

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f342-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

17.5.3 Slave Receiver Mode	201
17.5.4 Slave Transmitter Mode	201
17.6 SMBus Status Decoding	202
18 LIARTO	202
18 1 Enhanced Baud Rate Generation	206
18.2 Operational Modes	200
18 2 1 8-Bit LIART	200
18 2 2 9-Bit LIART	208
18.3 Multiprocessor Communications	208
19 UART1 (C8051F340/1/4/5/8/A/B/C Only)	213
19 1 Baud Rate Generator	214
19.2 Data Format	215
19.3 Configuration and Operation	216
19.3.1 Data Transmission	216
10.3.2 Data Recention	216
19.3.3 Multiprocessor Communications	217
20 Enhanced Serial Perinheral Interface (SPI0)	222
20.1 Signal Descriptions	223
20.1.1 Master Out, Slave In (MOSI)	223
20.1.2 Master In Slave Out (MISO)	223
20.1.3 Serial Clock (SCK)	223
20.1.4 Slave Select (NSS)	223
20.2 SPI0 Master Mode Operation	224
20.3 SPI0 Slave Mode Operation	224
20.4 SPI0 Interrupt Sources	226
20.5 Serial Clock Timing	227
20.6 SPI Special Function Registers	229
21 Timers	235
21 1 Timer 0 and Timer 1	235
21 1 1 Mode 0: 13-bit Counter/Timer	235
21.1.2 Mode 1: 16-bit Counter/Timer	236
21.1.3 Mode 2: 8-bit Counter/Timer with Auto-Reload	237
21.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	238
21.2.Timer 2	243
21.2.1.16-bit Timer with Auto-Reload	243
21.2.2.8-bit Timers with Auto-Reload	244
21.2.3. Timer 2 Capture Modes: USB Start-of-Frame or LFO Falling Edge	245
21.3.Timer 3	249
21.3.1.16-bit Timer with Auto-Reload	249
21.3.2.8-bit Timers with Auto-Reload	250
21.3.3.USB Start-of-Frame Capture	251
22. Programmable Counter Array (PCA0)	255
22.1.PCA Counter/Timer	256
22.2.Capture/Compare Modules	257
22.2.1.Edge-triggered Capture Mode	258

5.3. Modes of Operation

ADC0 has a maximum conversion speed of 200 ksps. The ADC0 conversion clock is a divided version of the system clock, determined by the AD0SC bits in the ADC0CF register (system clock divided by (AD0SC + 1) for $0 \le AD0SC \le 31$).

5.3.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the following:

- 1. Writing a '1' to the AD0BUSY bit of register ADC0CN
- 2. A Timer 0 overflow (i.e., timed continuous conversions)
- 3. A Timer 2 overflow
- 4. A Timer 1 overflow
- 5. A rising edge on the CNVSTR input signal
- 6. A Timer 3 overflow

Writing a '1' to AD0BUSY provides software control of ADC0 whereby conversions are performed "on-demand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte overflows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit mode. See **Section "21. Timers" on page 235** for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as a Port pin. When the CNVSTR input is used as the ADC0 conversion source, the associated Port pin should be skipped by the Digital Crossbar. To configure the Crossbar to skip a pin, set the corresponding bit in the PnSKIP register to '1'. See **Section "15. Port Input/Output" on page 142** for details on Port I/O configuration.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	REFSL	TEMPE	BIASE	REFBE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xD1
Bits7–3:	UNUSED. R	ead = 0000	0b; Write =	don't care.				
Bit3:	REFSL: Volt	age Refere	nce Select.					
	This bit sele	cts the sour	ce for the ir	nternal volta	ae referenc	æ.		
	0: VREF pin	used as vo	ltage refere	ence.	<u> </u>			
	י 1: V חם used	as voltage	reference.					
Bit2.	TEMPE: Ten	nerature S	ensor Enab	ole Bit				
DILZ.	0: Internal Te	emperature	Sensor off	Die Dit.				
	1: Internal Te	emperature	Sensor on					
Rit1 ·	BIASE: Inter	nal Analog	Bias Gener	ator Enable	Rit			
Ditt.	0: Internal B	ias General	for off					
	1: Internal B	ias Cenerat	tor on					
Bit0	REFRE: Inte	rnal Refere	nce Ruffer I	Enable Bit				
Dito.	0: Internal P	oforonco Bi	uffor disable					
	1: Internal P	eference B	uffer enable	od Internal v	voltago refe	ronco drivo	n on the V	DEE nin
		elerence D			voltage lele			iver pill.

