus Configuration. 189 17.3.SMBus Operation 189 17.3.2.Clock Low Extension. 191 17.3.3.SCL Low Timeout. 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.1.SMBus Configuration Register 192 17.4.2.SMBOCN Control Register 195 17.4.3.Data Register 198 17.5.MBus Transfer Modes 198 17.5.1.Master Transmitter Mode 198		
16.13.Controlling Endpoints1-3 OUT 183 16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Isochronous Mode 184 17.SMBus 188 17.1.Supporting Documents 189 17.2.SMBus Configuration 189 17.3.SMBus Operation 189 17.3.1.Arbitration 190 17.3.2.Clock Low Extension 191 17.3.3.SCL Low Timeout 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.1.SMBus Configuration Register 192 17.4.2.SMBOCN Control Register 192 17.4.3.Data Register 198 17.5.SMBus Transfer Modes 198 17.5.1.Master Transmitter Mode 198		
16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 183 16.13.2.Endpoints1-3 OUT Isochronous Mode 184 17.SMBus 188 17.1.Supporting Documents 189 17.2.SMBus Configuration 189 17.3.SMBus Operation 189 17.3.1.Arbitration 190 17.3.2.Clock Low Extension 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.1.SMBus Configuration Register 192 17.4.2.SMB0CN Control Register 195 17.4.3.Data Register 198 17.5.1.Master Transmitter Mode 198		
16.13.2.Endpoints1-3 OUT Isochronous Mode. 184 17.SMBus 189 17.1.Supporting Documents. 189 17.2.SMBus Configuration. 189 17.3.SMBus Operation 189 17.3.1.Arbitration. 190 17.3.2.Clock Low Extension. 191 17.3.3.SCL Low Timeout. 191 17.4.Using the SMBus. 191 17.4.1.SMBus Configuration Register 192 17.4.2.SMB0CN Control Register 195 17.4.3.Data Register 198 17.5.1.Master Transmitter Mode 198		
17. SMBus 188 17.1. Supporting Documents 189 17.2. SMBus Configuration 189 17.3. SMBus Operation 189 17.3.1. Arbitration 190 17.3.2. Clock Low Extension 191 17.3.3. SCL Low Timeout 191 17.3.4. SCL High (SMBus Free) Timeout 191 17.4.Using the SMBus 191 17.4.1. SMBus Configuration Register 192 17.4.2. SMB0CN Control Register 195 17.4.3. Data Register 198 17.5. SMBus Transfer Modes 198 17.5.1. Master Transmitter Mode 198		
17.1.Supporting Documents 189 17.2.SMBus Configuration 189 17.3.SMBus Operation 189 17.3.SMBus Operation 189 17.3.1.Arbitration 190 17.3.2.Clock Low Extension 191 17.3.3.SCL Low Timeout 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.Using the SMBus 191 17.4.1.SMBus Configuration Register 192 17.4.2.SMB0CN Control Register 195 17.4.3.Data Register 198 17.5.SMBus Transfer Modes 198 17.5.1.Master Transmitter Mode 198		
17.2.SMBus Configuration. 189 17.3.SMBus Operation 189 17.3.SMBus Operation 190 17.3.1.Arbitration 190 17.3.2.Clock Low Extension 191 17.3.3.SCL Low Timeout 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.Using the SMBus 191 17.4.1.SMBus Configuration Register 192 17.4.2.SMB0CN Control Register 195 17.4.3.Data Register 198 17.5.SMBus Transfer Modes 198 17.5.1.Master Transmitter Mode 198		
17.3.SMBus Operation 189 17.3.1.Arbitration 190 17.3.2.Clock Low Extension 191 17.3.3.SCL Low Timeout 191 17.3.4.SCL High (SMBus Free) Timeout 191 17.4.Using the SMBus 191 17.4.1.SMBus Configuration Register 192 17.4.2.SMB0CN Control Register 195 17.4.3.Data Register 198 17.5.SMBus Transfer Modes 198 17.5.1.Master Transmitter Mode 198		
17.3.1.Arbitration19017.3.2.Clock Low Extension19117.3.3.SCL Low Timeout19117.3.4.SCL High (SMBus Free) Timeout19117.4.Using the SMBus19117.4.1.SMBus Configuration Register19217.4.2.SMB0CN Control Register19517.4.3.Data Register19817.5.SMBus Transfer Modes19817.5.1.Master Transmitter Mode198		
17.3.2.Clock Low Extension19117.3.3.SCL Low Timeout19117.3.4.SCL High (SMBus Free) Timeout19117.4.Using the SMBus19117.4.1.SMBus Configuration Register19217.4.2.SMB0CN Control Register19517.4.3.Data Register19817.5.SMBus Transfer Modes19817.5.1.Master Transmitter Mode198	•	
17.3.3.SCL Low Timeout.19117.3.4.SCL High (SMBus Free) Timeout19117.4.Using the SMBus.19117.4.1.SMBus Configuration Register19217.4.2.SMB0CN Control Register19517.4.3.Data Register19817.5.SMBus Transfer Modes19817.5.1.Master Transmitter Mode198		
17.3.4.SCL High (SMBus Free) Timeout19117.4.Using the SMBus19117.4.1.SMBus Configuration Register19217.4.2.SMB0CN Control Register19517.4.3.Data Register19817.5.SMBus Transfer Modes19817.5.1.Master Transmitter Mode198		
17.4.Using the SMBus19117.4.1.SMBus Configuration Register19217.4.2.SMB0CN Control Register19517.4.3.Data Register19817.5.SMBus Transfer Modes19817.5.1.Master Transmitter Mode198		
17.4.1.SMBus Configuration Register19217.4.2.SMB0CN Control Register19517.4.3.Data Register19817.5.SMBus Transfer Modes19817.5.1.Master Transmitter Mode198		
17.4.2.SMB0CN Control Register19517.4.3.Data Register19817.5.SMBus Transfer Modes19817.5.1.Master Transmitter Mode198		
17.4.3.Data Register		
17.5.SMBus Transfer Modes	-	
17.5.1.Master Transmitter Mode 198		
	17.5.2.Master Receiver Mode	

