

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f343-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

17.5.3 Slave Receiver Mode	201
17.5.4 Slave Transmitter Mode	201
17.6 SMBus Status Decoding	202
18 LIARTO	202
18 1 Enhanced Baud Rate Generation	206
18.2 Operational Modes	200
18 2 1 8-Bit LIART	200
18 2 2 9-Bit LIART	208
18.3 Multiprocessor Communications	208
19 UART1 (C8051F340/1/4/5/8/A/B/C Only)	213
19 1 Baud Rate Generator	214
19.2 Data Format	215
19.3 Configuration and Operation	216
19.3.1 Data Transmission	216
10.3.2 Data Recention	216
19.3.3 Multiprocessor Communications	217
20 Enhanced Serial Perinheral Interface (SPI0)	222
20.1 Signal Descriptions	223
20.1.1 Master Out, Slave In (MOSI)	223
20.1.2 Master In Slave Out (MISO)	223
20.1.3 Serial Clock (SCK)	223
20.1.4 Slave Select (NSS)	223
20.2 SPI0 Master Mode Operation	224
20.3 SPI0 Slave Mode Operation	224
20.4 SPI0 Interrupt Sources	226
20.5 Serial Clock Timing	227
20.6 SPI Special Function Registers	229
21 Timers	235
21 1 Timer 0 and Timer 1	235
21 1 1 Mode 0: 13-bit Counter/Timer	235
21.1.2 Mode 1: 16-bit Counter/Timer	236
21.1.3 Mode 2: 8-bit Counter/Timer with Auto-Reload	237
21.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)	238
21.2.Timer 2	243
21.2.1.16-bit Timer with Auto-Reload	243
21.2.2.8-bit Timers with Auto-Reload	244
21.2.3. Timer 2 Capture Modes: USB Start-of-Frame or LFO Falling Edge	245
21.3.Timer 3	249
21.3.1.16-bit Timer with Auto-Reload	249
21.3.2.8-bit Timers with Auto-Reload	250
21.3.3.USB Start-of-Frame Capture	251
22. Programmable Counter Array (PCA0)	255
22.1.PCA Counter/Timer	256
22.2.Capture/Compare Modules	257
22.2.1.Edge-triggered Capture Mode	258

5.4.1. Window Detector In Single-Ended Mode

Figure 5.6 shows two example window comparisons for right-justified, single-ended data, with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). In single-ended mode, the input voltage can range from '0' to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 5.7 shows an example using left-justified data with equivalent ADC0GT and ADC0LT register settings.

Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data

Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data

SFR Definition 7.5. CPT1MX: Comparator1 MUX Selection

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	CMX1N2	2 CMX1N	1 CMX1N	- 0	CMX1P	2 CMX1P1	CMX1P0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x9E
Bit7:	UNUSED.	Read = 0b	, Write = do	on't care.				
Bits6–4:	CMX1N2-	CMX1N0: (Comparato	¹ Negative Inp	out MUX	Select.		
	These bits	select which	ch Port pin	is used as the	Compara	ator1 negative	e input.	
	CMX1N2	CMX1N1	CMX1N0	Negative I	nput	Negative In	put	
	_			(32-pin Pac	kage)	(48-pin Pack	(age)	
	0	0	0	P1.3		P2.3		
	0	0	1	P1.7		P3.1		
	0	1	0	P2.3		P4.0		
	0	1	1	P2.7		P4.6		
	1	0	0	P0.5		P1.2		
Bit3:	UNUSED.	Read = 0b	, Write = do	on't care.				
Bits2–0:	CMX1P1-	CMX1P0: 0	Comparator	1 Positive Inpu	ut MUX S	Select.		
	These bits	select which	ch Port pin	is used as the	Compara	ator1 positive	input.	
	CMX1P2	CMX1P1	CMX1P0	Positivo Ir	nut	Positive In	nut	
				(32-pin Pac	kage)	(48-pin Pack	kage)	
	0	0	0	P1.2		P2.2		
	0	0	1	P1.6		P3.0		
	0	1	0	P2.2		P3.7		
	0	1	1	P2.6		P4.5		
	1	0	0	P0.4		P1.1		
	L							
Note that	the port pin	is used by	the compar	ator depend o	n the pac	ckage type (32	2-pin or 48-	pin).