SFR Definition 6.1. REF0CN: Reference Control

Table 6.1. Voltage Reference Electrical Characteristics

V_{DD} = 3.0 V; –40 to +85 °C Unless Otherwise Specified

Parameter	Conditions	Min	Тур	Max	Units					
Internal Reference (REFBE = 1)										
Output Voltage	2.38	2.44	2.50	V						
VREF Short-Circuit Current				10	mA					
VREF Temperature Coeffi- cient			15		ppm/°C					
Load Regulation	Load = 0 to 200 µA to GND		1.5		ppm/µA					
VREF Turn-on Time 1	4.7 μF tantalum, 0.1 μF ceramic bypass		2		ms					
VREF Turn-on Time 2	0.1 µF ceramic bypass		20		μs					
VREF Turn-on Time 3	no bypass cap		10		μs					
Power Supply Rejection			140		ppm/V					
	External Reference (REFBE = 0	0)								
Input Voltage Range		0		V _{DD}	V					
Input Current	Sample Rate = 200 ksps; VREF = 3.0 V		12		μA					
Bias Generators										
ADC Bias Generator	BIASE = '1'		100		μA					
Reference Bias Generator			40		μA					

9. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are four 16-bit counter/timers (see description in **Section 21**), an enhanced full-duplex UART (see description in **Section 18**), an Enhanced SPI (see description in **Section 20**), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (**Section 9.2.6**), and 25 Port I/O (see description in **Section 15**). The CIP-51 also includes on-chip debug hardware (see description in **Section 23**), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 9.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 0 to 48 MHz Clock Frequency
- 256 Bytes of Internal RAM
- 25 Port I/O

- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

Figure 9.1. CIP-51 Block Diagram

Table 9.1. CIP-51 I	Instruction Set Summary	(Continued)
---------------------	-------------------------	-------------

Mnemonic	Description	Bytes	Clock Cvcles
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
	Data Transfer		
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2

13.3. Configuring the External Memory Interface

Configuring the External Memory Interface consists of five steps:

- 1. Configure the Output Modes of the associated port pins as either push-pull or open-drain (push-pull is most common), and skip the associated pins in the crossbar.
- 2. Configure Port latches to "park" the EMIF pins in a dormant state (usually by setting them to logic '1').
- 3. Select Multiplexed mode or Non-multiplexed mode.
- 4. Select the memory mode (on-chip only, split mode without bank select, split mode with bank select, or off-chip only).
- 5. Set up timing to interface with off-chip memory or peripherals.

Each of these five steps is explained in detail in the following sections. The Port selection, Multiplexed mode selection, and Mode bits are located in the EMI0CF register shown in SFR Definition 13.2.

13.4. Port Configuration

The External Memory Interface appears on Ports 4, 3, 2, and 1 when it is used for off-chip memory access. When the EMIF is used, the Crossbar should be configured to skip over the control lines P1.7 (WR), P1.6 (\overline{RD}), and if multiplexed mode is selected P1.3 (ALE) using the P1SKIP register. For more information about configuring the Crossbar, see Section "Figure 15.1. Port I/O Functional Block Diagram (Port 0 through Port 3)" on page 142.

The External Memory Interface claims the associated Port pins for memory operations ONLY during the execution of an off-chip MOVX instruction. Once the MOVX instruction has completed, control of the Port pins reverts to the Port latches or to the Crossbar settings for those pins. See Section "15. Port Input/ Output" on page 142 for more information about the Crossbar and Port operation and configuration. The Port latches should be explicitly configured to 'park' the External Memory Interface pins in a dormant state, most commonly by setting them to a logic 1.

During the execution of the MOVX instruction, the External Memory Interface will explicitly disable the drivers on all Port pins that are acting as Inputs (Data[7:0] during a READ operation, for example). The Output mode of the Port pins (whether the pin is configured as Open-Drain or Push-Pull) is unaffected by the External Memory Interface operation, and remains controlled by the PnMDOUT registers. In most cases, the output modes of all EMIF pins should be configured for push-pull mode.