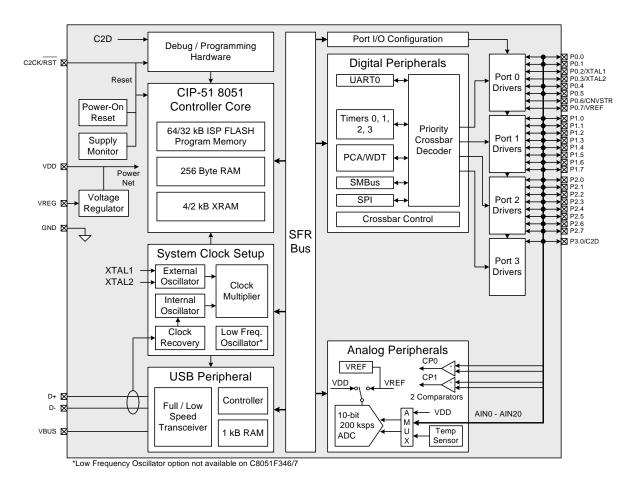
1. System Overview

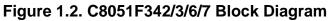
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D devices are fully integrated mixed-signal System-on-a-Chip MCUs. Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-speed pipelined 8051-compatible microcontroller core (up to 48 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- Universal Serial Bus (USB) Function Controller with eight flexible endpoint pipes, integrated transceiver, and 1 kB FIFO RAM
- Supply Voltage Regulator
- True 10-bit 200 ksps differential / single-ended ADC with analog multiplexer
- On-chip Voltage Reference and Temperature Sensor
- On-chip Voltage Comparators (2)
- Precision internal calibrated 12 MHz internal oscillator and 4x clock multiplier
- Internal low-frequency oscillator for additional power savings
- Up to 64 kB of on-chip Flash memory
- Up to 4352 Bytes of on-chip RAM (256 + 4 kB)
- External Memory Interface (EMIF) available on 48-pin versions.
- SMBus/I2C, up to 2 UARTs, and Enhanced SPI serial interfaces implemented in hardware
- Four general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with five capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset, V_{DD} Monitor, and Missing Clock Detector
- Up to 40 Port I/O (5 V tolerant)

