

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f343-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1. System Overview	
Figure 1.1. C8051F340/1/4/5 Block Diagram	19
Figure 1.2. C8051F342/3/6/7 Block Diagram	20
Figure 1.3. C8051F348/C Block Diagram	
Figure 1.4. C8051F349/D Block Diagram	
Figure 1.5. C8051F34A/B Block Diagram	23
4. Pinout and Package Definitions	
Figure 4.1. TQFP-48 Pinout Diagram (Top View)	31
Figure 4.2. TQFP-48 Package Diagram	
Figure 4.3. TQFP-48 Recommended PCB Land Pattern	
Figure 4.4. LQFP-32 Pinout Diagram (Top View)	
Figure 4.5. LQFP-32 Package Diagram	
Figure 4.6. LQFP-32 Recommended PCB Land Pattern	36
Figure 4.7. QFN-32 Pinout Diagram (Top View)	
5. 10-Bit ADC (ADC0, C8051F340/1/2/3/4/5/6/7/A/B Only)	
Figure 5.1. ADC0 Functional Block Diagram	41
Figure 5.2. Temperature Sensor Transfer Function	43
Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 V)	44
Figure 5.4. 10-Bit ADC Track and Conversion Example Timing	46
Figure 5.5. ADC0 Equivalent Input Circuits	47
Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data	54
Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data	54
Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data	55
Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data	55
6. Voltage Reference (C8051F340/1/2/3/4/5/6/7/A/B Only)	
Figure 6.1. Voltage Reference Functional Block Diagram	57
7. Comparators	
Figure 7.1. Comparator Functional Block Diagram	60
Figure 7.2. Comparator Hysteresis Plot	
8. Voltage Regulator (REG0)	
Figure 8.1. REG0 Configuration: USB Bus-Powered	
Figure 8.2. REG0 Configuration: USB Self-Powered	70
Figure 8.3. REG0 Configuration: USB Self-Powered, Regulator Disabled	71
Figure 8.4. REG0 Configuration: No USB Connection	71
9. CIP-51 Microcontroller	
Figure 9.1. CIP-51 Block Diagram	73
Figure 9.2. On-Chip Memory Map for 64 kB Devices	
Figure 9.3. On-Chip Memory Map for 32 kB Devices	80
11. Reset Sources	
Figure 11.1. Reset Sources 1	
Figure 11.2. Power-On and VDD Monitor Reset Timing 1	01

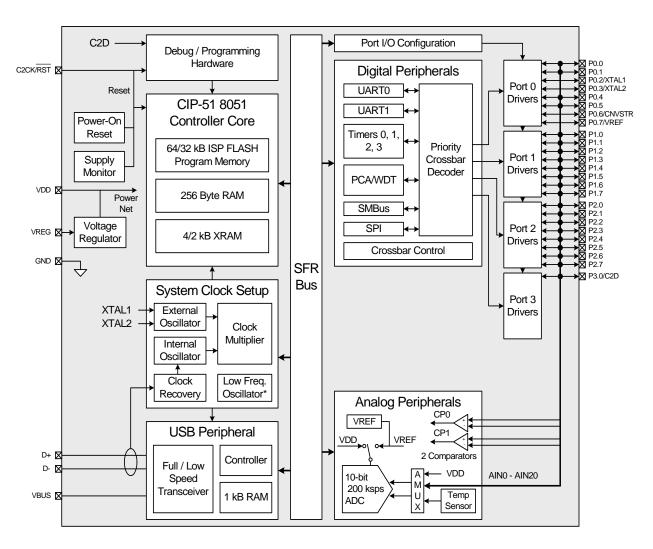
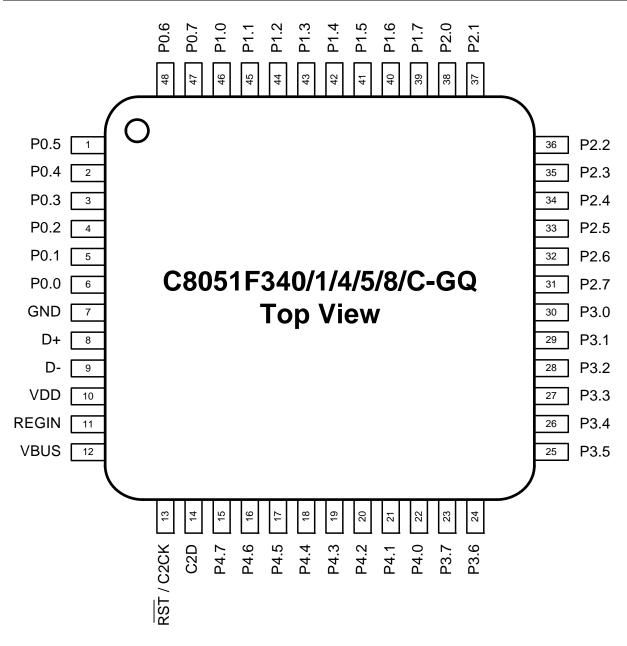
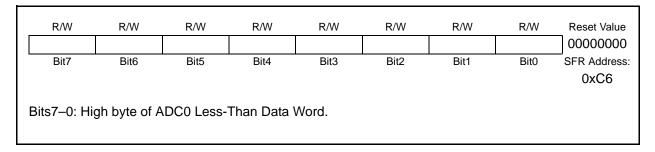
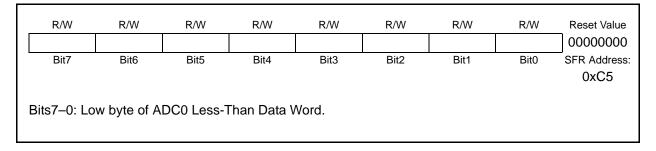


