

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f342-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12. Flash Memory	
Figure 12.1. Flash Program Memory Map and Security Byte	110
13. External Data Memory Interface and On-Chip XRAM	
Figure 13.1. USB FIFO Space and XRAM Memory Map	
with USBFAE set to '1'	115
Figure 13.2. Multiplexed Configuration Example	119
Figure 13.3. Non-multiplexed Configuration Example	120
Figure 13.4. EMIF Operating Modes	120
Figure 13.5. Non-multiplexed 16-bit MOVX Timing	124
Figure 13.6. Non-multiplexed 8-bit MOVX without Bank Select Timing	125
Figure 13.7. Non-multiplexed 8-bit MOVX with Bank Select Timing	126
Figure 13.8. Multiplexed 16-bit MOVX Timing	127
Figure 13.9. Multiplexed 8-bit MOVX without Bank Select Timing	128
Figure 13.10. Multiplexed 8-bit MOVX with Bank Select Timing	129
14. Oscillators	404
Figure 14.1. Oscillator Diagram	131
15. Port Input/Output	4.40
Figure 15.1. Port I/O Functional Block Diagram (Port 0 through Port 3)	142
Figure 15.2. Port I/O Cell Block Diagram	143
Figure 15.3. Peripheral Availability on Port I/O Pins	144
Figure 15.4. Crossbar Priority Decoder in Example Configuration	4 4 5
(NO PINS Skipped)	145
Figure 15.5. Crossbar Phonicy Decoder in Example Configuration (2 Ding Skipped)	116
16 Universal Social Rus Controller (USR0)	140
Figure 16.1 USBO Block Diagram	150
Figure 16.2. USBO Diock Diagram	162
Figure 16.3. USB FIEO Allocation	167
17 SMBus	107
Figure 17.1 SMBus Block Diagram	188
Figure 17.2 Typical SMBus Configuration	189
Figure 17.3 SMBus Transaction	190
Figure 17.4. Typical SMBus SCI. Generation	193
Figure 17.5. Typical Master Transmitter Sequence	199
Figure 17.6. Typical Master Receiver Sequence	200
Figure 17.7. Typical Slave Receiver Sequence	201
Figure 17.8. Typical Slave Transmitter Sequence	202
18. UART0	
Figure 18.1. UART0 Block Diagram	205
Figure 18.2. UART0 Baud Rate Logic	206
Figure 18.3. UART Interconnect Diagram	207
Figure 18.4. 8-Bit UART Timing Diagram	207
Figure 18.5. 9-Bit UART Timing Diagram	208
Figure 18.6. UART Multi-Processor Mode Interconnect Diagram	209
19. UART1 (C8051F340/1/4/5/8/A/B/C Only)	