With on-chip Power-On Reset, V_{DD} monitor, Voltage Regulator, Watchdog Timer, and clock oscillator, C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.


Each device is specified for 2.7–5.25 V operation over the industrial temperature range (-40 to +85 °C). For voltages above 3.6 V, the on-chip Voltage Regulator must be used. A minimum of 3.0 V is required for USB communication. The Port I/O and RST pins are tolerant of input signals up to 5 V. C8051F340/1/2/3/ 4/5/6/7/8/9/A/B/C/D devices are available in 48-pin TQFP, 32-pin LQFP, or 32-pin QFN packages. See Table 1.1, "Product Selection Guide," on page 18 for feature and package choices.



Ordering Part Number	MIPS (Peak)	Flash Memory (Bytes)	RAM	Calibrated Internal Oscillator	Low Frequency Oscillator	USB with 1k Endpoint RAM	Supply Voltage Regulator	SMBus/I2C	Enhanced SPI	UARTs	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	External Memory Interface (EMIF)	10-bit 200 ksps ADC	Temperature Sensor	Voltage Reference	Analog Comparators	Package
C8051F340-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F341-GQ	48	32k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F342-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F342-GM	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F343-GQ	48	32k	2304	\checkmark	~	~	~	\checkmark	\checkmark	1	4	~	25	—	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F343-GM	48	32k	2304	\checkmark	~	~	~	\checkmark	\checkmark	1	4	~	25	—	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F344-GQ	25	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F345-GQ	25	32k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F346-GQ	25	64k	4352	\checkmark	—	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F346-GM	25	64k	4352	\checkmark	—	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	_	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F347-GQ	25	32k	2304	\checkmark	_	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F347-GM	25	32k	2304	\checkmark	_	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	_	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F348-GQ	25	32k	2304	\checkmark	~	~	\checkmark	<	\checkmark	2	4	~	40	\checkmark		_	_	2	TQFP48
C8051F349-GQ	25	32k	2304	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	_		—	_	2	LQFP32
C8051F349-GM	25	32k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	_		—	—	2	QFN32
C8051F34A-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	25	_	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F34A-GM	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	25	_	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F34B-GQ	48	32k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	25		\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F34B-GM	48	32k	2304	~	~	~	~	\checkmark	~	2	4	~	25	_	\checkmark	~	~	2	QFN32
C8051F34C-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	_			2	TQFP48
C8051F34D-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	_	—	—	2	LQFP32

Table 1.1. Product Selection Guide

14.3.3. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 14.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

$$f = \frac{1.23(10^3)}{\text{RC}} = \frac{1.23(10^3)}{[246 \times 50]} = 0.1 \text{ MHz} = 100 \text{ kHz}$$

Referring to the table in SFR Definition 14.4, the required XFCN setting is 010b. Programming XFCN to a higher setting in RC mode will improve frequency accuracy at an increased external oscillator supply current.