Figure 1.5. C8051F34A/B Block Diagram


Figure 4.1. TQFP-48 Pinout Diagram (Top View)

SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

SFR Definition 9.11. EIE2: Extended Interrupt Enable 2
--

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	-	ES1	EVBUS	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE7
Bits7–2: Bit1: Bit0:	UNUSED. R ES1: Enable This bit sets 0: Disable U 1: Enable U EVBUS: Ena This bit sets 0: Disable al 1: Enable int	UART1 Int the maskin ART1 intern ART1 intern able VBUS the maskin I VBUS inte	errupt. g of the UA upt. Level Interri g of the VB errupts.	RT1 interru upt. US interrup	pt. t.	ISE.		

SFR Definition 9.12. EIP2: Extended Interrupt Priority 2

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	-	PS1	PVBUS	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF7
Bits7–2: Bit1: Bit0:	UNUSED. R PS1: UART1 This bit sets 0: UART1 int 1: UART1 int PVBUS: VBU This bit sets 0: VBUS inte 1: VBUS inte	Interrupt F the priority terrupt set t terrupts set JS Level In the priority errupt set to	Priority Cont of the UAR o low priorit to high prior terrupt Prio of the VBU low priority	rol. T1 interrupt ty level. prity level. rity Control. S interrupt. y level.				

