E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 20x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f344-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Definition 14.3. OSCLCN: Internal L-F Oscillator Control	. 134
SFR Definition 14.4. OSCXCN: External Oscillator Control	. 137
SFR Definition 14.5. CLKMUL: Clock Multiplier Control	. 138
SFR Definition 14.6. CLKSEL: Clock Select	
SFR Definition 15.1. XBR0: Port I/O Crossbar Register 0	. 148
SFR Definition 15.2. XBR1: Port I/O Crossbar Register 1	. 149
SFR Definition 15.3. XBR2: Port I/O Crossbar Register 2	
SFR Definition 15.4. P0: Port0 Latch	
SFR Definition 15.5. P0MDIN: Port0 Input Mode	
SFR Definition 15.6. P0MDOUT: Porto Output Mode	
SFR Definition 15.7. P0SKIP: Port0 Skip	
SFR Definition 15.8. P1: Port1 Latch	
SFR Definition 15.9. P1MDIN: Port1 Input Mode	. 152
SFR Definition 15.10. P1MDOUT: Port1 Output Mode	
SFR Definition 15.11. P1SKIP: Port1 Skip	
SFR Definition 15.12. P2: Port2 Latch	
SFR Definition 15.13. P2MDIN: Port2 Input Mode	. 153
SFR Definition 15.14. P2MDOUT: Port2 Output Mode	
SFR Definition 15.15. P2SKIP: Port2 Skip	
SFR Definition 15.16. P3: Port3 Latch	
SFR Definition 15.17. P3MDIN: Port3 Input Mode	
SFR Definition 15.18. P3MDOUT: Port3 Output Mode	
SFR Definition 15.19. P3SKIP: Port3 Skip	
SFR Definition 15.20. P4: Port4 Latch	
SFR Definition 15.21. P4MDIN: Port4 Input Mode	. 157
SFR Definition 15.22. P4MDOUT: Port4 Output Mode	
SFR Definition 16.1. USB0XCN: USB0 Transceiver Control	
SFR Definition 16.2. USB0ADR: USB0 Indirect Address	. 163
SFR Definition 16.3. USB0DAT: USB0 Data	
USB Register Definition 16.4. INDEX: USB0 Endpoint Index	
USB Register Definition 16.5. CLKREC: Clock Recovery Control	
USB Register Definition 16.6. FIFOn: USB0 Endpoint FIFO Access	
USB Register Definition 16.7. FADDR: USB0 Function Address	
USB Register Definition 16.8. POWER: USB0 Power	
USB Register Definition 16.9. FRAMEL: USB0 Frame Number Low	
USB Register Definition 16.10. FRAMEH: USB0 Frame Number High	
USB Register Definition 16.11. IN1INT: USB0 IN Endpoint Interrupt	
USB Register Definition 16.12. OUT1INT: USB0 Out Endpoint Interrupt	
USB Register Definition 16.13. CMINT: USB0 Common Interrupt	
USB Register Definition 16.14. IN1IE: USB0 IN Endpoint Interrupt Enable	
USB Register Definition 16.15. OUT1IE: USB0 Out Endpoint Interrupt Enable	
USB Register Definition 16.16. CMIE: USB0 Common Interrupt Enable	
USB Register Definition 16.17. E0CSR: USB0 Endpoint0 Control	
USB Register Definition 16.18. E0CNT: USB0 Endpoint 0 Data Count	

Ordering Part Number	MIPS (Peak)	Flash Memory (Bytes)	RAM	Calibrated Internal Oscillator	Low Frequency Oscillator	USB with 1k Endpoint RAM	Supply Voltage Regulator	SMBus/I2C	Enhanced SPI	UARTs	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	External Memory Interface (EMIF)	10-bit 200 ksps ADC	Temperature Sensor	Voltage Reference	Analog Comparators	Package
C8051F340-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F341-GQ	48	32k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F342-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F342-GM	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F343-GQ	48	32k	2304	\checkmark	~	~	~	\checkmark	\checkmark	1	4	~	25	—	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F343-GM	48	32k	2304	\checkmark	~	~	~	\checkmark	\checkmark	1	4	~	25	—	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F344-GQ	25	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F345-GQ	25	32k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	\checkmark	\checkmark	\checkmark	2	TQFP48
C8051F346-GQ	25	64k	4352	\checkmark	—	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F346-GM	25	64k	4352	\checkmark	—	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F347-GQ	25	32k	2304	\checkmark	_	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F347-GM	25	32k	2304	\checkmark	_	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	_	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F348-GQ	25	32k	2304	\checkmark	~	~	\checkmark	<	\checkmark	2	4	~	40	\checkmark		_	_	2	TQFP48
C8051F349-GQ	25	32k	2304	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	_		—	_	2	LQFP32
C8051F349-GM	25	32k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	_		—	—	2	QFN32
C8051F34A-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	25	_	\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F34A-GM	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	25	_	\checkmark	\checkmark	\checkmark	2	QFN32
C8051F34B-GQ	48	32k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	25		\checkmark	\checkmark	\checkmark	2	LQFP32
C8051F34B-GM	48	32k	2304	~	~	~	~	\checkmark	~	2	4	~	25	_	\checkmark	~	~	2	QFN32
C8051F34C-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2	4	\checkmark	40	\checkmark	_			2	TQFP48
C8051F34D-GQ	48	64k	4352	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	4	\checkmark	25	—	_	—	—	2	LQFP32