SFR	Definition	7.6.	CPT1MD:	Comparator1	Mode	Selection

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
-	-	CP1RIE	CP1FIE	-	-	CP1MD1	CP1MD0	00000010				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0x9C				
Bits7–6:	UNUSED. R	Read = $00b$,	Write = dor	n't care.								
Bit5:	CP1RIE: Comparator1 Rising-Edge Interrupt Enable.											
	0: Comparator1 rising-edge interrupt disabled.											
	1: Comparator1 rising-edge interrupt enabled.											
Bit4:	CP1FIE: Comparator1 Falling-Edge Interrupt Enable.											
	0: Comparator1 falling-edge interrupt disabled.											
	1: Comparat	tor1 falling-	edge interru	pt enabled.								
Bits1–0:	CP1MD1–C	P1MD0: Co	mparator1	Mode Selec	:t.							
	These bits s	elect the re	sponse time	e for Compa	rator1.							
	Mode	CP1MD1	CP1MD0	CP1 Res	ponse Tim	e*						
	0	0	0	Fastest	Response							
	1	0	1									
	2	1	0									
	3	1	1	Lowe	st Power							
	<u> </u>											
* See Table 7.1 for response time parameters.												

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
PT3	PCP1	PCP0	PPCA0	PADC0	PWADC0	PUSB0	PSMB0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
Bit7:	PT3: Timer 3 Interrupt Priority Control. This bit sets the priority of the Timer 3 interrupt.										
	0: Timer 3 interrupts set to low priority level.										
	1: Timer 3 in	terrupts set	to high prio	ority level.							
Bit6:	PCP1: Comp	parator1 (C	P1) Interrup	ot Priority C	ontrol.						
	This bit sets	the priority	of the CP1	interrupt.							
	0: CP1 interr	rupt set to lo	ow priority l	evel.							
D 11 D	1: CP1 interr	rupt set to h	high priority	level.							
Bit5:	PCP0: Comp	parator0 (C	P0) Interrup	ot Priority C	ontrol.						
	I his bit sets	the priority	of the CPU	interrupt.							
	0: CP0 Interr	rupt set to lo	ow priority i	evel.							
Dit4	T: CPU Intern	rupt set to n	lign priority	rov (DCAO)	Interrupt Dr	iority Cont	ol				
DII4.	This bit acts	grammable	of the DCA	Diptorrupt	interrupt Pr	ionty Contr	01.				
		the phoney	low priority								
	1. PCA0 inte	rrupt set to	high priorit								
Bit3.		10 Conversi	on Complet	te Interrunt	Priority Con	trol					
Dito.	This bit sets	the priority	of the ADC	0 Conversi	on Complete	e interrunt					
	0. ADC0 Col	nversion Co	omplete inte	errupt set to	low priority	level					
	1: ADC0 Co	nversion Co	mplete inte	errupt set to	high priority	/ level.					
Bit2:	PWADC0: A	DC0 Windo	w Compara	ator Interrup	ot Priority Co	ontrol.					
	This bit sets	the priority	of the ADC	0 Window i	nterrupt.						
	0: ADC0 Wir	ndow interru	upt set to lo	w priority le	vel.						
	1: ADC0 Wir	ndow interru	, upt set to hi	gh priority l	evel.						
Bit1:	PUSB0: USE	30 Interrupt	Priority Co	ntrol.							
	This bit sets	the priority	of the USB	0 interrupt.							
	0: USB0 inte	errupt set to	low priority	level.							
	1: USB0 inte	errupt set to	high priorit	y level.							
Bit0:	PSMB0: SM	Bus (SMB0) Interrupt I	Priority Con	trol.						
	This bit sets	the priority	of the SMB	80 interrupt.							
	0: SMB0 inte	errupt set to	low priority	/ level.							
	1: SMB0 inte	errupt set to	high priorit	ty level.							