Figure 19.1. UART1 Block Diagram 21	3
Figure 19.2. UART1 Timing Without Parity or Extra Bit	5
Figure 19.3. UART1 Timing With Parity 21	5
Figure 19.4. UART1 Timing With Extra Bit 21	5
Figure 19.5. Typical UART Interconnect Diagram 21	6
Figure 19.6. UART Multi-Processor Mode Interconnect Diagram	8
20. Enhanced Serial Peripheral Interface (SPI0)	
Figure 20.1. SPI Block Diagram 22	22
Figure 20.2. Multiple-Master Mode Connection Diagram	25
Figure 20.3. 3-Wire Single Master and Slave Mode Connection Diagram	25
Figure 20.4. 4-Wire Single Master Mode and Slave Mode Connection Diagram 22	25
Figure 20.5. Master Mode Data/Clock Timing 22	27
Figure 20.6. Slave Mode Data/Clock Timing (CKPHA = 0)	28
Figure 20.7. Slave Mode Data/Clock Timing (CKPHA = 1)	28
Figure 20.8. SPI Master Timing (CKPHA = 0)	32
Figure 20.9. SPI Master Timing (CKPHA = 1)	32
Figure 20.10. SPI Slave Timing (CKPHA = 0)	33
Figure 20.11. SPI Slave Timing (CKPHA = 1)	33
21. Timers	
Figure 21.1. T0 Mode 0 Block Diagram	36
Figure 21.2. T0 Mode 2 Block Diagram	37
Figure 21.3. T0 Mode 3 Block Diagram	38
Figure 21.4. Timer 2 16-Bit Mode Block Diagram	13
Figure 21.5. Timer 2 8-Bit Mode Block Diagram	14
Figure 21.6. Timer 2 Capture Mode $(T2SPLIT = '0')$	15
Figure 21.7. Timer 2 Capture Mode (T2SPLIT = '1')	16
Figure 21.8. Timer 3 16-Bit Mode Block Diagram	19
Figure 21.9. Timer 3 8-Bit Mode Block Diagram	50
Figure 21.10. Timer 3 Capture Mode (T3SPL IT = $(0')$	51
Figure 21.11. Timer 3 Capture Mode (T3SPLIT = '1') 25	52
22. Programmable Counter Array (PCA0)	
Figure 22.1. PCA Block Diagram	55
Figure 22.2. PCA Counter/Timer Block Diagram	56
Figure 22.3, PCA Interrupt Block Diagram	57
Figure 22.4. PCA Capture Mode Diagram	58
Figure 22.5, PCA Software Timer Mode Diagram	59
Figure 22.6, PCA High Speed Output Mode Diagram	30
Figure 22.7 PCA Frequency Output Mode 26	;1
Figure 22.8, PCA 8-Bit PWM Mode Diagram	32
Figure 22.9, PCA 16-Bit PWM Mode	33
Figure 22.10 PCA Module 4 with Watchdog Timer Enabled 26	
23. C2 Interface	<i>,</i> -т
Figure 23.1. Typical C2 Pin Sharing	73
	-

Dimension	Min	Nom	Max		
A	—	—	1.20		
A1	0.05	—	0.15		
A2	0.95	1.00	1.05		
b	0.17	0.22	0.27		
С	0.09	—	0.20		
D	9.00 BSC				
D1	7.00 BSC				
e	0.50 BSC				
E		9.00 BSC			
E1		7.00 BSC			
L	0.45	0.60	0.75		
aaa	0.20				
bbb	0.20				
CCC	0.08				
ddd	0.08				
θ	0°	3.5°	7°		

Table 4.2. TQFP-48 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026, variation ABC.

4. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 4.4. LQFP-32 Pinout Diagram (Top View)

5.3.2. Tracking Modes

The AD0TM bit in register ADC0CN controls the ADC0 track-and-hold mode. In its default state, the ADC0 input is continuously tracked, except when a conversion is in progress. When the AD0TM bit is logic 1, ADC0 operates in low-power track-and-hold mode. In this mode, each conversion is preceded by a tracking period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR signal is used to initiate conversions in low-power tracking mode, ADC0 tracks only when CNVSTR is low; conversion begins on the rising edge of CNVSTR (see Figure 5.4). Tracking can also be disabled (shutdown) when the device is in low power standby or sleep modes. Low-power track-and-hold mode is also useful when AMUX settings are frequently changed, due to the settling time requirements described in Section "5.3.3. Settling Time Requirements" on page 47.