14.3.4. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 14.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the equations below. Assume $V_{DD} = 3.0$ V and C = 50 pF:

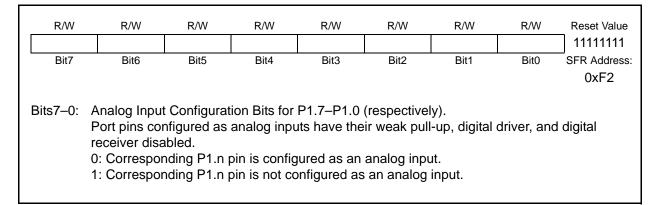
$$f = \frac{KF}{(C \times V_{DD})} = \frac{KF}{(50 \text{ x } 3)\text{MHz}}$$

$$f = \frac{KF}{150 \text{ MHz}}$$

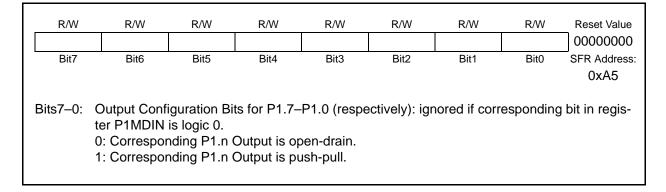
If a frequency of roughly 150 kHz is desired, select the K Factor from the table in SFR Definition 14.4 as KF = 22:

$$f = \frac{22}{150} = 0.146$$
 MHz, or 146 kHz

Therefore, the XFCN value to use in this example is 011b.



136


SFR Definition	15.8. P1:	Port1 Latch
----------------	-----------	-------------

R/W	R/W P1.6	R/W P1.5	R/W P1.4	R/W P1.3	R/W P1.2	R/W P1.1	R/W P1.0	Reset Value 11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 (bit	Bit0 t addressable	SFR Address: 0x90
Bits7–0:	P1.[7:0] Write - Outp 0: Logic Low 1: Logic Higl Read - Alwa pin when co 0: P1.n pin is 1: P1.n pin is	/ Output. h Output (hi ys reads '0' nfigured as s logic low.	gh impedar if selected digital inpu	nce if corres as analog i	ponding P1	MDOUT.n l	bit = 0).	

SFR Definition 15.9. P1MDIN: Port1 Input Mode

SFR Definition 15.10. P1MDOUT: Port1 Output Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
D:+7	Dito	D:+C	Dit 4	Dita	D:40	Ditt	Dito				
BIt7	Bito	BID	BIt4	BIt3	Bitz	BIU	Bitu	0xF5			
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 0xF5 Bits7-0: Analog Input Configuration Bits for P4.7–P4.0 (respectively). Port pins configured as analog inputs have their weak pull-up, digital driver, and digital receiver disabled. 0: Corresponding P4.n pin is configured as an analog input.											

SFR Definition 15.21. P4MDIN: Port4 Input Mode

SFR Definition 15.22. P4MDOUT: Port4 Output Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xAE
Bits7–0:	Output Confi ter P4MDIN 0: Correspor 1: Correspor	is logic 0. nding P4.n	Output is op	ben-drain.	ectively); igr	nored if corr	esponding	g bit in regis-
Note: P4	is only availa	ble on 48-p	in devices.					

16.1. Endpoint Addressing

A total of eight endpoint pipes are available. The control endpoint (Endpoint0) always functions as a bi-directional IN/OUT endpoint. The other endpoints are implemented as three pairs of IN/OUT endpoint pipes:

Endpoint	Associated Pipes	USB Protocol Address				
Endpoint0	Endpoint0 IN	0x00				
Enapointo	Endpoint0 OUT	0x00				
Endpoint1	Endpoint1 IN	0x81				
LIndpoint	Endpoint1 OUT	0x01				
Endpoint2	Endpoint2 IN	0x82				
LIndpointz	Endpoint2 OUT	0x02				
Endpoint3	Endpoint3 IN	0x83				
LIndpoints	Endpoint3 OUT	0x03				

 Table 16.1. Endpoint Addressing Scheme

16.2. USB Transceiver

The USB Transceiver is configured via the USB0XCN register shown in SFR Definition 16.1. This configuration includes Transceiver enable/disable, pull-up resistor enable/disable, and device speed selection (Full or Low Speed). When bit SPEED = '1', USB0 operates as a Full Speed USB function, and the on-chip pull-up resistor (if enabled) appears on the D+ pin. When bit SPEED = '0', USB0 operates as a Low Speed USB function, and the on-chip pull-up resistor (if enabled) appears on the D- pin. Bits4-0 of register USB0XCN can be used for Transceiver testing as described in SFR Definition 16.1. The pull-up resistor is enabled only when VBUS is present (see **Section "8.2. VBUS Detection" on page 69** for details on VBUS detection).