SFR Definition 9.10. EIP1: Extended Interrupt Priority 1

SFR Definition 9.13. IT01CF: INT0/INT1 Configuration

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
IN1PL	IN1SL2	IN1SL1	IN1SL0	IN0PL	IN0SL2	IN0SL1	IN0SL0	00000001			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xE4			
Note: Re	fer to SFR Def	inition 21	for INT0/1	edae- or le	vel-sensitiv	e interrupt s	selection	-			
1000110				ougo or le		o interrupt e					
Bit7:	IN1PL: INT1	Polarity									
Bitti	0: INT1 input	is active lo	W.								
	1: INT1 input	is active h	iah.								
Bits6–4:	IN1SL2-0: IN	IT1 Port Pi	n Selection	Bits							
	These bits se	lect which	Port pin is a	assigned to	INT1. Note	that this pir	n assignme	ent is inde-			
	pendent of th	e Crossba	r; INT1 will ı	monitor the	assigned F	ort pin with	out disturb	ing the			
	peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not										
	assign the Port pin to a peripheral if it is configured to skip the selected pin (accomplished by										
	setting to '1' t	he corresp	onding bit i	n register F	OSKIP).		•				
	IN1SL2–0 INT1 Port Pin										
	000 P0.0										
	001		P0.1								
	010		P0.2								
	011 P0.3										
	100		P0.4								
	101		P0.5								
	110		P0.6								
	111		P0.7								
Bit3:	IN0PL: INT0	Polarity									
	0: INT0 interr	upt is activ	e low.								
	1: INT0 interr	<u>upt i</u> s activ	e high.								
Bits2–0:	INT0SL2-0: I	NT0 Port F	Pin Selection	n Bits							
	These bits se	lect which	Port pin is a	assigned to	INT0. Note	that this pir	n assignme	ent is inde-			
	pendent of th	e Crossba	r. INTO will r	monitor the	assigned P	ort pin with	out disturbi	ing the			
	peripheral that	at has beer	n assigned t	he Port pin	via the Cro	ssbar. The	Crossbar v	vill not			
	assign the Po	ort pin to a p	peripheral if	it is configu	ired to skip	the selected	i pin (accoi	mplished by			
	setting to 11 t	ne corresp	onding bit i	n register F	USKIP).						
			<u> </u>								
	INUSL2-0	INI	0 Port Pin								
	000		P0.0								
	001		P0.1								
	010		P0.2								
	011		P0.3								
	100		P0.4								
	101		P0.5								
	110		P0.6								
	111		P0.7								

Table 11.1. Reset Electrical Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	I_{OL} = 8.5 mA, V_{DD} = 2.7 to 3.6 V			0.6	V
RST Input High Voltage		$0.7 ext{ x V}_{\text{DD}}$			V
RST Input Low Voltage				$0.3 \times V_{DD}$	
RST Input Pull-Up Current	RST = 0.0 V		25	40	μA
V_{DD} POR Threshold (V_{RST})		2.40	2.55	2.70	V
Missing Clock Detector Tim- eout	Time from last system clock ris- ing edge to reset initiation	100	220	500	μs
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	5.0			μs
Minimum RST Low Time to Generate a System Reset		15			μs
V _{DD} Monitor Turn-on Time		100			μs
V _{DD} Monitor Supply Current			20	50	μÂ

12. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system through the C2 interface or by software using the MOVX instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operation is not required. Code execution is stalled during a Flash write/erase operation. Refer to Table 12.1 for complete Flash memory electrical characteristics.

12.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see **Section "23. C2 Interface" on page 271**.

To ensure the integrity of Flash contents, it is strongly recommended that the V_{DD} monitor be left enabled in any system which writes or erases Flash memory from code. It is also crucial to ensure that the FLRT bit in register FLSCL be set to '1' if a clock speed higher than 25 MHz is being used for the device.

12.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 12.2.

12.1.2. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY); and (2) Setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. A byte location to be programmed must be erased before a new value is written. The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

- Step 1. Disable interrupts (recommended).
- Step 2. Write the first key code to FLKEY: 0xA5.
- Step 3. Write the second key code to FLKEY: 0xF1.
- Step 4. Set the PSEE bit (register PSCTL).
- Step 5. Set the PSWE bit (register PSCTL).
- Step 6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.
- Step 7. Clear the PSWE bit (register PSCTL).
- Step 8. Clear the PSEE bit (register PSCTI).

12.1.3. Flash Write Procedure

Bytes in Flash memory can be written one byte at a time, or in groups of two. The FLBWE bit in register PFE0CN (SFR Definition 10.1) controls whether a single byte or a block of two bytes is written to Flash during a write operation. When FLBWE is cleared to '0', the Flash will be written one byte at a time. When FLBWE is set to '1', the Flash will be written in two-byte blocks. Block writes are performed in the same amount of time as single-byte writes, which can save time when storing large amounts of data to Flash memory.During a single-byte write to Flash, bytes are written individually, and a Flash write will be performed after each MOVX write instruction. The recommended procedure for writing Flash in single bytes is:

- Step 1. Disable interrupts.
- Step 2. Clear the FLBWE bit (register PFE0CN) to select single-byte write mode.
- Step 3. Set the PSWE bit (register PSCTL).
- Step 4. Clear the PSEE bit (register PSCTL).
- Step 5. Write the first key code to FLKEY: 0xA5.
- Step 6. Write the second key code to FLKEY: 0xF1.
- Step 7. Using the MOVX instruction, write a single data byte to the desired location within the 512-byte sector.
- Step 8. Clear the PSWE bit.
- Step 9. Re-enable interrupts.