A. ADC0 Timing for External Trigger Source

Figure 5.4. 10-Bit ADC Track and Conversion Example Timing

Table 9.3. Special Function Registers

Register	Address	Description	Page
ACC	0xE0	Accumulator	87
ADC0CF	0xBC	ADC0 Configuration	50
ADC0CN	0xE8	ADC0 Control	51
ADC0GTH	0xC4	ADC0 Greater-Than Compare High	52
ADC0GTL	0xC3	ADC0 Greater-Than Compare Low	52
ADC0H	0xBE	ADC0 High	50
ADC0L	0xBD	ADC0 Low	50
ADC0LTH	0xC6	ADC0 Less-Than Compare Word High	53
ADC0LTL	0xC5	ADC0 Less-Than Compare Word Low	53
AMX0N	0xBA	AMUX0 Negative Channel Select	49
AMX0P	0xBB	AMUX0 Positive Channel Select	48
В	0xF0	B Register	88
CKCON	0x8E	Clock Control	241
CLKMUL	0xB9	Clock Multiplier	138
CLKSEL	0xA9	Clock Select	140
CPT0CN	0x9B	Comparator0 Control	62
CPT0MD	0x9D	Comparator0 Mode Selection	64
CPT0MX	0x9F	Comparator0 MUX Selection	63
CPT1CN	0x9A	Comparator1 Control	65
CPT1MD	0x9C	Comparator1 Mode Selection	67
CPT1MX	0x9E	Comparator1 MUX Selection	66
DPH	0x83	Data Pointer High	86
DPL	0x82	Data Pointer Low	86
EIE1	0xE6	Extended Interrupt Enable 1	93
EIE2	0xE7	Extended Interrupt Enable 2	95
EIP1	0xF6	Extended Interrupt Priority 1	94
EIP2	0xF7	Extended Interrupt Priority 2	95
EMIOCN	0xAA	External Memory Interface Control	117
EMI0CF	0x85	External Memory Interface Configuration	118
EMI0TC	0x84	External Memory Interface Timing	123
FLKEY	0xB7	Flash Lock and Key	112
FLSCL	0xB6	Flash Scale	113
IE	0xA8	Interrupt Enable	91
IP	0xB8	Interrupt Priority	92
IT01CF	0xE4	INT0/INT1 Configuration	96
OSCICL	0xB3	Internal Oscillator Calibration	133
OSCICN	0xB2	Internal Oscillator Control	132
OSCLCN	0x86	Internal Low-Frequency Oscillator Control	134
OSCXCN	0xB1	External Oscillator Control	137
P0	0x80	Port 0 Latch	150
POMDIN	0xF1	Port 0 Input Mode Configuration	150
POMDOUT	0xA4	Port 0 Output Mode Configuration	151
P0SKIP	0xD4	Port 0 Skip	151
P1	0x90	Port 1 Latch	152

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Table 9.3. Special Function Registers (Continued)

Register	Address	Description	Page
SBUF0	0x99	UARTO Data Buffer	211
SCON0	0x98	UART0 Control	210
SMB0CF	0xC1	SMBus Configuration	194
SMB0CN	0xC0	SMBus Control	196
SMB0DAT	0xC2	SMBus Data	198
SMOD1	0xE5	UART1 Mode	219
SP	0x81	Stack Pointer	86
SPI0CFG	0xA1	SPI Configuration	229
SPI0CKR	0xA2	SPI Clock Rate Control	231
SPI0CN	0xF8	SPI Control	230
SPI0DAT	0xA3	SPI Data	231
TCON	0x88	Timer/Counter Control	239
TH0	0x8C	Timer/Counter 0 High	242
TH1	0x8D	Timer/Counter 1 High	242
TL0	0x8A	Timer/Counter 0 Low	242
TL1	0x8B	Timer/Counter 1 Low	242
TMOD	0x89	Timer/Counter Mode	240
TMR2CN	0xC8	Timer/Counter 2 Control	247
TMR2H	0xCD	Timer/Counter 2 High	248
TMR2L	0xCC	Timer/Counter 2 Low	248
TMR2RLH	0xCB	Timer/Counter 2 Reload High	248
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	248
TMR3CN	0x91	Timer/Counter 3Control	253
TMR3H	0x95	Timer/Counter 3 High	254
TMR3L	0x94	Timer/Counter 3Low	254
TMR3RLH	0x93	Timer/Counter 3 Reload High	254
TMR3RLL	0x92	Timer/Counter 3 Reload Low	254
VDM0CN	0xFF	V _{DD} Monitor Control	102
USB0ADR	0x96	USB0 Indirect Address Register	163
USB0DAT	0x97	USB0 Data Register	164
USB0XCN	0xD7	USB0 Transceiver Control	161
XBR0	0xE1	Port I/O Crossbar Control 0	148
XBR1	0xE2	Port I/O Crossbar Control 1	149
XBR2	0xE3	Port I/O Crossbar Control 2	149
All Other Add	dresses	Reserved	