SFR Definition	13.2.	EMI0CF:	External	Memory	Configuration
----------------	-------	---------	----------	--------	---------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
-	USBFAE	-	EMD2	EMD1	EMD0	EALE1	EALE0	00000011		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
							SFR Address	:: 0x85		
Bit7:	Unused. Read = 0b. Write = don't care.									
Bit6:	USBFAE: US	SB FIFO Ac	cess Enabl	e.						
	0: USB FIFO	RAM not a	available th	rough MOV	X instructio	ns.				
	1: USB FIFO	RAM avai	lable using	MOVX instr	uctions. Th	e 1k of USE	3 RAM will	be mapped		
	in XRAM spa	ace at addr	esses 0x04	00 to 0x07F	F. The USE	B clock mu	st be activ	/e and		
	greater than	or equal t	to twice the	e SYSCLK	(USBCLK <u>></u>	<u>></u> 2 x SYSC	LK) to acc	ess this		
D:4C.	area with M		ictions.							
DILO. Dit4:		au = UD. vvi Multiplax I								
DIL4.		rates in mu	ltinleyed ad	n. Idroce/data	mode					
		rates in nor	-multiplexe	nd mode (se	narate addi	ress and da	ta nins)			
Bits3-2	EMD1-0. EV	/IF Operati	na Mode Se	elect			ta pino).			
2.000 2.	These bits co	ontrol the o	perating mo	ode of the E	xternal Mer	norv Interfa	ce.			
	00: Internal 0	Only: MOV	K accesses	on-chip XR	AM only. Al	I effective a	ddresses a	alias to		
	on-chip mem	ory space.		•						
	01: Split Moc	le without E	Bank Select	: Accesses	below the c	on-chip XRA	M bounda	ry are		
	directed on-o	chip. Acces	ses above t	the on-chip	XRAM boui	ndary are di	rected off-	chip. 8-bit		
	off-chip MO∖	/X operatio	ns use the	current cont	ents of the	Address Hi	gh port late	ches to		
	resolve uppe	er address b	oyte. Note t	hat in order	to access o	off-chip space	ce, EMI0CI	N must be		
	set to a page	e that is not	contained i	in the on-ch	ip address	space.				
	10: Split Moc	te with Ban	K Select: A		ow the on-o		boundary a	are directed		
	on-cnip. Acc	esses abov	e the on-cr		oundary are	e airectea oi	T-CNIP. 8-D			
				off_chin XE		ne ine nign n-chin XPA	Mis not vi	e auuress.		
	CPU				CAINI OTIIY. C					
Bits1–0 [.]	FAL F1-0. AI	I F Pulse-W	/idth Select	Bits (only h	as effect w	hen FMD2 :	= 0)			
2.10. 01	00: ALE high	and ALE I	ow pulse w	idth = 1 SYS	SCLK cvcle		•).			
	01: ALE high	and ALE I	, ow pulse wi	idth = 2 SYS	SCLK cycle	s.				
	10: ALE high	and ALE I	ow pulse wi	idth = 3 SYS	SCLK cycle	S.				
	11: ALE high	and ALE lo	ow pulse wi	dth = 4 SYS	SCLK cycles	S.				

R/W	RW	R/W	R/W	RW	RW	R/W	RW	Reset Value			
EAS1	EAS0	EWR3	EWR2	EWR1	EWR0	EAH1	EAH0	11111111			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	SFR Address: 0x84										
Bits7–6:	EAS1-0: EMIF Address Setup Time Bits.										
	00: Address	setup time	= 0 SYSCL	K cycles.							
	01: Address setup time = 1 SYSCLK cycle.										
	10: Address	setup time	= 2 SYSCL	K cycles.							
	11: Address	setu <u>p ti</u> me	= <u>3 S</u> YSCL	K cycles.							
Bits5–2:	EWR3 <u>-0:</u> EN	MIF WR and	d RD Pulse	-Width Cont	trol Bits.						
	0000: <u>WR</u> ar	nd <u>RD</u> pulse	e width = 1		cle.						
	0001: WR ar	nd <u>RD</u> pulse	e width = 2		Cles.						
	0010: WR an	na <u>RD</u> puise	e width = 3		Cles.						
	0011: WR ar	id <u>RD</u> pulse	e width = 4	STSULK CY	cies.						
	0100. WR ai	id <u>RD</u> pulse	e width $= 6$	STSULK U							
	0101. WR an	nd RD pulse	e width = 7	SYSCER Cy							
	0110. WR an	nd RD pulse	= width $= 8$	SYSCI K cv	cles.						
	1000: WR ar	nd RD nulse	= width $=$ 9	SYSCI K cv	cles.						
	1001: WR ar	nd RD pulse	e width = 10) SYSCIK (voles.						
	1010: WR ar	nd RD pulse	e width = 11	SYSCLK	vcles.						
	1011: WR ar	nd RD pulse	e width = 12	SYSCLK	vcles.						
	1100: WR ar	nd RD pulse	e width = 13	SYSCLK o	vcles.						
	1101: WR ar	nd RD pulse	e width = 14	SYSCLK o	ycles.						
	1110: WR ar	nd RD pulse	width = 15	SYSCLK o	ycles.						
	1111:WR and	d RD pulse	width $= 16$	SYSCLK cy	/cles.						
Bits1–0:	EAH1-0: EM	IIF Address	s Hold Time	Bits.							
	00: Address	hold time =	0 SYSCLK	Ccycles.							
	01: Address	hold time =	1 SYSCLK	Ccycle.							
	10: Address	hold time =	2 SYSCLK	Ccycles.							
	11: Address	hold time =	3 SYSCLK	cycles.							