Steps 5-7 must be repeated for each byte to be written.

For block Flash writes, the Flash write procedure is only performed after the last byte of each block is written with the MOVX write instruction. A Flash write block is two bytes long, from even addresses to odd addresses. Writes must be performed sequentially (i.e. addresses ending in 0b and 1b must be written in order). The Flash write will be performed following the MOVX write that targets the address ending in 1b. If a byte in the block does not need to be updated in Flash, it should be written to 0xFF. The recommended procedure for writing Flash in blocks is:

- Step 1. Disable interrupts.
- Step 2. Set the FLBWE bit (register PFE0CN) to select block write mode.
- Step 3. Set the PSWE bit (register PSCTL).
- Step 4. Clear the PSEE bit (register PSCTL).
- Step 5. Write the first key code to FLKEY: 0xA5.
- Step 6. Write the second key code to FLKEY: 0xF1.
- Step 7. Using the MOVX instruction, write the first data byte to the even block location (ending in 0b).
- Step 8. Write the first key code to FLKEY: 0xA5.
- Step 9. Write the second key code to FLKEY: 0xF1.
- Step 10. Using the MOVX instruction, write the second data byte to the odd block location (ending in 1b).
- Step 11. Clear the PSWE bit.
- Step 12. Re-enable interrupts.

Steps 5–10 must be repeated for each block to be written.

13.7.1.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '101' or '111'.

Nonmuxed 8-bit WRITE without Bank Select

Figure 13.6. Non-multiplexed 8-bit MOVX without Bank Select Timing

13.7.2. Multiplexed Mode

13.7.2.1.16-bit MOVX: EMI0CF[4:2] = '001', '010', or '011'.

Figure 13.8. Multiplexed 16-bit MOVX Timing

SFR Definition	15.8. P1:	Port1	Latch
----------------	-----------	-------	-------

R/W P1.7	R/W P1.6	R/W P1.5	R/W P1.4	R/W P1.3	R/W P1.2	R/W P1.1	R/W P1.0	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bit	t addressable) 0x90
Bits7–0:	P1.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alwa pin when cou 0: P1.n pin is 1: P1.n pin is	ut appears o Output. n Output (hi ys reads '0' nfigured as s logic low. s logic high.	on I/O pins gh impedar if selected digital input	per Crossba nce if corres as analog ir	ar Registers ponding P1 nput in regis	s (when XB, IMDOUT.n I ster P1MDII	ARE = '1'). bit = 0). N. Directly	reads Port

SFR Definition 15.9. P1MDIN: Port1 Input Mode

SFR Definition 15.10. P1MDOUT: Port1 Output Mode

USB Register Definition 16.17. E0CSR: USB0 Endpoint0 Control

R/W	R/W	R/W	R	R/W	R/W	R/W	R	Reset Value			
SSUEN	O SOPRDY	SDSTL	SUEND	DATAEND	STSTL	INPRDY	OPRDY	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address:			
								0x11			
D:+7.		an dead Cat	un Find								
BIT/:	SSUEND: Se	are should	up Ena sot this hit	to '1' after se	nvicina a 9	Satun End (k					
	Hardware cle	ears the SU	IFND hit w	hen software	writes '1'	to SSUEND) event.			
	Read: This bit always reads '0'.										
Bit6:	SOPRDY: Se	erviced OP	RDY								
	Write: Softw	are should	write '1' to	this bit after	servicing a	a received E	ndpoint0 p	acket. The			
	OPRDY bit w	vill be clear	ed by a wri	te of '1' to So	OPRDY.						
Ditc	Read: This b	oit always re	eads '0'.								
DIIO.	Software car	u Stall write '1' to	this hit to	terminate the	ourrent tr	ansfer (due	to an erro	r condition			
	unexpected t	transfer red	uest. etc.).	Hardware w	vill clear thi	s bit to '0' w	hen the S	TALL hand-			
	shake is tran	smitted.	, ,								
Bit4:	SUEND: Set	up End									
	Hardware se	ts this read	-only bit to	'1' when a c	ontrol tran	saction ends	s before so	oftware has			
	written '1' to	the DATAE	ND bit. Ha	rdware clears	s this bit w	hen software	e writes '1'	to SSU-			
Bit3 [.])ata End									
Bitol	Software sho	ould write '1	' to this bit	:							
	1. When wri	ting '1' to IN	NPRDY for	the last outg	oing data	packet.					
	2. When wri	ting '1' to IN	NPRDY for	a zero-lengt	h data pac	ket.					
	3. When write	ting '1' to S	OPRDY af	ter servicing	the last inc	coming data	packet.				
Bit2.	STSTI · Sent	tomatically	cleared by	naroware.							
DILZ.	Hardware se	ts this bit to	o '1' after tr	ansmitting a	STALL ha	ndshake siq	nal. This fl	ag must be			
	cleared by so	oftware.									
Bit1:	INPRDY: IN	Packet Rea	ady								
	Software sho	ould write '1	' to this bit	after loading	a data pa	cket into the		0 FIFO for			
	transmit. Har	dware clea	rs this bit a	and generate	s an interr	upt under ei	ther of the	following			
	1 The packe	t is transmi	itted								
	2. The packe	t is overwri	tten bv an	incomina SE	TUP pack	et.					
	3. The packe	et is overwri	tten by an	incoming OL	JT packet.						
Bit0:	OPRDY: OU	T Packet R	eady								
	Hardware se	ts this read	-only bit ar	nd generates	an interru	pt when a da	ata packet	has been			
	received. Thi	IS DIT IS Clea	ared only w	nen software	e writes '1'	to the SOPH	KUY DIt.				