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

SFR Definition 9.11. EIE2: Extended	Interrupt Enable 2
-------------------------------------	--------------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	-	ES1	EVBUS	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE7
Bits7–2: Bit1: Bit0:	UNUSED. R ES1: Enable This bit sets 0: Disable U 1: Enable U EVBUS: Ena This bit sets 0: Disable al 1: Enable int	ead = 0000 UART1 Int the maskin ART1 interr ART1 interr able VBUS the maskin I VBUS inte errupt requ	00b. Write = errupt. g of the UA upt. Level Interru g of the VB errupts. ests genera	= don't care RT1 interru upt. US interrup ated by VBL	t. IS level sen	ISE.		

SFR Definition 9.12. EIP2: Extended Interrupt Priority 2

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	-	PS1	PVBUS	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF7
Bits7–2: Bit1:	Bits7–2: UNUSED. Read = 000000b. Write = don't care. Bit1: PS1: UART1 Interrupt Priority Control. This bit sets the priority of the UART1 interrupt. 0: UART1 interrupt set to low priority level. 1: UART1 interrupts set to high priority level.							
Bit0:	PVBUS: VBUS Level Interrupt Priority Control. This bit sets the priority of the VBUS interrupt. 0: VBUS interrupt set to low priority level. 1: VBUS interrupt set to high priority level.							

R/W	R/W	R/W -	R/W	R/W	R/W OSCCAL	R/W	R/W	Reset Value Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xB3
Bits4–0: OSCCAL: Oscillator Calibration Value These bits determine the internal H-F oscillator period. When set to 00000b, the oscillator operates at its fastest setting. When set to 11111b, the oscillator operates at is slowest set- ting. The contents of this register are factory calibrated to produce a 12 MHz internal oscilla- tor frequency.								
Note: The contents of this register are undefined when Clock Recovery is enabled. See Section "16.4. USB Clock Configuration" on page 166 for details on Clock Recovery.								

14.2. Programmable Internal Low-Frequency (L-F) Oscillator

The C8051F340/1/2/3/4/5/8/9/C/D devices include a programmable internal oscillator which operates at a nominal frequency of 80 kHz. The low-frequency oscillator circuit includes a divider that can be changed to divide the clock by 1, 2, 4, or 8, using the OSCLD bits in the OSCLCN register (see SFR Definition 14.3). Additionally, the OSCLF bits (OSCLCN5:2) can be used to adjust the oscillator's output frequency.

14.2.1. Calibrating the Internal L-F Oscillator

Timers 2 and 3 include capture functions that can be used to capture the oscillator frequency, when running from a known time base. When either Timer 2 or Timer 3 is configured for L-F Oscillator Capture Mode, a falling edge (Timer 2) or rising edge (Timer 3) of the low-frequency oscillator's output will cause a capture event on the corresponding timer. As a capture event occurs, the current timer value (TMRnH:TMRnL) is copied into the timer reload registers (TMRnRLH:TMRnRLL). By recording the difference between two successive timer capture values, the low-frequency oscillator's period can be calculated. The OSCLF bits can then be adjusted to produce the desired oscillator period.

14.5. System and USB Clock Selection

The internal oscillator requires little start-up time and may be selected as the system or USB clock immediately following the OSCICN write that enables the internal oscillator. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to '1' by hardware when the external oscillator is settled. **To avoid reading a false XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD.** RC and C modes typically require no startup time.

