E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	40
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 20x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f341-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.3. Modes of Operation

ADC0 has a maximum conversion speed of 200 ksps. The ADC0 conversion clock is a divided version of the system clock, determined by the AD0SC bits in the ADC0CF register (system clock divided by (AD0SC + 1) for $0 \le AD0SC \le 31$).

5.3.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the following:

- 1. Writing a '1' to the AD0BUSY bit of register ADC0CN
- 2. A Timer 0 overflow (i.e., timed continuous conversions)
- 3. A Timer 2 overflow
- 4. A Timer 1 overflow
- 5. A rising edge on the CNVSTR input signal
- 6. A Timer 3 overflow

Writing a '1' to AD0BUSY provides software control of ADC0 whereby conversions are performed "on-demand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte overflows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit mode. See **Section "21. Timers" on page 235** for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as a Port pin. When the CNVSTR input is used as the ADC0 conversion source, the associated Port pin should be skipped by the Digital Crossbar. To configure the Crossbar to skip a pin, set the corresponding bit in the PnSKIP register to '1'. See **Section "15. Port Input/Output" on page 142** for details on Port I/O configuration.

SFR Definition 5.1. AMX0P: AMUX0 Positive Channel Select

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	AMX0P4	AMX0P3	AMX0P2	AMX0P1	AMX0P0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address 0xBB
Bits7–5: Bits4–0:	UNUSED. R AMX0P4–0:	ead = 000b AMUX0 Pc	o; Write = do ositive Input	on't care. Selection				
	АМХС	P4-0	ADC0 (32-)	Positive Ir pin Packag	iput e)	ADC0 Pos (48-pin	sitive Input Package)	:
	000	00		P1.0		<u> </u>	2.0	
	000	01		P1.1		P	2.1	
	000	10		P1.2		P	2.2	
	000)11		P1.3		P	2.3	
	001	00		P1.4		P	2.5	
	001	01		P1.5		P	2.6	
	001	10		P1.6		P	3.0	
	001	11		P1.7		P	3.1	
	010	00		P2.0		P	3.4	
	010	01		P2.1		P	3.5	
	010	10		P2.2		P	3.7	
	010)11		P2.3		P	4.0	
	011	00		P2.4		P	4.3	
	011	01		P2.5		P	4.4	
	011	10		P2.6		P	4.5	
	011	11		P2.7		P	4.6	
	100	00		P3.0		RESE	RVED	
	100	101		P0.0		Р	0.3	
	100	10		P0.1		Р	0.4	
	100)11		P0.4		Р	1.1	
	101	00		P0.5		Р	1.2	
	10101 -	11101	R	ESERVED		RESE	RVED	
	111	10	Te	mp Sensor		Temp	Sensor	
	111	11		Vnn		V	חח	

Figure 7.2. Comparator Hysteresis Plot

Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTnCN (shown in SFR Definition 7.1 and SFR Definition 7.4). The amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits. As shown in Figure 7.2, various levels of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see **Section "9.3. Interrupt Handler" on page 88**.) The CPnFIF flag is set to '1' upon a Comparator falling-edge, and the CPnRIF flag is set to '1' upon the Comparator rising-edge. Once set, these bits remain set until cleared by software. The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Comparator is enabled by setting the CPnEN bit to '1', and is disabled by clearing this bit to '0'.

Table 7.1. Comparator Electrical Characteristics

V_{DD} = 3.0 V, -40 to +85 °C unless otherwise noted.

All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Units
Response Time:	CP0+ - CP0- = 100 mV		100		ns
Mode 0, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV		250		ns
Response Time:	CP0+ - CP0- = 100 mV		175		ns
Mode 1, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV		500		ns
Response Time:	CP0+ - CP0- = 100 mV		320		ns
Mode 2, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV		1100		ns
Response Time:	CP0+ - CP0- = 100 mV		1050		ns
Mode 3, Vcm* = 1.5 V	CP0+ - CP0- = -100 mV		5200		ns
Common-Mode Rejection Ratio			1.5	4	mV/V
Positive Hysteresis 1	CP0HYP1-0 = 00		0	1	mV
Positive Hysteresis 2	CP0HYP1-0 = 01	2	5	10	mV
Positive Hysteresis 3	CP0HYP1-0 = 10	7	10	20	mV
Positive Hysteresis 4	CP0HYP1–0 = 11	15	20	30	mV
Negative Hysteresis 1	CP0HYN1-0 = 00		0	1	mV
Negative Hysteresis 2	CP0HYN1-0 = 01	2	5	10	mV
Negative Hysteresis 3	CP0HYN1-0 = 10	7	10	20	mV
Negative Hysteresis 4	CP0HYN1–0 = 11	15	20	30	mV
Inverting or Non-Inverting Input Voltage Range		-0.25		V _{DD} + 0.25	V
Input Capacitance			3		pF
Input Bias Current			0.001		nA
Input Offset Voltage		-5		+5	mV
	Power Supp	ly			
Power Supply Rejection			0.1		mV/V
Power-up Time			10		μs
	Mode 0		7.6		μA
Supply Current at DC	Mode 1		3.2		μA
	Mode 2		1.3		μA
	Mode 3		0.4		μA

*Note: Vcm is the common-mode voltage on CP0+ and CP0-.

9. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are four 16-bit counter/timers (see description in **Section 21**), an enhanced full-duplex UART (see description in **Section 18**), an Enhanced SPI (see description in **Section 20**), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (**Section 9.2.6**), and 25 Port I/O (see description in **Section 15**). The CIP-51 also includes on-chip debug hardware (see description in **Section 23**), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 9.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 0 to 48 MHz Clock Frequency
- 256 Bytes of Internal RAM
- 25 Port I/O

- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

Figure 9.1. CIP-51 Block Diagram

9.2. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The CIP-51 memory organization is shown in Figure 9.2 and Figure 9.3.

Figure 9.2. On-Chip Memory Map for 64 kB Devices

IT0	IN0PL	INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

INT0 and INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 9.13). Note that INT0 and INT0 Port pin assignments are independent of any Crossbar assignments. INT0 and INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to INT0 and/or INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBR0 (see **Section "15.1. Priority Crossbar Decoder" on page 144** for complete details on configuring the Crossbar). In the typical configuration, the external interrupt pin should be skipped in the crossbar and configured as open-drain with the pin latch set to '1'.

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT1 external interrupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

9.3.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 9.4.

9.3.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 6 system clock cycles: 1 clock cycle to detect the interrupt and 5 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 20 system clock cycles: 1 clock cycle to detect the interrupt, 6 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 5 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Note that the CPU is stalled during Flash write/erase operations and USB FIFO MOVX accesses (see **Section "13.2. Accessing USB FIFO Space" on page 115**). Interrupt service latency will be increased for interrupts occurring while the CPU is stalled. The latency for these situations will be determined by the standard interrupt service procedure (as described above) and the amount of time the CPU is stalled.

11.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pull-up and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 11.1 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

11.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If more than 100 µs pass between rising edges on the system clock, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read '1', signifying the MCD as the reset source; otherwise, this bit reads '0'. Writing a '1' to the MCDRSF bit enables the Missing Clock Detector; writing a '0' disables it. The state of the RST pin is unaffected by this reset.

11.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a '1' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), a system reset is generated. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read '1' signifying Comparator0 as the reset source; otherwise, this bit reads '0'. The state of the RST pin is unaffected by this reset.

11.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in **Section "22.3. Watchdog Timer Mode" on page 264**; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to '1'. The state of the RST pin is unaffected by this reset.

11.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to "1", and a MOVX write operation is attempted above address 0x7FFF (32 kB Flash devices) or 0xFBFF (64 kB Flash devices).
- A Flash read is attempted above user code space. This occurs when a MOVC operation is attempted above address 0x7FFF (32 kB Flash devices) or 0xFBFF (64 kB Flash devices).
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above 0x7FFF (32 kB Flash devices) or 0xFBFF (64 kB Flash devices).
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "12.3. Security Options" on page 109).
- A Flash Write or Erase is attempted when the V_{DD} monitor is not enabled.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the \overline{RST} pin is unaffected by this reset.

Parameter	Conditions	Min	Тур	Max	Units
Floop Size	C8051F340/2/4/6/A/C/D*	65536*			Bytes
Flash Size	C8051F341/3/5/7/8/9/B	32768			Bytes
Endurance		20k	100k		Erase/Write
Erase Cycle Time	25 MHz System Clock	10	15	20	ms
Write Cycle Time	25 MHz System Clock	40	55	70	μs

Table 12.1. Flash Electrical Characteristics

*Note: 1024 bytes at location 0xFC00 to 0xFFFF are reserved.

12.2. Non-Volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

12.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to '1' before software can modify the Flash memory; both PSWE and PSEE must be set to '1' before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock n 512-byte Flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where n is the 1's complement number represented by the Security Lock Byte. Note that the page containing the Flash Security Lock Byte is also locked when any other Flash pages are locked. See example below.

Security Lock Byte:	11111101b
1's Complement:	0000010b
Flash pages locked:	3 (2 + Flash Lock Byte Page)
	First two pages of Flash: 0x0000 to 0x03FF
Addresses locked:	Flash Lock Byte Page: (0xFA00 to 0xFBFF for 64k devices; 0x7E00 to 0x7FFF for 32k devices)

13.7.1.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '101' or '111'.