Important Note: The USB clock should be active before the Transceiver is enabled.

17.3.2. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

17.3.3. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

17.3.4. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods. If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only implementation.

17.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

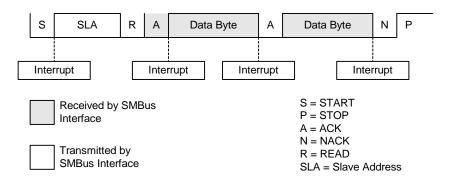
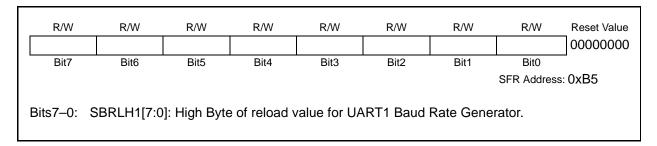
- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information

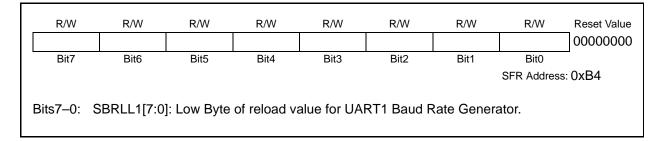
SMBus interrupts are generated for each data byte or slave address that is transferred. When transmitting, this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data, this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. See **Section "17.5. SMBus Transfer Modes" on page 198** for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find the cause of the SMBus interrupt. The SMB0CN register is described in **Section "17.4.2. SMB0CN Control Register" on page 195**; Table 17.4 provides a quick SMB0CN decoding reference.

17.5.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. After each byte is received, ACKRQ is set to '1' and an interrupt is generated. Software must write the ACK bit (SMB0CN.1) to define the outgoing acknowledge value (Note: writing a '1' to the ACK bit generates an ACK; writing a '0' generates a NACK). Software should write a '0' to the ACK bit after the last byte is received, to transmit a NACK. The interface exits Master Receiver Mode after the SMB0DAT is written while an active Master Receiver. Figure 17.6 shows a typical Master Receiver sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK cycle in this mode.


Figure 17.6. Typical Master Receiver Sequence

SFR Definition 19.5. SBRLH1: UART1 Baud Rate Generator High Byte

SFR Definition 19.6. SBRLL1: UART1 Baud Rate Generator Low Byte


The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to **Section** "**15.1. Priority Crossbar Decoder**" **on page 144** for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 21.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal INT0 is active as defined by bit INOPL in register INT01CF (see SFR Definition 9.13). Setting GATE0 to '1' allows the timer to be controlled by the external input signal INT0 (see Section "9.3.5. Interrupt Register Descriptions" on page 90), facilitating pulse width measurements.

TR0	GATE0	INTO	Counter/Timer
0	Х	Х	Disabled
1	0	Х	Enabled
1	1	0	Disabled
1	1	1	Enabled
X = Dc	on't Care		

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT1 is used with Timer 1; the INT1 polarity is defined by bit IN1PL in register INT01CF (see SFR Definition 9.13).