14.5.1. System Clock Selection

The CLKSL[1:0] bits in register CLKSEL select which oscillator source is used as the system clock. CLKSL[1:0] must be set to 01b for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA, USB) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator, external oscillator, and 4x Clock Multiplier so long as the selected oscillator is enabled and has settled. C8051F340/ 1/2/3 devices can use the 48 MHz Clock Multiplier output as system clock. See Table 3.1, "Global DC Electrical Characteristics," on page 25 for system clock frequency specifications. When operating with a system clock of greater than 25 MHz (up to 48 MHz), the FLRT bit (FLSCL.4) should be set to '1'. See **Section "10. Prefetch Engine" on page 99** for more details.

14.5.2. USB Clock Selection

The USBCLK[2:0] bits in register CLKSEL select which oscillator source is used as the USB clock. The USB clock may be derived from the 4x Clock Multiplier output, a divided version of the internal oscillator, or a divided version of the external oscillator. Note that the USB clock must be 48 MHz when operating USB0 as a Full Speed Function; the USB clock must be 6 MHz when operating USB0 as a Low Speed Function. See SFR Definition 14.6 for USB clock selection options.

Some example USB clock configurations for Full and Low Speed mode are given below:

Internal Oscillator					
Clock Signal	Input Source Selection	Register Bit Settings			
USB Clock	Clock Multiplier	USBCLK = 000b			
Clock Multiplier Input	Internal Oscillator*	MULSEL = 00b			
Internal Oscillator	IFCN = 11b				
	External Oscillator				
Clock Signal	Input Source Selection	Register Bit Settings			
USB Clock	Clock Multiplier	USBCLK = 000b			
Clock Multiplier Input	External Oscillator	MULSEL = 01b			
External Oscillator	Crystal Oscillator Mode 12 MHz Crystal	XOSCMD = 110b XFCN = 111b			

*Note: Clock Recovery must be enabled for this configuration.

Internal Oscillator								
Clock Signal Input Source Selection Register Bit Settings								
USB Clock	Internal Oscillator / 2	USBCLK = 001b						
Internal Oscillator	Divide by 1	IFCN = 11b						
	External Oscillator	•						
Clock Signal	Input Source Selection	Register Bit Settings						

SFR Definition 15.11. P1SKIP: Port1 Skip

Γ	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 0000000
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD5
E	Bits7–0:	P1SKIP[7:0] These bits so log inputs (fo lator circuit, 0: Correspor 1: Correspor	: Port1 Cros elect Port p or ADC or C CNVSTR in nding P1.n nding P1.n	ssbar Skip I ins to be sk comparator) iput) should pin is not sk pin is skippe	Enable Bits. ipped by the or used as l be skipped sipped by the ed by the Ci	e Crossbar special fun by the Cro e Crossbar. ossbar.	Decoder. P ctions (VRE ssbar.	ort pins us F input, e	sed as ana- xternal oscil-

SFR Definition 15.12. P2: Port2 Latch

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bit	t addressable)) 0xA0
Bits7–0:	P2.[7:0] Write - Outp 0: Logic Low 1: Logic Hig Read - Alwa pin when cou 0: P2.n pin is 1: P2.n pin is	ut appears / Output. h Output (hi ys reads '0' nfigured as s logic low. s logic high.	on I/O pins igh impedar if selected digital input	per Crossba nce if corres as analog in t.	ar Registers ponding P2 nput in regis	s (when XB 2MDOUT.n ster P2MDI	ARE = '1'). bit = 0). N. Directly	reads Port