Nonmuxed 8-bit WRITE without Bank Select

Figure 13.6. Non-multiplexed 8-bit MOVX without Bank Select Timing

13.7.1.3.8-bit MOVX with Bank Select: EMI0CF[4:2] = '110'.

Muxed 8-bit WRITE with Bank Select

Figure 13.7. Non-multiplexed 8-bit MOVX with Bank Select Timing

Figure 15.2. Port I/O Cell Block Diagram

SFR Definition	15.8. P1:	Port1	Latch
----------------	-----------	-------	-------

R/W P1.7	R/W P1.6	R/W P1.5	R/W P1.4	R/W P1.3	R/W P1.2	R/W P1.1	R/W P1.0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bit	t addressable) 0x90
Bits7–0:	P1.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alwa pin when cou 0: P1.n pin is 1: P1.n pin is	ut appears o Output. n Output (hi ys reads '0' nfigured as s logic low. s logic high.	on I/O pins gh impedar if selected digital input	per Crossba nce if corres as analog ir	ar Registers ponding P1 nput in regis	s (when XB, IMDOUT.n I ster P1MDII	ARE = '1'). bit = 0). N. Directly	reads Port

SFR Definition 15.9. P1MDIN: Port1 Input Mode

SFR Definition 15.10. P1MDOUT: Port1 Output Mode

SFR Definition 15.11. P1SKIP: Port1 Skip

Γ	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 0000000
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD5
E	Bits7–0:	P1SKIP[7:0] These bits so log inputs (fo lator circuit, 0: Correspor 1: Correspor	: Port1 Cros elect Port p or ADC or C CNVSTR in nding P1.n nding P1.n	ssbar Skip I ins to be sk comparator) iput) should pin is not sk pin is skippe	Enable Bits. ipped by the or used as l be skipped sipped by the ed by the Ci	e Crossbar special fun by the Cro e Crossbar. ossbar.	Decoder. P ctions (VRE ssbar.	ort pins us F input, e	sed as ana- xternal oscil-

SFR Definition 15.12. P2: Port2 Latch

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bit	t addressable)) 0xA0
Bits7–0:	P2.[7:0] Write - Outp 0: Logic Low 1: Logic Hig Read - Alwa pin when cou 0: P2.n pin is 1: P2.n pin is	ut appears / Output. h Output (hi ys reads '0' nfigured as s logic low. s logic high.	on I/O pins igh impedar if selected digital input	per Crossba nce if corres as analog in t.	ar Registers ponding P2 nput in regis	s (when XB 2MDOUT.n ster P2MDI	ARE = '1'). bit = 0). N. Directly	reads Port

SFR Definition 15.13. P2MDIN: Port2 Input Mode

16.10.3.Endpoint0 OUT Transactions

When a SETUP request is received that requires the host to transmit data to USB0, one or more OUT requests will be sent by the host. When an OUT packet is successfully received by USB0, hardware will set the OPRDY bit (E0CSR.0) to '1' and generate an Endpoint0 interrupt. Following this interrupt, firmware should unload the OUT packet from the Endpoint0 FIFO and set the SOPRDY bit (E0CSR.6) to '1'.

If the amount of data required for the transfer exceeds the maximum packet size for Endpoint0, the data will be split into multiple packets. If the requested data is an integer multiple of the maximum packet size for Endpoint0 (as reported to the host), the host will send a zero-length data packet signaling the end of the transfer.

Upon reception of the first OUT token for a particular control transfer, Endpoint0 is said to be in Receive Mode. In this mode, only OUT tokens should be sent by the host to Endpoint0. The SUEND bit (E0CSR.4) is set to '1' if a SETUP or IN token is received while Endpoint0 is in Receive Mode.

Endpoint0 will remain in Receive mode until:

- 1. The SIE receives a SETUP or IN token.
- 2. The host sends a packet less than the maximum Endpoint0 packet size.
- 3. The host sends a zero-length packet.

Firmware should set the DATAEND bit (E0CSR.3) to '1' when the expected amount of data has been received. The SIE will transmit a STALL condition if the host sends an OUT packet after the DATAEND bit has been set by firmware. An interrupt will be generated with the STSTL bit (E0CSR.2) set to '1' after the STALL is transmitted.