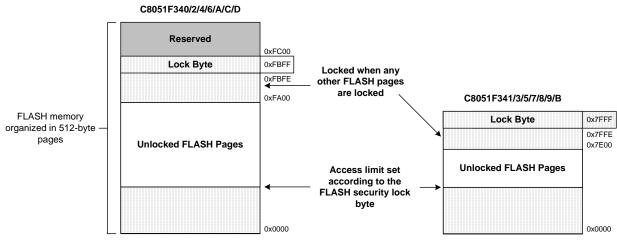


Figure 12.1. Flash Program Memory Map and Security Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
-	USBFAE	-	EMD2	EMD1	EMD0	EALE1	EALE0	00000011			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-			
	SFR Address: 0x85										
Bit7:	Unused. Rea										
Bit6:	USBFAE: US										
	0: USB FIFO			•				he menned			
	1: USB FIFO in XRAM spa										
	greater than										
	area with M			OTOOLI		2 × 0100		033 (113			
Bit5:	Unused. Rea			care.							
Bit4:	EMD2: EMIF										
	0: EMIF oper	•			mode.						
	1: EMIF oper				parate add	ress and da	ita pins).				
Bits3-2:	EMD1-0: EN		•								
	These bits co										
	00: Internal C			on-chip XR	AM only. Al	Il effective a	addresses a	alias to			
	on-chip mem			A	ь						
	01: Split Mod										
	directed on-c off-chip MOV										
	resolve uppe										
	set to a page										
	10: Split Mod				•		boundary a	are directed			
	on-chip. Acce										
	MOVX opera	tions use t	he contents	of EMI0CN	I to determi	ne the high	-byte of the	address.			
	11: External (Only: MOV	X accesses	s off-chip XF	RAM only. C	n-chip XRA	AM is not vi	sible to the			
	CPU.										
Bits1–0:	EALE1-0: AL						= 0).				
	00: ALE high										
	01: ALE high										
	10: ALE high 11: ALE high										
			ow puise wi	uui – 4 0 I C		0.					

13.5. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMI0CF.4) bit.

13.5.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 13.2.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the 'Q' outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.

See Section "13.7.2. Multiplexed Mode" on page 127 for more information.

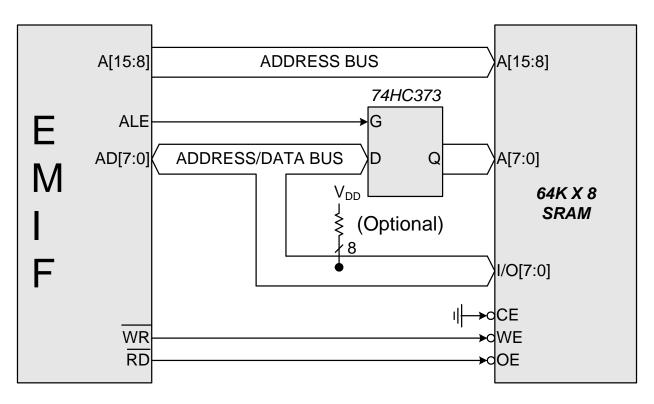
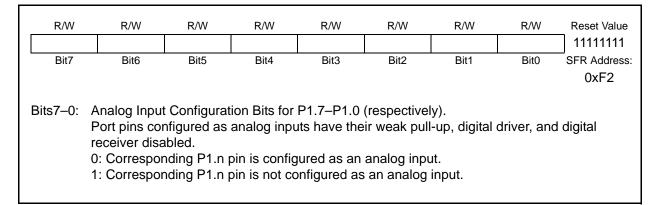
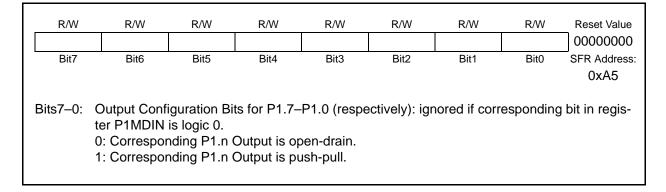


Figure 13.2. Multiplexed Configuration Example

SFR Definition 14.3. OSCLCN: Internal L-F Oscillator Control


R/W	R	R/W	R	R/W	R/W	R/W	R/W	Reset Value		
-										
OSCLEN			OSCLF2	OSCLF1	OSCLF0	OSCLD1	OSCLD0	00vvvv00		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0x86		
Bit7:	0: Internal L-F Oscillator Disabled.									
Bit6:	1: Internal L-F Oscillator Enabled. OSCLRDY: Internal L-F Oscillator Ready Flag. 0: Internal L-F Oscillator frequency not stabilized. 1: Internal L-F Oscillator frequency stabilized.									
Bits5–2: OSCLF[3:0]: Internal L-F Oscillator Frequency Control bits. Fine-tune control bits for the internal L-F Oscillator frequency. When set to 0000b, the L-F oscillator operates at its fastest setting. When set to 1111b, the L-F oscillator operates at its										
Bits1–0:	 slowest setting. OSCLD[1:0]: Internal L-F Oscillator Divider Select. 00: Divide by 8 selected. 01: Divide by 4selected. 10: Divide by 2 selected. 11: Divide by 1 selected. 									