SFR Definition 15.13. P2MDIN: Port2 Input Mode

SFR Definition 16.2. USB0ADR: USB	0 Indirect Address
-----------------------------------	--------------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
BUSY	AUTORD			USBA	DDR			00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x96
Bits7: Bit6: Bits5–0:	BUSY: USBC This bit is use initiate a read target addres set to '1', hau USB0DAT re Write: 0: No effect. 1: A USB0 in Read: 0: USB0DAT 1: USB0 is b AUTORD: U This bit is us 0: BUSY mu 1: The next i USB0DAT (L USBADDR: These bits ho lists the USB will target the) Register F ed during in d of the US ss and BUS rdware will egister. Soft adirect regis SB0 Regist ed for block st be writte ndirect regi JSBADDR I USB0 Indire bld a 6-bit a co core regise register in	Read Busy I Idirect USB B0 register SY bit may b clear BUSY ware should ster read is i ata is valid. ing an indir er Auto-read FIFO read n manually ster read w bits will not ect Register ddress used sters and th dicated by	Flag 0 register ac targeted by be written in 7 when the ta d check BUS initiated at t ect register; d Flag ls. for each US ill automatic be changed r Address d to indirect heir indirect	ccesses. So the USBAI the same v argeted reg SY for '0' be ne address USB0DAT B0 indirect ally be initia). y access th addresses. DR bits.	oftware shou DDR bits (U vrite to USE ister data is efore writing specified b register da register rea ated when s e USB0 cor Reads and	Ild write '1 SB0ADR. Af Teady in t to USB0I y the USB ta is invalid ad. software re	0x96 ' to this bit to [5-0]). The ter BUSY is the DAT. ADDR bits. d. eads s. Table 16.2 USB0DAT
	win target the		dicated by					
	will target the	e register in	dicated by	the USBAD	DR bits.			002027

USB Register Definition 16.20. EINCSRH: USB0 IN Endpoint Control High Byte

R/W	R/W	R/W	R	R/W	R/W	R	R	Reset Value
DBIEN	ISO	DIRSEL	-	FCDT	SPLIT	-	-	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address:
								0x12
D:47.		induciat Da	uhla huffar	Fachle				
BIT:		indpoint Do	uble-builer		Londnoint			
	1: Double bi	utering usa	bled for the		l endpoint.			
Rit6.	ISO: Isochro	nous Trans	fer Enable	Selected II	renupoint.			
Bito.	This bit enal	oles/disable	s isochronc	ous transfer	s on the cur	rent endpoi	nt	
	0: Endpoint	configured f	or bulk/inte	rrupt transfe	ers.			
	1: Endpoint	configured f	or isochron	ous transfe	rs.			
Bit5:	DIRSEL: En	dpoint Direc	ction Select					
	This bit is va	alid only whe	en the seled	ted FIFO is	not split (S	SPLIT = '0').		
	0: Endpoint	direction se	lected as O	UT.				
	1: Endpoint	direction se	lected as IN	۱.				
Bit4:	Unused. Rea	ad = '0'. Wri	te = don't c	are.				
Bit3:	FCDI: Force	e Data Togg	le.			6		a a alva t
	transmissior	data toggle	switches of	niy when an	ACK IS rec	eived follow	ling a data	раскет
	1: Endpoint	data toggle	forced to sv	vitch after e	very data p	acket is trar	nsmitted, re	egardless of
	ACK recepti	on.						0
Bit2:	SPLIT: FIFO Split Enable.							
	When SPLI	⁻ = '1', the s	elected end	point FIFO	is split. The	upper half of	of the sele	cted FIFO is
_	used by the	IN endpoint	; the lower	half of the s	elected FIF	O is used b	y the OUT	endpoint.
Bits1–0:	Unused. Rea	ad = 00b; W	/rite = don't	care.				

16.13. Controlling Endpoints1-3 OUT

Endpoints1-3 OUT are managed via USB registers EOUTCSRL and EOUTCSRH. All OUT endpoints can be used for Interrupt, Bulk, or Isochronous transfers. Isochronous (ISO) mode is enabled by writing '1' to the ISO bit in register EOUTCSRH. Bulk and Interrupt transfers are handled identically by hardware.

An Endpoint1-3 OUT interrupt may be generated by the following:

- 1. Hardware sets the OPRDY bit (EINCSRL.0) to '1'.
- 2. Hardware generates a STALL condition.