Table 1.1. Product Selection Guide

Table 4.1. Pin Definitions for the C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D (Continued)

Nama	Pin Nu	mbers	Turne	Description
Name	48-pin	32-pin	Туре	Description
P1.0	46	26	D I/O or A In	Port 1.0. See Section 15 for a complete description of Port 1.
P1.1	45	25	D I/O or A In	Port 1.1.
P1.2	44	24	D I/O or A In	Port 1.2.
P1.3	43	23	D I/O or A In	Port 1.3.
P1.4	42	22	D I/O or A In	Port 1.4.
P1.5	41	21	D I/O or A In	Port 1.5.
P1.6	40	20	D I/O or A In	Port 1.6.
P1.7	39	19	D I/O or A In	Port 1.7.
P2.0	38	18	D I/O or A In	Port 2.0. See Section 15 for a complete description of Port 2.
P2.1	37	17	D I/O or A In	Port 2.1.
P2.2	36	16	D I/O or A In	Port 2.2.
P2.3	35	15	D I/O or A In	Port 2.3.
P2.4	34	14	D I/O or A In	Port 2.4.
P2.5	33	13	D I/O or A In	Port 2.5.
P2.6	32	12	D I/O or A In	Port 2.6.
P2.7	31	11	D I/O or A In	Port 2.7.
P3.0	30	—	D I/O or A In	Port 3.0. See Section 15 for a complete description of Port 3.
P3.1	29	_	D I/O or A In	Port 3.1.
P3.2	28	—	D I/O or A In	Port 3.2.

SFR Definition 5.2. AMX0N: AMUX0 Negative Channel Select

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	AMX0N4	AMX0N3	AMX0N2	AMX0N1	AMX0N0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
								0xBA
Bito7 5.	UNUSED. R	ood - 000	h: Mrito – de	n't coro				
	AMX0N4-0:		,					
Dito+ 0.	Note that wh					DC0 operate	es in Sinale	-ended
	mode. For al							
			5 1	,	•			
	AMX0	N4-0		Negative I			gative Inpu	t
			(32-	pin Packag	je)		Package)	
	000			P1.0			2.0	
	000			P1.1			2.1	
	000			P1.2		P2.2		
	000			P1.3		P2.3		
	001			P1.4			2.5	
	001			P1.5			2.6	
	001			P1.6			3.0	
	001			P1.7			3.1	
	010			P2.0		P3.4		
	010			P2.1		P3.5		
	010			P2.2		P3.7		
	010			P2.3		P4.0		
	011			P2.4		P4.3		
	011			P2.5		P4.4		
	011			P2.6		P4.5		
	011			P2.7		P4.6 RESERVED		
	100			P3.0 P0.0		-	0.3	
	100			P0.0 P0.1			0.3	
	100			P0.1 P0.4			1.1	
	100			P0.4 P0.5			1.1	
	10101 -			ESERVED				
	111		K	VREF		RESERVED VREF		
	111			ngle-Ended	Mode) (
						GND (Single-Ended Mode)		