SFR Definition	15.8. P1:	Port1 Latch
----------------	-----------	-------------

R/W	R/W P1.6	R/W P1.5	R/W P1.4	R/W P1.3	R/W P1.2	R/W P1.1	R/W P1.0	Reset Value 11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 (bit	Bit0 t addressable	SFR Address: 0x90
Bits7–0:	P1.[7:0] Write - Outp 0: Logic Low 1: Logic Higl Read - Alwa pin when co 0: P1.n pin is 1: P1.n pin is	/ Output. h Output (hi ys reads '0' nfigured as s logic low.	gh impedar if selected digital inpu	nce if corres as analog i	ponding P1	MDOUT.n l	bit = 0).	

SFR Definition 15.9. P1MDIN: Port1 Input Mode

SFR Definition 15.10. P1MDOUT: Port1 Output Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
BUSY		R/W	K /W			R/W	K/ VV	00000000		
Bit7	Bit6	BIt5	Bit4	BIt3	Bit2	BIT	Bit0	SFR Address:		
								0x96		
Bits7: Bit6: Bits5–0:	BUSY: USB0 This bit is user initiate a read target address set to '1', hard USB0DAT reg Write: 0: No effect. 1: A USB0 ind Read: 0: USB0DAT r 1: USB0 is bu AUTORD: US This bit is use 0: BUSY must 1: The next in USB0DAT (US USBADDR: U These bits hol lists the USB0 will target the	d during ir of the US s and BUS ware will jister. Soft lirect regis register da sy access B0 Regis d for bloc t be writte direct regis SBADDR SB0 Indir d a 6-bit a) core regis	adirect USB B0 register SY bit may b clear BUSY ware shoul ster read is ata is valid. sing an indir ter Auto-reat k FIFO reat n manually ster read w bits will not ect Registe ddress use sters and th	0 register ad targeted by be written in ' when the t d check BU initiated at t rect register ad Flag ds. for each US ill automatic be changed r Address d to indirect heir indirect	the USBAI the same v argeted reg SY for '0' be he address (USB0DAT SB0 indirect cally be initia d).	DDR bits (U vrite to USE ister data is efore writing specified b register da register rea ated when s	ISB0ADR. B0ADR. Af s ready in t g to USB0I by the USB ta is invali- ad. software re	[5-0]). The ter BUSY is the DAT. ADDR bits. d. eads s. Table 16.2		

USB Register Definition 16.13. CMINT: USB0 Common Interrupt

R	R	R	R	R	R	R	R	Reset Value			
-	-	-	-	SOF	RSTINT	RSUINT	SUSINT	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address:			
						0x06					
Bits7–4:	Unused. Rea			n't care.							
Bit3:	SOF: Start o		•								
	Set by hardw										
	ware: an inte the actual SC	•	•		ware expec	ts to receive	e a SOF ev	ent, even li			
	This bit is cle				1INT registe	ər.					
	0: SOF interi										
	1: SOF interi	rupt active.									
Bit2:	RSTINT: Res										
	Set by hardw										
	This bit is cle 0: Reset inte				invi registe	÷1.					
	1: Reset inte										
Bit1:	RSUINT: Re			g Flag							
	Set by hardw mode.	vare when I	Resume sig	naling is de	tected on th	ne bus while	e USB0 is i	n suspend			
	This bit is cleared when software reads the CMINT register.										
	0: Resume interrupt inactive.										
D:+0.	1: Resume in			а <u>Г</u> Іаа							
Bit0:	SUSINT: Sus When Suspe				N in registe		this hit is	eet by bard-			
	ware when S										
	reads the CM		•								
	0: Suspend i	•									
	1: Suspend i	nterrupt ac	ive.								