16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode

When the ISO bit (EOUTCSRH.6) = '0' the target endpoint operates in Bulk or Interrupt mode. Once an endpoint has been configured to operate in Bulk/Interrupt OUT mode (typically following an Endpoint0 SET_INTERFACE command), hardware will set the OPRDY bit (EOUTCSRL.0) to '1' and generate an interrupt upon reception of an OUT token and data packet. The number of bytes in the current OUT data packet (the packet ready to be unloaded from the FIFO) is given in the EOUTCNTH and EOUTCNTL registers. In response to this interrupt, firmware should unload the data packet from the OUT FIFO and reset the OPRDY bit to '0'.

	Valu	ies I	Rea	d			v v	/alue Vritte	s en			
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State Typical Response Options		STA	STo	ACK			
	1110	0	0	Х	A master START was generated.	Load slave address + R/W into SMB0DAT.	0	0	х			
		0	0	0	A master data or address byte	Set STA to restart transfer.	1	0	Х			
ъ		U		0	was transmitted; NACK received.	Abort transfer.	0	1	Х			
nsmitte						Load next data byte into SMB0DAT.	0	0	х			
Trai						End transfer with STOP.	0	1	Х			
laster	1100	0	0	1	A master data or address byte	End transfer with STOP and start another transfer.	1	1	х			
2						Send repeated START.	1	0	Х			
				Switch to Master Receiver Mode (clear SI without writ- ing new data to SMB0DAT).	0	0	х					
						Acknowledge received byte; Read SMB0DAT.	0	0	1			
						Send NACK to indicate last byte, and send STOP.	0	1	0			
										Send NACK to indicate last byte, and send STOP fol- lowed by START.	1	1
ceiver						Send ACK followed by repeated START.	1	0	1			
aster Rec	1000	1	0	x	A master data byte was received; ACK requested.	Send NACK to indicate last byte, and send repeated START.	1	0	0			
Σ						Send ACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	1			
			Send NACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	0						

Table 17.4. SMBus Status Decoding

18. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in **Section "18.1. Enhanced Baud Rate Generation" on page 206**). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0). The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

SFR Definition 21.9. TMR2RLL: Timer 2 Reload Register Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xCA
Bits 7–0:	TMR2RLL: T TMR2RLL h mode, or the	Fimer 2 Relo olds the low e captured v	bad Registe byte of the alue of the	er Low Byte. e reload valu TMR2L reg	ie for Timer ister in capt	2 when op ture mode.	erating in	auto-reload

SFR Definition 21.10. TMR2RLH: Timer 2 Reload Register High Byte

SFR Definition 21.11. TMR2L: Timer 2 Low Byte

SFR Definition 21.12. TMR2H Timer 2 High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
D:+7	Dito	Dier	D:+4	Dito	D:40	Ditt	Dito	
Bit7	BIto	BItS	BIt4	BIt3	Bit2	Bit1	Bitu	OxCD
Bits 7–0: 「 I r	TMR2H: Tim n 16-bit moo node, TMR2	ner 2 High B de, the TMF 2H contains	byte. R2H registe the 8-bit hi	r contains th gh byte time	ne high byte er value.	e of the 16-b	bit Timer 2	2. In 8-bit

SFR Definition 21.14. TMR3RLL: Timer 3 Reload Register Low Byte

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
									00000000
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
									0x92
В	its 7–0:	TMR3RLL: T TMR3RLL h mode, or the	Fimer 3 Relo olds the low e captured v	bad Registe byte of the value of the	er Low Byte. e reload valu TMR3L reg	ue for Timer ister when	⁻ 3 when op operating in	erating in capture i	auto-reload mode.

SFR Definition 21.15. TMR3RLH: Timer 3 Reload Register High Byte

SFR Definition 21.16. TMR3L: Timer 3 Low Byte

SFR Definition 21.17. TMR3H Timer 3 High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
								00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0x95			
Bits 7–0:	TMR3H: Tim	ner 3 High E	syte.								
	In 16-bit mo	de, the TMF	R3H registe	r contains th	e high byte	of the 16-b	it Timer 3	3. In 8-bit			
	mode, TMR3	3H contains	the 8-bit hi	gh byte time	er value.						
In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-bit mode, TMR3H contains the 8-bit high byte timer value.											