SFR Definition 5.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
AD0EN	AD0TM	AD0INT	AD0BUSY	ADOWINT	AD0CM2	AD0CM1	AD0CM0	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
						(bi	t addressable) 0xE8	
D.1.7			D'/						
Bit7:	ADOEN: ADO			nower obut					
	0: ADC0 Dis 1: ADC0 Ena					orsions			
Bit6:	ADOTM: AD			and ready it		61310113.			
Dito:	0: Normal Tr			0 is enabled	d, tracking is	s continuou	s unless a	conversion	
	is in progres				, J				
	1: Low-powe		ode: Trackin	g Defined b	y AD0CM2-	-0 bits (see	below).		
Bit5:	AD0INT: AD								
	0: ADC0 has				since the la	ast time AD	0INT was c	leared.	
D '' 4	1: ADC0 has	•		version.					
Bit4:	AD0BUSY: A Read:	ADC0 Busy	/ Bit.						
	0: ADC0 cor	woreion is	complete or	a conversi	on is not cu	rrently in nr		OINT is sot	
	to logic 1 on						ogress. AD	011113361	
	1: ADC0 cor								
	Write:		1 3 3 3 3						
	0: No Effect.								
	1: Initiates A								
Bit3:	ADOWINT: A		•	•	-		<i>a</i>		
	0: ADC0 Wir					ed since this	s flag was I	ast cleared.	
Bits2–0:	1: ADC0 Wir AD0CM2-0:								
DII52-0.	When AD0T				Select.				
	000: ADC0 cc		tiated on eve	rv write of '1'	to AD0BUS	Y.			
	001: ADC0 cc								
	010: ADC0 cc								
	011: ADC0 co					тр			
	100: ADC0 cc 101: ADC0 cc					IR.			
	11x: Reserved				5.				
	When AD0T								
	000: Tracking	initiated on	write of '1' to	AD0BUSY a	nd lasts 3 SA	AR clocks, fo	llowed by co	onversion.	
	001: Tracking initiated on overflow of Timer 0 and lasts 3 SAR clocks, followed by conversion. 010: Tracking initiated on overflow of Timer 2 and lasts 3 SAR clocks, followed by conversion.								
	011: Tracking initiated on overflow of Timer 1 and lasts 3 SAR clocks, followed by conversion. 100: ADC0 tracks only when CNVSTR input is logic low; conversion starts on rising CNVSTR edg								
101: Tracking initiated on overflow of Timer 3 and lasts 3 SAR clocks, followed by conversion.									
	11x: Reserved						-		

9.1.2. MOVX Instruction and Program Memory

In the CIP-51, the MOVX instruction serves three purposes: accessing on-chip XRAM, accessing off-chip data XRAM (only on C8051F340/1/4/5/8 devices), and accessing on-chip program Flash memory. The Flash access feature provides a mechanism for user software to update program code and use the program memory space for non-volatile data storage (see Section "12. Flash Memory" on page 107). The External Memory Interface (only on C8051F340/1/4/5/8 devices) provides a fast access interface to off-chip data XRAM (or memory-mapped peripherals) via the MOVX instruction. Refer to Section "13. External Data Memory Interface and On-Chip XRAM" on page 114. for details.

Mnemonic	Description	Bytes	Clock Cycles
	Arithmetic Operations	I	
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
	Logical Operations		1
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2

Table 9.1. CIP-51 Instruction Set Summary

Table 9.1. CIP-51	Instruction	Set Summary	(Continued)

Mnemonic	Description	Bytes	Clock Cycles
	Boolean Manipulation		1
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/4
JNC rel	Jump if Carry is not set	2	2/4
JB bit, rel	Jump if direct bit is set	3	3/5
JNB bit, rel	Jump if direct bit is not set	3	3/5
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/5
	Program Branching		
ACALL addr11	Absolute subroutine call	2	4
LCALL addr16	Long subroutine call	3	5
RET	Return from subroutine	1	6
RETI	Return from interrupt	1	6
AJMP addr11	Absolute jump	2	4
LJMP addr16	Long jump	3	5
SJMP rel	Short jump (relative address)	2	4
JMP @A+DPTR	Jump indirect relative to DPTR	1	4
JZ rel	Jump if A equals zero	2	2/4
JNZ rel	Jump if A does not equal zero	2	2/4
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/5
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/5
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/5
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/6
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/4
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/5
NOP	No operation	1	1