USB Register Definition 16.21. EOUTCSRL: USB0 OUT Endpoint Control Low Byte

W	R/W	R/W	R/W	R	R/W	R	R/W	Reset Value				
CLRDT	STSTL	SDSTL	FLUSH	DATERR	OVRUN	FIFOFUL	OPRDY	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0x14				
Bit7:	7: CLRDT: Clear Data Toggle Write: Software should write '1' to this bit to reset the OUT endpoint data toggle to '0'. Read: This bit always reads '0'.											
Bit6:	STSTL: Sent Stall Hardware sets this bit to '1' when a STALL handshake signal is transmitted. This flag must be cleared by software.											
Bit5:	SDSTL: Sen Software sho '0' to this bit	ould write '1		•				nould write				
Bit4:	 '0' to this bit to terminate the STALL signal. This bit has no effect in ISO mode. FLUSH: FIFO Flush Writing a '1' to this bit flushes the next packet to be read from the OUT endpoint FIFO. The FIFO pointer is reset and the OPRDY bit is cleared. If the FIFO contains multiple packets, software must write '1' to FLUSH for each packet. Hardware resets the FLUSH bit to '0' when the FIFO flush is complete. Note: If data for the current packet has already been read from the FIFO, the FLUSH bit should not be used to flush the packet. Instead, the entire data packet should be read from the 											
Bit3:	DATERR: Da In ISO mode It is cleared	e, this bit is a when softwa						uffing error.				
Bit2:	OVRUN: Data Overrun This bit is set by hardware when an incoming data packet cannot be loaded into the OUT endpoint FIFO. This bit is only valid in ISO mode, and must be cleared by software. 0: No data overrun.											
Bit1:	1: A data packet was lost because of a full FIFO since this flag was last cleared. FIFOFUL: OUT FIFO Full This bit indicates the contents of the OUT FIFO. If double buffering is enabled for the end- point (DBIEN = '1'), the FIFO is full when the FIFO contains two packets. If DBIEN = '0', the											
Bit0:	FIFO is full v 0: OUT endp 1: OUT endp OPRDY: OU Hardware se ware should	when the Fl point FIFO i point FIFO i T Packet R ets this bit to	FO contain s not full. s full. eady o '1' and ge	s one packe nerates an i	et. nterrupt wh	en a data pa	acket is ava	ailable. Soft-				

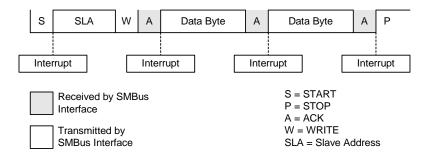


Figure 17.5. Typical Master Transmitter Sequence

	Valu	Values R		d			Values Written		
Mode	Status Vector	ACKRQ	ACKRQ ARBLOST		Current SMbus State	Typical Response Options	STA	STo	ACK
	1110	0	0	х	A master START was generated.	Load slave address + R/W into SMB0DAT.	0	0	х
		0	0	0	A master data or address byte	Set STA to restart transfer.	1	0	Х
Ē		Ŭ	U	Ŭ	was transmitted; NACK received.	Abort transfer.	0	1	Х
nsmitte						Load next data byte into SMB0DAT.	0	0	х
Tra						End transfer with STOP.	0	1	Х
Master Transmitter	1100	100 0 0 1 A master data or address byte was transmitted; ACK received.	End transfer with STOP and start another transfer.	1	1	х			
2					was transmitted, ACI TECEIVEU.	Send repeated START.	1	0	Х
						Switch to Master Receiver Mode (clear SI without writ- ing new data to SMB0DAT).	0	0	x
						Acknowledge received byte; Read SMB0DAT.	0	0	1
						Send NACK to indicate last byte, and send STOP.	0	0	0
						Send NACK to indicate last byte, and send STOP fol- lowed by START.	1	1	0
ceiver						Send ACK followed by repeated START.	1	0	1
Master Receiver	1000	1	0	x	A master data byte was received; ACK requested.	Send NACK to indicate last byte, and send repeated START.	1	0	0
Z						Send ACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	1
						Send NACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	0

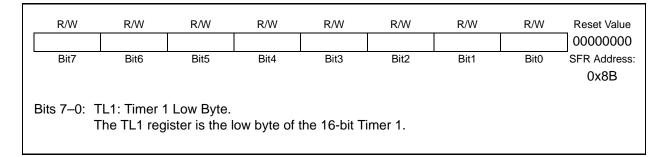
Table 17.4. SMBus Status Decoding

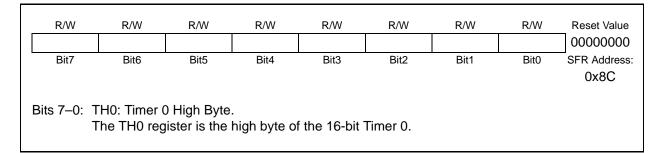
Figure 19.6. UART Multi-Processor Mode Interconnect Diagram