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
PWM16	n ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xDA, 0xDB, 0xDC, 0xDD, 0xDE			
PCA0CPMn Address: PCA0CPM0 = 0xDA (n = 0). PCA0CPM1 = 0xDB (n = 1).											
PCAUCHWIT Address. $PCAUCHWIT = 0xDA (n = 0), PCAUCHWIT = 0xDB (n = 1),$ PCAUCHWIT = 0xDC (n = 2), PCAUCHWIT = 0xDD (n = 3).											
		PCA0C	PM4 = 0xD	E (n = 4)		,	,,				
Bit7:	PWM16n: 16	S-bit Pulse	Width Modu	lation Enab	le.						
	This bit sele	cts 16-bit m	ode when F	Pulse Width	Modulation	n mode is er	habled (PW	/Mn = 1).			
	0: 8-DIT PWN	1 selected.									
Bit6 [.]	FCOMn: Co	mnarator Fi	unction Ena	hle							
Dito.	This bit enab	les/disable	s the comp	arator funct	ion for PCA	module n.					
	0: Disabled.										
	1: Enabled.										
Bit5:	CAPPn: Cap	ture Positiv	e Function	Enable.							
	This bit enabled	oles/disable	s the positiv	/e edge cap	oture for PC	A module n	•				
	1. Enabled										
Bit4:	CAPNn: Car	oture Negat	ive Functior	n Enable.							
	This bit enab	oles/disable	s the negat	ive edge ca	pture for PO	CA module i	า.				
	0: Disabled.		-	-	-						
	1: Enabled.										
Bit3:	MATh: Match	n Function I	Enable.	function fo		ula a M/haa		matches of			
	the PCA cou	nter with a	s the match	nunction io	n PCA mou Dare registe	ule n. when	CCEn bit i	matches of			
	register to be	e set to logi	c 1.	apture/com	Sale legiste						
	0: Disabled.	eer te leg.	•								
	1: Enabled.										
Bit2:	TOGn: Togg	le Function	Enable.								
	This bit enab	oles/disable	s the toggle	e function fo	or PCA mod	ule n. Wher	enabled,	matches of			
	CEXn pin to	nter with a	P\//Mn bi	apture/comp t is also set	to logic 1 t	er cause the	logic level	On the			
	Output Mode	9.		13 0130 301	to logic 1, t			rriequency			
	0: Disabled.										
	1: Enabled.										
Bit1:	PWMn: Puls	e Width Mo	dulation Mo	de Enable.							
This bit enables/disables the PWM function for PCA module n. When enabled, a pul								pulse width			
mode is used if PWM16n is set to logic 1. If the TOGn bit is also set, the module one								operates in			
	Frequency C	Output Mode	9. 9.			5 4150 501, 11		operates in			
	0: Disabled.										
	1: Enabled.										
Bit0:	ECCFn: Cap	ture/Comp	are Flag Int	errupt Enab	ole.	0= \					
	I his bit sets	the maskin	g of the Ca	oture/Comp	are ⊢lag (C	CFn) interru	lpt.				
	1: Fnahle a	Canture/Co	pis. mpare Flag	interrunt re	quest when	n CCFn is se	<u>ə</u> t				
			pais i lag								

SFR Definition 22.3. PCA0CPMn: PCA Capture/Compare Mode

23.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming functions may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (RST) and C2D (P3.0) pins. Note that the C2D pin is shared on the 32-pin packages only (C8051F342/3/6/7/9/A/B). In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 23.1.

Figure 23.1. Typical C2 Pin Sharing

The configuration in Figure 23.1 assumes the following:

- 1. The <u>user input</u> (b) cannot change state while the target device is halted.
- 2. The \overline{RST} pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