A Bulk or Interrupt pipe can be shut down (or Halted) by writing '1' to the SDSTL bit (EOUTCSRL.5). While SDSTL = '1', hardware will respond to all OUT requests with a STALL condition. Each time hardware generates a STALL condition, an interrupt will be generated and the STSTL bit (EOUTCSRL.6) set to '1'. The STSTL bit must be reset to '0' by firmware.

Hardware will automatically set OPRDY when a packet is ready in the OUT FIFO. Note that if double buffering is enabled for the target endpoint, it is possible for two packets to be ready in the OUT FIFO at a time. In this case, hardware will set OPRDY to '1' immediately after firmware unloads the first packet and resets OPRDY to '0'. A second interrupt will be generated in this case.

16.13.2.Endpoints1-3 OUT Isochronous Mode

When the ISO bit (EOUTCSRH.6) is set to '1', the target endpoint operates in Isochronous (ISO) mode. Once an endpoint has been configured for ISO OUT mode, the host will send exactly one data per USB frame; the location of the data packet within each frame may vary, however. Because of this, it is recommended that double buffering be enabled for ISO OUT endpoints.

Each time a data packet is received, hardware will load the received data packet into the endpoint FIFO, set the OPRDY bit (EOUTCSRL.0) to '1', and generate an interrupt (if enabled). Firmware would typically use this interrupt to unload the data packet from the endpoint FIFO and reset the OPRDY bit to '0'.

If a data packet is received when there is no room in the endpoint FIFO, an interrupt will be generated and the OVRUN bit (EOUTCSRL.2) set to '1'. If USB0 receives an ISO data packet with a CRC error, the data packet will be loaded into the endpoint FIFO, OPRDY will be set to '1', an interrupt (if enabled) will be generated, and the DATAERR bit (EOUTCSRL.3) will be set to '1'. Software should check the DATAERR bit each time a data packet is unloaded from an ISO OUT endpoint FIFO.

USB Register Definition 16.22. EOUTCSRH: USB0 OUT Endpoint Control High Byte

R/W DBOEN	R/W	R/W -	R/W -	R -	R -	R -	R -	Reset Value 0000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0x15	
Bit7: DBOEN: Double-buffer Enable 0: Double-buffering disabled for the selected OUT endpoint. 1: Double-buffering enabled for the selected OUT endpoint.									
Bit6:	 it6: ISO: Isochronous Transfer Enable This bit enables/disables isochronous transfers on the current endpoint. 0: Endpoint configured for bulk/interrupt transfers. 1: Endpoint configured for isochronous transfers. 								
Bits5–0:	Unused. Rea	ad = 00000	0b; Write =	don't care.					