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value				
OVR1	PERR1	THRE1	REN1	TBX1	RBX1	TI1	RI1	00100000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
							SFR Addres	s: 0xD2				
Bit7:	OVR1: Rece											
	This bit is used to indicate a receive FIFO overrun condition.											
	0: Receive FIFO Overrun has not occurred.1: Receive FIFO Overrun has occurred (an incoming character was discarded due to a full											
	FIFO).	TFO Ovenu	n nas occu	neu (an inc	oming chara	acter was u	iscarded c	iue to a full				
	This bit must	t he cleared	to '0' by se	oftware								
Bit6:	PERR1: Par		•	niware.								
	When parity	•	-	sed to indica	ate that a pa	arity error ha	as occurre	d. It is set to				
	'1' when the											
	0: Parity Erro	or has not o	ccurred.									
	1: Parity Erro											
	This bit must											
Bit5:	THRE1: Transmit Holding Register Empty Flag.											
	0: Transmit Holding Register not Empty - do not write to SBUF1.1: Transmit Holding Register Empty - it is safe to write to SBUF1.											
Bit4:				y - It is safe	to write to S	SBUF1.						
DIL4.	REN1: Receive Enable.											
	This bit enables/disables the UART receiver. When disabled, bytes can still be read from the receive FIFO.											
	0: UART1 re		abled.									
	1: UART1 re	•										
Bit3:	TBX1: Extra Transmission Bit.											
	The logic lev	el of this bit	will be ass	signed to the	e extra trans	smission bit	when XB	E1 is set to				
	'1'. This bit is	s not used v	vhen Parity	is enabled.								
Bit2:	RBX1: Extra Receive Bit.											
	RBX1 is assigned the value of the extra bit when XBE1 is set to '1'. If XBE1 is cleared to '0',											
	RBX1 will be assigned the logic level of the first stop bit. This bit is not valid when Parity is											
D:44 .	enabled. TI1: Transmit Interrupt Flag.											
Bit1:		•	-	hac haan tr	anomittod o	t the begin	ning of the					
	Set to a '1' by hardware after data has been transmitted, at the beginning of the STOP bit.											
	When the UART1 interrupt is enabled, setting this bit causes the CPU to vector to the UART1 interrupt service routine. This bit must be cleared manually by software.											
Bit0:	RI1: Receive					manaany by	, contraro					
	Set to '1' by I			of data has	been receiv	ed by UAR	Γ1 (set at t	he STOP bit				
	sampling tim											
	to vector to t	he UART1	interrupt se	rvice routine	e. This bit m	nust be clea	red manua	ally by soft-				
	ware. Note the							FIFO. After				
	the last byte	hac been c	hifted from									

SFR Definition 19.1. SCON1: UART1 Control

SFR Definition 20.2. SPI0CN: SPI0 Control


R/W SPIF	R/W WCOL	R/W MODF	R/W	R/W NSSMD1	R/W	R TXBMT	R/W SPIEN	Reset Value 00000110			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable			
	SFR Address: 0xF8										
Bit 7:	SPIF: SPI0 Interrupt Flag. This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled, setting this bit causes the CPU to vector to the SPI0 interrupt service routine. This bit is not										
Bit 6:	automatically cleared by hardware. It must be cleared by software. WCOL: Write Collision Flag. This bit is set to logic 1 if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes. It										
Bit 5:	must be cleared by software. MODF: Mode Fault Flag. This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). This bit is not auto-										
Bit 4:	matically cleared by hardware. It must be cleared by software. RXOVRN: Receive Overrun Flag (Slave Mode only). This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when the receive buf- fer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI0 shift register. This bit is not automatically cleared by hardware. It must be cleared by software.										
Bits 3–2:	 NSSMD1–NSSMD0: Slave Select Mode. Selects between the following NSS operation modes: (See Section "20.2. SPI0 Master Mode Operation" on page 224 and Section "20.3. SPI0 Slave Mode Operation" on page 226). 00: 3-Wire Slave or 3-wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is always an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will 										
Bit 1:	assume the value of NSSMD0. TXBMT: Transmit Buffer Empty. This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.										
Bit 0:	SPIEN: SPIC This bit enab 0: SPI disab 1: SPI enabl	oles/disable led.	es the SPI.								