21.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ТЗМН	T3ML	T2MH	T2ML	T1M	TOM	SCA1	SCA0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres
								0x8E
0:47.		or 2 Lliah Di	ta Claak Sc	last				
Bit7:		er 3 High By ects the cloc			3 high hyte	a if Timor 3	is configur	od in split
		node. T3MF					is connigur	cu in spin
		high byte us					R3CN.	
		nigh byte us		•				
Bit6:		er 3 Low Byt						
		ects the cloc					in split 8-b	oit timer
		bit selects th						
		ow byte use		•	the T3XCL	K bit in TMR	CN.	
		ow byte use						
Bit5:		er 2 High By			O bigh but	a if Timor O	ia aanfigur	ad in anlit
		ects the cloc node. T2MF					is conligur	ed in split
		high byte us	•				R2CN	
		high byte us		•			112011.	
Bit4:		er 2 Low Byt						
		ects the cloc			f Timer 2 is	configured	in split 8-b	oit timer
		bit selects th					•	
	0: Timer 2 I	ow byte use	s the clock	defined by	the T2XCL	K bit in TMR	2CN.	
		ow byte use		n clock.				
Bit3:		1 Clock Se						
		the clock so					n C/T1 is s	et to logic 1
		uses the clo		by the presc	ale bits, SC	CA1-SCA0.		
Bit2:		uses the sys · 0 Clock Se						
DILZ.		ects the clock		Innlied to Ti	mer () T()M	l is ignored	when C/T() is set to
	logic 1.					i is ignored		13 361 10
	-	Timer 0 use	s the clock	defined bv t	he prescale	e bits. SCA1	I-SCA0.	
		Timer 0 use			- 1	,		
Bits1–0:	SCA1-SCA	0: Timer 0/1	Prescale B	lits.				
	These bits	control the c	livision of th	e clock sup	plied to Tim	ner 0 and/or	Timer 1 if	configured
	to use pres	caled clock	inputs.					
	SCA1	SCA0	Preso	aled Clock				
	0	0		ock divided				
	0	1		ock divided				
	1	0	•	ck divided	-			
	1	1						
	1 1 1	1	LAGINALU	ock aividea	DY 8			
		rnal clock div		ock divided	-			

21.2.3. Timer 2 Capture Modes: USB Start-of-Frame or LFO Falling Edge

When T2CE = '1', Timer 2 will operate in one of two special capture modes. The capture event can be selected between a USB Start-of-Frame (SOF) capture, and a Low-Frequency Oscillator (LFO) Falling Edge capture, using the T2CSS bit. The USB SOF capture mode can be used to calibrate the system clock or external oscillator against the known USB host SOF clock. The LFO falling-edge capture mode can be used to calibrate the internal Low-Frequency Oscillator against the internal High-Frequency Oscillator or an external clock source. When T2SPLIT = '0', Timer 2 counts up and overflows from 0xFFFF to 0x0000. Each time a capture event is received, the contents of the Timer 2 registers (TMR2H:TMR2L) are latched into the Timer 2 Reload registers (TMR2RLH:TMR2RLL). A Timer 2 interrupt is generated if enabled.

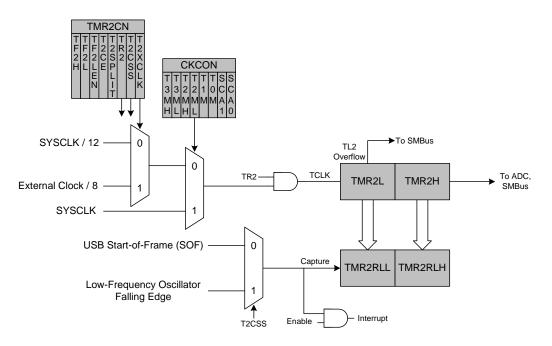


Figure 21.6. Timer 2 Capture Mode (T2SPLIT = '0')