SFR Definition 13.3. EMI0TC: External Memory Timing Control

							-		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
									11111111
_	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
									0xF5
B	Bits7–0:	Analog Input Port pins cor receiver disa 0: Correspor 1: Correspor	t Configurat nfigured as abled. nding P4.n j nding P4.n j	ion Bits for analog inpu bin is config bin is not co	P4.7–P4.0 lits have the jured as an onfigured as	(respectivel ir weak pull analog inpu an analog	ly). -up, digital ut. input.	driver, and	d digital
١	lote: P4	is only availa	ble on 48-p	in devices.					

SFR Definition 15.21. P4MDIN: Port4 Input Mode

SFR Definition 15.22. P4MDOUT: Port4 Output Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xAE
0xAE Bits7–0: Output Configuration Bits for P4.7–P4.0 (respectively); ignored if corresponding bit in regis- ter P4MDIN is logic 0. 0: Corresponding P4.n Output is open-drain. 1: Corresponding P4.n Output is push-pull.								
Note: P4 is only available on 48-pin devices.								

mode feature of the internal oscillator.

USB0 exits Suspend mode when any of the following occur: (1) Resume signaling is detected or generated, (2) Reset signaling is detected, or (3) a device or USB reset occurs. If suspended, the internal oscillator will exit Suspend mode upon any of the above listed events.

Resume Signaling: USB0 will exit Suspend mode if Resume signaling is detected on the bus. A Resume interrupt will be generated upon detection if enabled (RESINTE = '1'). Software may force a Remote Wakeup by writing '1' to the RESUME bit (POWER.2). When forcing a Remote Wakeup, software should write RESUME = '0' to end Resume signaling 10-15 ms after the Remote Wakeup is initiated (RESUME = '1').

ISO Update: When software writes '1' to the ISOUP bit (POWER.7), the ISO Update function is enabled. With ISO Update enabled, new packets written to an ISO IN endpoint will not be transmitted until a new Start-Of-Frame (SOF) is received. If the ISO IN endpoint receives an IN token before a SOF, USB0 will transmit a zero-length packet. When ISOUP = '1', ISO Update is enabled for all ISO endpoints.

USB Enable: USB0 is disabled following a Power-On-Reset (POR). USB0 is enabled by clearing the USBINH bit (POWER.4). Once written to '0', the USBINH can only be set to '1' by one of the following: (1) a Power-On-Reset (POR), or (2) an asynchronous USB0 reset generated by writing '1' to the USBRST bit (POWER.3).

Software should perform all USB0 configuration before enabling USB0. The configuration sequence should be performed as follows:

- Step 1. Select and enable the USB clock source.
- Step 2. Reset USB0 by writing USBRST= '1'.
- Step 3. Configure and enable the USB Transceiver.
- Step 4. Perform any USB0 function configuration (interrupts, Suspend detect).
- Step 5. Enable USB0 by writing USBINH = 0° .