SFR Definition 21.4. TL0: Timer 0 Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
								00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0x8A	
Bits 7–0: TL0: Timer 0 Low Byte. The TL0 register is the low byte of the 16-bit Timer 0.									

SFR Definition 21.5. TL1: Timer 1 Low Byte

SFR Definition 21.6. TH0: Timer 0 High Byte

SFR Definition 21.7. TH1: Timer 1 High Byte

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
						Disc		Dia	00000000		
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
									0x8D		
Bits	Bits 7–0: TH1: Timer 1 High Byte. The TH1 register is the high byte of the 16-bit Timer 1.										

When T3SPLIT = '1', the Timer 3 registers (TMR3H and TMR3L) act as two 8-bit counters. Each counter counts up independently and overflows from 0xFF to 0x00. Each time a capture event is received, the contents of the Timer 3 registers are latched into the Timer 3 Reload registers (TMR3RLH and TMR3RLL). A Timer 3 interrupt is generated if enabled.

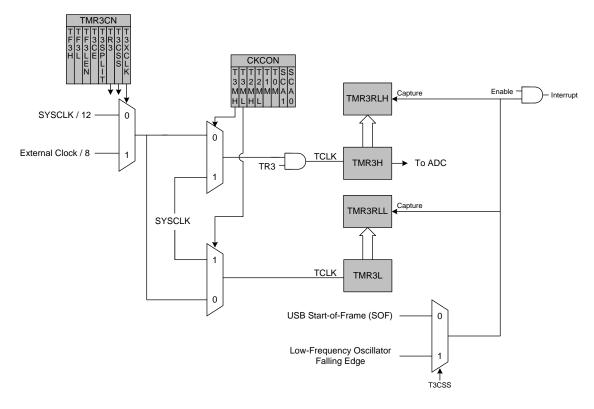
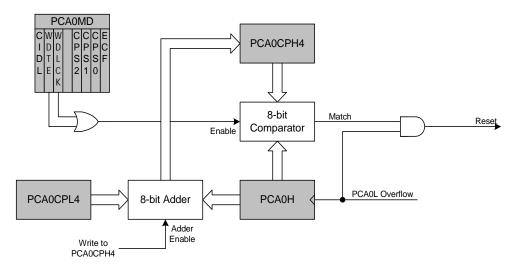


Figure 21.11. Timer 3 Capture Mode (T3SPLIT = '1')

22.3. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 4. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH4) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.


With the WDTE and/or WDLCK bits set to '1' in the PCA0MD register, Module 4 operates as a watchdog timer (WDT). The Module 4 high byte is compared to the PCA counter high byte; the Module 4 low byte holds the offset to be used when WDT updates are performed. **The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled.**

22.3.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCA0L and PCA0H are not allowed.
- PCA clock source bits (CPS2-CPS0) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 4 is forced into Watchdog Timer mode.
- Writes to the Module 4 mode register (PCA0CPM4) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCA0CPH4 and PCA0H while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH4. Upon a PCA0CPH4 write, PCA0H plus the offset held in PCA0CPL4 is loaded into PCA0CPH4 (See Figure 22.10).

Figure 22.10. PCA Module 4 with Watchdog Timer Enabled

Note that the 8-bit offset held in PCA0CPH4 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCA0L overflows before a reset. Up to 256 PCA clocks may pass before the first PCA0L overflow occurs, depending on the value of the PCA0L when the update is performed. The total offset is then given (in PCA clocks) by Equation 22.4, where PCA0L is the value of the PCA0L register at the time of the update.