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
TF2H	TF2L	TF2LEN	T2CE	T2SPLIT	TR2	T2CSS	T2XCLK	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
						(bi	t addressable)	0xC8				
Bit7:	TF2H: Time			-								
	•			high byte ov								
				ws from 0xF								
				e CPU to vec								
Bit6:	TF2H is not automatically cleared by hardware and must be cleared by software. TF2L: Timer 2 Low Byte Overflow Flag.											
Dito.		•		low byte ov	erflows from	m 0xFF to 0	x00 When	this bit is				
				f TF2LEN is								
				s regardless								
	ically cleare	d by hardwa	re.	-								
Bit5:		mer 2 Low B	•	•								
				_ow Byte inte	•							
	•		•	be generate	d when the	e low byte o	f Limer 2 ov	/erflows.				
	0: Timer 2 L	ow Byte inte	•									
Bit4:	T2CE: Time	•	•	bieu.								
DITI	0: Capture f											
				imer is in cap	oture mode	e, with the c	apture ever	nt selected				
				event is rec								
	•	,		into the Time		•	MR2RLH a	nd				
Bilo	,			ot is generate	ed (if enabl	ed).						
Bit3:		mer 2 Split N			hit timoro y	with outo ro	lood					
			•	tes as two 8- reload mode		with auto-re	10au.					
		•		uto-reload tin								
Bit2:	TR2: Timer	•										
	This bit enal	bles/disables	s Timer 2.	In 8-bit mode	e, this bit e	nables/disal	bles TMR2	H only;				
	TMR2L is al	•	ed in this n	node.								
	0: Timer 2 d											
D:14 .	1: Timer 2 e			Solo of								
Bit1:		er 2 Capture		belect. Sture event w	vhan hit T2	CE is set to	·1 '					
	0: Capture s						1.					
	•			f Low-Freque	encv Oscill	ator.						
Bit0:		mer 2 Exterr			- ,							
	This bit sele	cts the exter	rnal clock s	source for Tir	mer 2. If Ti	mer 2 is in 8	B-bit mode,	this bit				
				source for b		•						
				gister CKCO		I be used to	select bety	ween the				
			•	k for either ti		idad by 12						
				is the syster is the extern			Note that th	ne external				
				nchronized v				io ontornai				
			.,									

SFR Definition 21.8. TMR2CN: Timer 2 Control

21.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is '1' and T3CE = '0', Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 21.5. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bit (T3XCLK in TMR3CN), as follows:

ТЗМН	T3XCLK	TMR3H Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

T3ML	T3XCLK	TMR3L Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows from 0xFF to 0x00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be manually cleared by software.

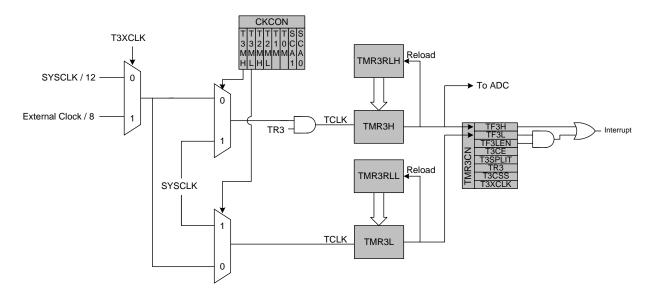
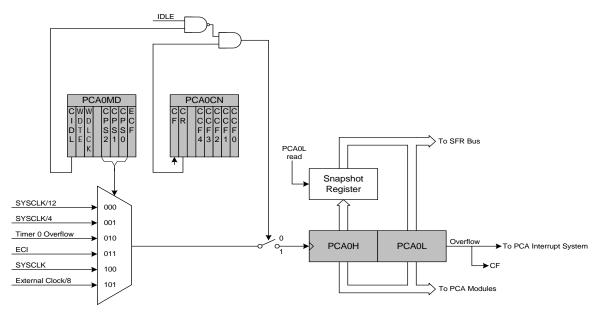


Figure 21.9. Timer 3 8-Bit Mode Block Diagram

22.1. PCA Counter/Timer


The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H into a "snapshot" register; the following PCA0H read accesses this "snapshot" register. **Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter.** Reading PCA0H or PCA0L does not disturb the counter operation. The CPS2-CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 22.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit in EIE1 to logic 1). Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle mode.