USB Register Definition 16.23. EOUTCNTL: USB0 OUT Endpoint Count Low

USB Register Definition 16.24. EOUTCNTH: USB0 OUT Endpoint Count High

SFR	Definition	17.1.	SMB0CF:	SMBus	Clock/Configuration
-----	------------	-------	---------	--------------	----------------------------

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value	
ENSME	3 INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBCS1	SMBCS0	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_	
							SFR Address	: 0xC1	
Bit7:	3it7: ENSMB: SMBus Enable.								
	This bit enal	oles/disable	s the SMBu	s interface.	When enal	bled, the int	erface cons	stantly mon-	
	itors the SD.	A and SCL	DINS.						
	0: SMBus interface disabled.								
Dite	1: SMBus Interface enabled.								
DILO.	INH: SIVIBUS SIAVE INNIDIT.								
		when this bit is set to logic 1, the Sivibus does not generate an interrupt when slave events							
	not affected			CIVIDao Sia		bus. music			
	0: SMBus S	Iave Mode e	enabled.						
	1: SMBus S	lave Mode i	nhibited.						
Bit5:	BUSY: SMB	us Busy Ind	licator.						
	This bit is se	et to logic 1	by hardware	e when a tra	ansfer is in	progress. It	is cleared	to logic 0	
	when a STC	P or free-tir	neout is ser	nsed.					
Bit4:	EXTHOLD:	SMBus Set	up and Hold	Time Exte	nsion Enab	le.			
	This bit cont	rols the SD	A setup and	I hold times	according	to.			
	0: SDA Exte	ended Setup	and Hold T	imes disab	led.				
D:40.	1: SDA Exte	ended Setup	and Hold I	Imes enabl	ed.				
Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.				ua farada Ti	imor 2 to				
	I his bit enables SCL low timeout detection. If set to logic 1, the SMBUs forces					low Timer '	3 should be		
	programmed to generate interrupts at 25 ms, and the Timer 3 interrupt service routine								
should reset SMBus communication.						Junio			
Bit2:	SMBFTE: SMBus Free Timeout Detection Enable.								
	When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high for								
	more than 10 SMBus clock source periods.								
Bits1–0:	0: SMBCS1-SMBCS0: SMBus Clock Source Selection.								
	These two bits select the SMBus clock source, which is used to generate the SMBus bit								
	rate. The selected device should be configured according to Equation 17.1.								
	SMBCS1	SMBCS0	SM	Bus Clock	Source				
	0	0	<u>г</u>	imer 0 Ove	rflow				
	0	1	Г – I	imer 1 Ove	rflow				
	1	0	Timer	2 High Byte	e Overflow				
	1	1	Timer	2 Low Byte	e Overflow				

21. Timers

Each MCU includes four counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and two are 16-bit auto-reload timer for use with the ADC, SMBus, USB (frame measurements), Low-Frequency Oscillator (period measurements), or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 and Timer 3 offer 16-bit and split 8-bit timer functionality with auto-reload.

Timer 0 and Timer 1 Modes:	Timer 2 Modes:	Timer 3 Modes:	
13-bit counter/timer	16-bit timer with auto-reload	16-bit timer with auto-reload	
16-bit counter/timer	To-bit limer with auto-reload		
8-bit counter/timer with auto-reload	Two 8-bit timers with	Two 8-bit timers with	
Two 8-bit counter/timers (Timer 0 only)	auto-reload	auto-reload	

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M-T0M) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 21.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 and Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

21.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (**Section "9.3.5. Interrupt Register Descriptions" on page 90**); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (**Section 9.3.5**). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1-T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

21.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to **Section** "**15.1. Priority Crossbar Decoder**" **on page 144** for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 21.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal INT0 is active as defined by bit INOPL in register INT01CF (see SFR Definition 9.13). Setting GATE0 to '1' allows the timer to be controlled by the external input signal INT0 (see Section "9.3.5. Interrupt Register Descriptions" on page 90), facilitating pulse width measurements.

TR0	GATE0	INT0	Counter/Timer		
0	Х	Х	Disabled		
1	0	Х	Enabled		
1	1	0	Disabled		
1	1 1		Enabled		
X = Don't Care					

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT1 is used with Timer 1; the INT1 polarity is defined by bit IN1PL in register INT01CF (see SFR Definition 9.13).

21.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

22. Programmable Counter Array (PCA0)

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and five 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "15.1. Priority Crossbar Decoder" on page 144 for details on configuring the Crossbar). The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "22.2. Capture/Compare Modules" on page 257). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the internal oscillator drives the system clock. The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 22.1

Important Note: The PCA Module 4 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See **Section 22.3** for details.

Figure 22.1. PCA Block Diagram

23. C2 Interface

C8051F34x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

23.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 23.1. C2ADD: C2 Address

C2 Register Definition 23.2. DEVICEID: C2 Device ID