R/W	R	R/W	R/W	R	R/W	R/W	R	Reset Value				
USBRS	F FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xEF				
Bit7:	USBRSF: U	SB Reset F	lag									
	0: Read: Las	st reset was	not a USB	reset; Writ	e: USB rese	ets disabled	ł.					
	1: Read: Last reset was a USB reset; Write: USB resets enabled.											
Bit6:	FERROR: Flash Error Indicator.											
	0: Source of last reset was not a Flash read/write/erase error.											
	1: Source of											
Bit5:	CORSEF: Co	•			-	0						
	0: Read: So	urce of last	reset was r	not Compar	ator0; Write	: Compara	tor0 is not a	a reset				
	source.	waa af laat	react was (O. Mrites C.		in a recet					
	1: Read: So (active-low).	urce of last	reset was u	Comparator		omparatoru	is a reset s	source				
Bit4:	SWRSF: Sof	ftware Rese	t Force and	d Elag								
DIL4.	0: Read: So			-	o the SWRS	SE bit [.] Write	• No Effec	t				
	1: Read: So											
Bit3:	WDTRSF: W						a oyotoini i	00011				
	0: Source of	-		-								
	1: Source of	last reset w	as a WDT	timeout.								
Bit2:	MCDRSF: N	lissing Cloc	k Detector	Flag.								
	0: Read: So	urce of last	reset was r	not a Missin	g Clock Det	ector timed	out; Write: I	Missing				
	Clock Detect											
	1: Read: So			-				sing Clock				
5	Detector ena			-	clock condit	ion is deteo	cted.					
Bit1:	PORSF: Pov	-	-	-								
	This bit is se	-	-		-							
	monitor as a	reset sourc	e. Note: w	riting '1' to	this bit be	fore the V _D	DD monitor	is enabled				
	and stabiliz											
	0: Read: Las	st reset was	not a pow	er-on or V _{DI}	_D monitor re	set; Write:	V _{DD} monit	or is not a				
	reset source											
	1: Read: Las	st reset was	a power-or	n or V _{DD} mo	nitor reset;	all other res	et flags ind	eterminate;				
	Write: V _{DD} r	nonitor is a	reset source	ce.								
Bit0:	PINRSF: HV	V Pin Reset	Flag.	_								
	0: Source of											
	1: Source of	last reset w	/as RST pir	า.								
		4					la alla at c a f	1				
	or bits that ac							•				
read), read-modify-write instructions read and modify the source enable only. This applies to												
5113. 031	bits: USBRSF, C0RSEF, SWRSF, MCDRSF, PORSF.											

SFR Definition 11.2. RSTSRC: Reset Source

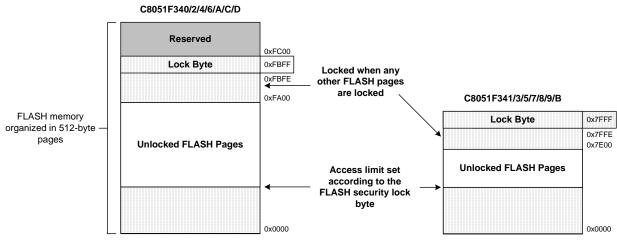


Figure 12.1. Flash Program Memory Map and Security Byte

Internal Oscillator										
Clock Signal	Input Source Selection	Register Bit Settings								
USB Clock	External Oscillator / 4	USBCLK = 101b								
External Oscillator	Crystal Oscillator Mode 24 MHz Crystal	XOSCMD = 110b XFCN = 111b								

SFR Definition 14.6. CLKSEL: Clock Select

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
	-		USBCLK		-		CLKSL		00000000
-	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
									0xA9

Bit 7: Unused. Read = 0b; Write = don't care.

Bits6–4: USBCLK2–0: USB Clock Select

These bits select the clock supplied to USB0. When operating USB0 in full-speed mode, the selected clock should be 48 MHz. When operating USB0 in low-speed mode, the selected clock should be 6 MHz.

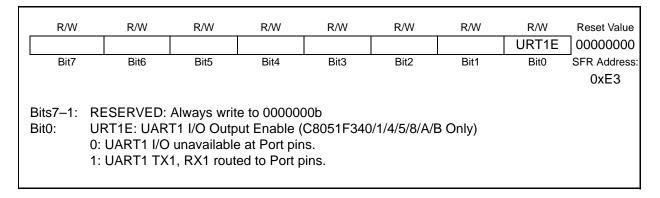
USBCLK	Selected Clock
000	4x Clock Multiplier
001	Internal Oscillator / 2
010	External Oscillator
011	External Oscillator / 2
100	External Oscillator / 3
101	External Oscillator / 4
110	RESERVED
111	RESERVED

Bit3: Unused. Read = 0b; Write = don't care.