USB Register Definition 16.17. E0CSR: USB0 Endpoint0 Control

R/W	R/W	R/W	R	R/W	R/W	R/W	R	Reset Value
SSUEN	O SOPRDY	SDSTL	SUEND	DATAEND	STSTL	INPRDY	OPRDY	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address:
								0x11
D:+7.		and Cat	un Find					
BIT/:	SSUEND: Se	are should	up Ena sot this hit	to '1' after se	nvicina a 9	Satun End (k		
	Hardware cle	ears the SU	IFND hit w	hen software	writes '1'	to SSUEND) event.
	Read: This b	oit always re	eads '0'.		WINCO I			
Bit6:	SOPRDY: Se	ervicedOP	RDY					
	Write: Softw	are should	write '1' to	this bit after	servicing a	a received E	ndpoint0 p	acket. The
	OPRDY bit w	vill be clear	ed by a wri	te of '1' to So	OPRDY.			
Ditc	Read: This b	oit always re	eads '0'.					
DIID.	Software car	u Stall write '1' to	this hit to	terminate the	ourrent tr	ansfer (due	to an erro	r condition
	unexpected t	transfer reg	uest. etc.).	Hardware w	vill clear thi	s bit to '0' w	hen the S	TALL hand-
	shake is tran	smitted.	, ,					
Bit4:	SUEND: Set	up End						
	Hardware se	ts this read	-only bit to	'1' when a c	ontrol tran	saction ends	s before so	oftware has
	written '1' to	the DATAE	ND bit. Ha	rdware clears	s this bit w	hen software	e writes '1'	to SSU-
Bit3 [.])ata End						
Bitol	Software sho	ould write '1	' to this bit	:				
	1. When wri	ting '1' to IN	NPRDY for	the last outg	oing data	packet.		
	2. When wri	ting '1' to IN	NPRDY for	a zero-lengt	h data pac	ket.		
	3. When write	ting '1' to S	OPRDY af	ter servicing	the last inc	coming data	packet.	
Bit2.	STSTI · Sent	tomatically	cleared by	naroware.				
DILZ.	Hardware se	ts this bit to	o '1' after tr	ansmitting a	STALL ha	ndshake siq	nal. This fl	ag must be
	cleared by so	oftware.						
Bit1:	INPRDY: IN	Packet Rea	ady					
	Software sho	ould write '1	' to this bit	after loading	a data pa	cket into the		0 FIFO for
	transmit. Har	dware clea	rs this bit a	and generate	s an interr	upt under ei	ther of the	following
	1 The packe	t is transmi	itted					
	2. The packe	t is overwri	tten bv an	incomina SE	TUP pack	et.		
	3. The packe	et is overwri	tten by an	incoming OL	JT packet.			
Bit0:	OPRDY: OU	T Packet R	eady					
	Hardware se	ts this read	-only bit ar	nd generates	an interru	pt when a da	ata packet	has been
	received. Thi	IS DIT IS Clea	ared only w	nen software	e writes '1'	to the SOPH	KUY DIt.	

A Bulk or Interrupt pipe can be shut down (or Halted) by writing '1' to the SDSTL bit (EOUTCSRL.5). While SDSTL = '1', hardware will respond to all OUT requests with a STALL condition. Each time hardware generates a STALL condition, an interrupt will be generated and the STSTL bit (EOUTCSRL.6) set to '1'. The STSTL bit must be reset to '0' by firmware.

Hardware will automatically set OPRDY when a packet is ready in the OUT FIFO. Note that if double buffering is enabled for the target endpoint, it is possible for two packets to be ready in the OUT FIFO at a time. In this case, hardware will set OPRDY to '1' immediately after firmware unloads the first packet and resets OPRDY to '0'. A second interrupt will be generated in this case.

16.13.2.Endpoints1-3 OUT Isochronous Mode

When the ISO bit (EOUTCSRH.6) is set to '1', the target endpoint operates in Isochronous (ISO) mode. Once an endpoint has been configured for ISO OUT mode, the host will send exactly one data per USB frame; the location of the data packet within each frame may vary, however. Because of this, it is recommended that double buffering be enabled for ISO OUT endpoints.

Each time a data packet is received, hardware will load the received data packet into the endpoint FIFO, set the OPRDY bit (EOUTCSRL.0) to '1', and generate an interrupt (if enabled). Firmware would typically use this interrupt to unload the data packet from the endpoint FIFO and reset the OPRDY bit to '0'.

If a data packet is received when there is no room in the endpoint FIFO, an interrupt will be generated and the OVRUN bit (EOUTCSRL.2) set to '1'. If USB0 receives an ISO data packet with a CRC error, the data packet will be loaded into the endpoint FIFO, OPRDY will be set to '1', an interrupt (if enabled) will be generated, and the DATAERR bit (EOUTCSRL.3) will be set to '1'. Software should check the DATAERR bit each time a data packet is unloaded from an ISO OUT endpoint FIFO.

The direction bit (R/W) occupies the least-significant bit position of the address byte. The direction bit is set to logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 17.3 illustrates a typical SMBus transaction.