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)
1	0	0	System clock
1	0	1	External oscillator source divided by 8*

Table 22.1.	PCA	Timebase	Input	Options
-------------	------------	----------	-------	---------

*Note: External oscillator source divided by 8 is synchronized with the system clock.

22.2.3. High Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn) Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

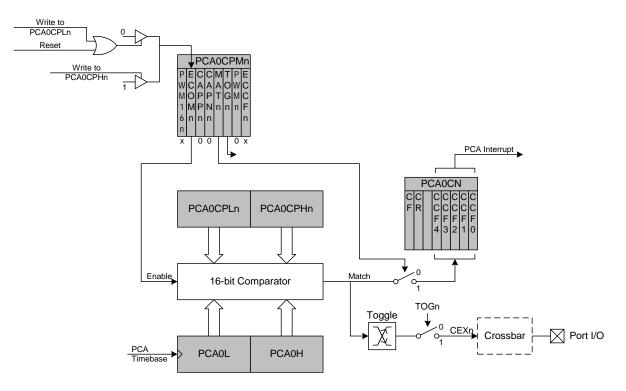


Figure 22.6. PCA High Speed Output Mode Diagram

$Offset = (256 \times PCA0CPL4) + (256 - PCA0L)$

Equation 22.4. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH4 and PCA0H. Software may force a WDT reset by writing a '1' to the CCF4 flag (PCA0CN.4) while the WDT is enabled.

22.3.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

- 1. Disable the WDT by writing a '0' to the WDTE bit.
- 2. Select the desired PCA clock source (with the CPS2-CPS0 bits).
- 3. Load PCA0CPL4 with the desired WDT update offset value.
- 4. Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
- 5. Enable the WDT by setting the WDTE bit to '1'.
- 6. (optional) Lock the WDT (prevent WDT disable until the next system reset) by setting the WDLCK bit to '1'.
- 7. Write a value to PCA0CPH4 to reload the WDT.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

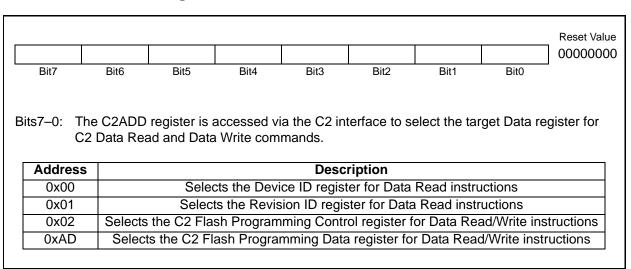
The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, PCA0L defaults to 0x00, and PCA0CPL4 defaults to 0x00. Using Equation 22.4, this results in a WDT timeout interval of 256 PCA clocks. Table 22.3 lists some example timeout intervals for typical system clocks.

System Clock (Hz)	PCA0CPL4	Timeout Interval (ms)
12,000,000	255	65.5
12,000,000	128	33.0
12,000,000	32	8.4
24,000,000	255	32.8
24,000,000	128	16.5
24,000,000	32	4.2
1,500,000 ²	255	524.3
1,500,000 ²	128	264.2
1,500,000 ²	32	67.6
32,768	255	24,000
32,768	128	12,093.75
32,768	32	3,093.75

Table 22.3. Watchdog Timer Timeout Intervals¹

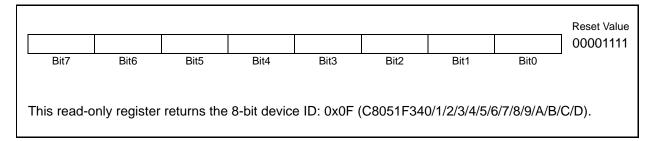
Notes:

- 1. Assumes SYSCLK / 12 as the PCA clock source, and a PCA0L
- value of 0x00 at the update time.
- **2.** System Clock reset frequency.



23. C2 Interface

C8051F34x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.


23.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 23.1. C2ADD: C2 Address

C2 Register Definition 23.2. DEVICEID: C2 Device ID