Bit	Set by Hardware When:	Cleared by Hardware When:
MASTER	A START is generated.	A STOP is generated.
MASTER		 Arbitration is lost.
	 START is generated. 	 A START is detected.
TXMODE	 SMB0DAT is written before the start of an 	 Arbitration is lost.
IXANODE	SMBus frame.	SMB0DAT is not written before the
		start of an SMBus frame.
STA	• A START followed by an address byte is	 Must be cleared by software.
	received.	
070	• A STOP is detected while addressed as a	• A pending STOP is generated.
510	Slave.	
	Arbitration is lost due to a detected STOP.	After each ACK evolg
ACKRQ	• A byte has been received and an ACK	• Alter each ACK cycle.
	• A repeated STAPT is detected as a MASTEP	• Each time SLic cleared
	when STA is low (unwanted repeated START)	• Each time Shis cleared.
	• SCL is sensed low while attempting to gener-	
ARBLOST	ate a STOP or repeated START condition	
	• SDA is sensed low while transmitting a '1'	
	(excluding ACK bits).	
1.01/	• The incoming ACK value is low (ACKNOWL-	• The incoming ACK value is high (NOT
ACK	EDGE).	ACKNOWLEDGE).
	 A START has been generated. 	 Must be cleared by software.
	 Lost arbitration. 	
	 A byte has been transmitted and an ACK/ 	
SI	NACK received.	
01	 A byte has been received. 	
	• A START or repeated START followed by a	
	slave address + R/W has been received.	
	 A STOP has been received. 	

Table 17.3. Sources for Hardware Changes to SMB0CN

SFR Definition 20.2. SPI0CN: SPI0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value	
SPIF	WCOL	MODF	RXOVRN	NSSMD1	NSSMD0	TXBMT	SPIEN	00000110	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable	
							SFR Addres	s: 0xF8	
Bit 7:	SPIF: SPI0 Interrupt Flag.								
	I his bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are ena							e enabled,	
	automatical	matically cleared by hardware. It must be cleared by software							
Bit 6:	WCOL · Write Collision Flag								
This bit is set to logic 1 if a write to SPI0DAT is attempted when the transm							ansmit buf	fer has not	
	been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes. It must be cleared by software.							vill be	
								0 modes. It	
DIL D.	MODF: Mode Fault Flag. This bit is set to logic 1 by bardware (and generates a SPI0 interrupt) when a master						aster mode		
	collision is d	etected (NS	SS is low. M	STEN = 1.	and NSSMD	0[1:0] = 01	. This bit is	s not auto-	
	matically cle	ared by har	rdware. It m	ust be clea	red by softwa	are.			
Bit 4:	RXOVRN: Receive Overrun Flag (Slave Mode only). This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when the receive buf-								
							receive buf-		
	fer still holds unread data from a previous transfer and the last bit of the current transfe							transfer is	
	shifted into the SPI0 shift register. This bit is not automatically cleared by hardwar						are. It must		
Bits 3-2.	 be cleared by software. i=2: NSSMD1–NSSMD0: Slave Select Mode. Selects between the following NSS operation modes: (See Section "20.2. SPI0 Master Mode Operation" on page 224 and Section "20.3. SPI0 Slave Mode Operation" on page 226). 00: 3-Wire Slave or 3-wire Master Mode. NSS signal is not routed to a port pin. 								
Dito 0 2.									
								"20.3. SPI0	
	01: 4-Wire Slave or Multi-Master Mode (Default). NSS is always an input to t					put to the	device.		
	1X. 4-WILE S	value of NS	SSMD0	s signal is	mapped as a	an output ii	om the de	vice and will	
Bit 1:	TXBMT: Tra	nsmit Buffe	r Empty.						
	This bit will be set to logic 0 when new data has been written to the transmit buffer. When								
	data in the tr	ansmit buff	er is transfe	erred to the	SPI shift reg	ister, this b	oit will be se	et to logic 1,	
	indicating th	at it is safe	to write a ne	ew byte to t	he transmit l	buffer.			
Bit 0:	SPIEN: SPI) Enable.	a tha CDI						
	0. SPI diesb	led	is the SPI.						
	1. SPI onabl	ed.							

21. Timers

Each MCU includes four counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and two are 16-bit auto-reload timer for use with the ADC, SMBus, USB (frame measurements), Low-Frequency Oscillator (period measurements), or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 and Timer 3 offer 16-bit and split 8-bit timer functionality with auto-reload.

Timer 0 and Timer 1 Modes:	Timer 2 Modes:	Timer 3 Modes:		
13-bit counter/timer	16-bit timer with auto-reload	16-bit timer with auto-reload		
16-bit counter/timer	To-bit limer with auto-reload			
8-bit counter/timer with auto-reload	Two 8-bit timers with	Two 8-bit timers with		
Two 8-bit counter/timers (Timer 0 only)	auto-reload	auto-reload		

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M-T0M) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 21.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 and Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

21.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (**Section "9.3.5. Interrupt Register Descriptions" on page 90**); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (**Section 9.3.5**). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1-T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

21.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

22.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 22.5. PCA Software Timer Mode Diagram

23. C2 Interface

C8051F34x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

23.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 23.1. C2ADD: C2 Address

C2 Register Definition 23.2. DEVICEID: C2 Device ID