Figure 17.3. SMBus Transaction

17.3.1. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see **Section "17.3.4. SCL High (SMBus Free) Timeout" on page 191**). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

19.3. Configuration and Operation

UART1 provides standard asynchronous, full duplex communication. It can operate in a point-to-point serial communications application, or as a node on a multi-processor serial interface. To operate in a point-to-point application, where there are only two devices on the serial bus, the MCE1 bit in SMOD1 should be cleared to '0'. For operation as part of a multi-processor communications bus, the MCE1 and XBE1 bits should both be set to '1'. In both types of applications, data is transmitted from the microcontroller on the TX1 pin, and received on the RX1 pin. The TX1 and RX1 pins are configured using the crossbar and the Port I/O registers, as detailed in **Section "15. Port Input/Output" on page 142**.

In typical UART communications, The transmit (TX) output of one device is connected to the receive (RX) input of the other device, either directly or through a bus transceiver, as shown in Figure 19.5.

Figure 19.5. Typical UART Interconnect Diagram

19.3.1. Data Transmission

Data transmission is double-buffered, and begins when software writes a data byte to the SBUF1 register. Writing to SBUF1 places data in the Transmit Holding Register, and the Transmit Holding Register Empty flag (THRE1) will be cleared to '0'. If the UARTs shift register is empty (i.e., no transmission is in progress) the data will be placed in the shift register, and the THRE1 bit will be set to '1'. If a transmission is in progress, the data will remain in the Transmit Holding Register until the current transmission is complete. The TI1 Transmit Interrupt Flag (SCON1.1) will be set at the end of any transmission (the beginning of the stop-bit time). If enabled, an interrupt will occur when TI1 is set.

If the extra bit function is enabled (XBE1 = '1') and the parity function is disabled (PE1 = '0'), the value of the TBX1 (SCON1.3) bit will be sent in the extra bit position. When the parity function is enabled (PE1 = '1'), hardware will generate the parity bit according to the selected parity type (selected with S1PT[1:0]), and append it to the data field. Note: when parity is enabled, the extra bit function is not available.

19.3.2. Data Reception

Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the stop bit is received, the data byte will be stored in the receive FIFO if the following conditions are met: the receive FIFO (3 bytes deep) must not be full, and the stop bit(s) must be logic 1. In the event that the receive FIFO is full, the incoming byte will be lost, and a Receive FIFO Overrun Error will be generated (OVR1 in register SCON1 will be set to logic 1). If the stop bit(s) were logic 0, the incoming data will not be stored in the receive FIFO. If the reception conditions are met, the data is stored in the receive FIFO, and the RI1 flag will be set. Note: when MCE1 = '1', RI1 will only be set if the extra bit was equal to '1'. Data can be read from the receive FIFO by reading the SBUF1 register. The SBUF1 register represents the oldest byte in the FIFO. After SBUF1 is read, the next byte in the FIFO is immediately loaded into SBUF1, and

216

Figure 20.2. Multiple-Master Mode Connection Diagram

Figure 20.4. 4-Wire Single Master Mode and Slave Mode Connection Diagram

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 20.11. SPI Slave Timing (CKPHA = 1)

21. Timers

Each MCU includes four counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and two are 16-bit auto-reload timer for use with the ADC, SMBus, USB (frame measurements), Low-Frequency Oscillator (period measurements), or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 and Timer 3 offer 16-bit and split 8-bit timer functionality with auto-reload.

Timer 0 and Timer 1 Modes:	Timer 2 Modes:	Timer 3 Modes:		
13-bit counter/timer	16-bit timer with auto-reload	16-bit timer with auto-reload		
16-bit counter/timer	To-bit limer with auto-reload			
8-bit counter/timer with auto-reload	Two 8-bit timers with	Two 8-bit timers with		
Two 8-bit counter/timers (Timer 0 only)	auto-reload	auto-reload		

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M-T0M) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 21.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 and Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

21.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (**Section "9.3.5. Interrupt Register Descriptions" on page 90**); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (**Section 9.3.5**). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1-T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

21.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

21.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/ timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

SFR Definition 21.4. TL0: Timer 0 Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x8A
Bits 7–0: TL0: Timer 0 Low Byte.								
The TL0 register is the low byte of the 16-bit Timer 0.								

SFR Definition 21.5. TL1: Timer 1 Low Byte

SFR Definition 21.6. TH0: Timer 0 High Byte

SFR Definition 21.7. TH1: Timer 1 High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x8D
Bits 7–0: TH1: Timer 1 High Byte. The TH1 register is the high byte of the 16-bit Timer 1.								

22.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/ timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 22.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