Bits2–0: CLKSL2–0: System Clock Select

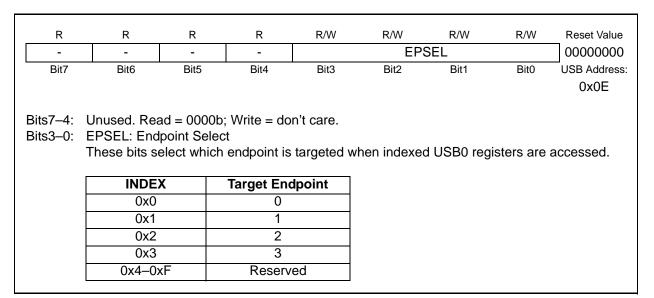
These bits select the system clock source. When operating from a system clock of 25 MHz or less, the FLRT bit should be set to '0'. When operating with a system clock of greater than 25 MHz (up to 48 MHz), the FLRT bit (FLSCL.4) should be set to '1'. See **Section "10. Prefetch Engine" on page 99** for more details.

CLKSL	Selected Clock
000	Internal Oscillator (as determined by the IFCN bits in register OSCICN)
001	External Oscillator
010	4x Clock Multiplier / 2
011*	4x Clock Multiplier*
100	Low-Frequency Oscillator
101-111	RESERVED
*Note: This option is only av	vailable on 48 MHz devices.


					0		~					P	1							P	2						_	F	3	_	_	_
SF Signals (32-pin Package)			XTAL1	XTAL2			CNVSTR	VREF																		P		3.7 32-p				
SF Signals (48-pin Package)							XTAL1	XTAL2				ALE	CNVSTR	VREF	RD	WR																
PIN I/O	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
ТХ0																																
RX0																																
SCK																																
MISO																																
MOSI																																
NSS*						*NS	S is	only	pinr	ned o	ut in	4-wi	re S	PI m	ode																	
SDA																																
SCL																																
CP0																																
CP0A																																
CP1																																
CP1A																																
SYSCLK																																
CEX0																																
CEX1																																
CEX2																																
CEX3																																
CEX4																																
ECI																																
то																																
T1																																
TX1**																		**UA	ART1	lava	ilable	e onl	y on	C80	51F3	340/1	/4/5/	/8/A/	B de	vices		
RX1**																																
	0	0	0 P	0 OSK	0 IP[0:	0 [7]	0	0	0	0	0 P	0 1SK	0 IP[0:	0 7]	0	0	0	0		0 25K	0 P[0:	0 :7]	0	0	0	0	0 P	0 3SK	0 IP[0:	0 7]	0	(
SF Signals				-					he C			Cro		- 10/	hon										Exa	ample	e:			0x07 0x43		

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
WEAKP	UD XBARE	T1E	T0E	ECIE		PCA0ME		00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xE2
Bit7:	WEAKPUD: 0: Weak Pull push-pull out 1: Weak Pull	-ups enable put).	d (except fo		se I/O are	configured as	s analog	input or
Bit6:	XBARE: Cros 0: Crossbar o 1: Crossbar e	disabled; all		s disabled.				
Bit5:	T1E: T1 Ena 0: T1 unavail 1: T1 routed	able at Port	pin.					
Bit4:	T0E: T0 Ena 0: T0 unavail 1: T0 routed	able at Port	pin.					
Bit3:	ECIE: PCA0 0: ECI unava 1: ECI routed	ilable at Por	t pin.	Enable				
Bits2–0:	PCA0ME: PC 000: All PCA 001: CEX0 rc 010: CEX0, C 011: CEX0, C 100: CEX0, C 100: CEX0, C 101: CEX0, C 101: CEX0, C 110: Reserve	CA Module I, I/O unavaila puted to Por CEX1 routed CEX1, CEX2 CEX1, CEX2 CEX1, CEX2 ceX1, CEX2	O Enable E able at Port t pin. t to Port pin c routed to F 2, CEX3 rou	pins. s. Port pins. uted to Port p		S.		

SFR Definition 15.3. XBR2: Port I/O Crossbar Register 2



USB Register Name	USB Register Address	Description	Page Number
Name	Address	Interrupt Registers	
	0.00		470
IN1INT	0x02	Endpoint0 and Endpoints1-3 IN Interrupt Flags	173
OUT1INT	0x04	Endpoints1-3 OUT Interrupt Flags	173
CMINT	0x06	Common USB Interrupt Flags	174
IN1IE	0x07	Endpoint0 and Endpoints1-3 IN Interrupt Enables	175
OUT1IE	0x09	Endpoints1-3 OUT Interrupt Enables	175
CMIE	0x0B	Common USB Interrupt Enables	176
		Common Registers	
FADDR	0x00	Function Address	169
POWER	0x01	Power Management	171
FRAMEL	0x0C	Frame Number Low Byte	172
FRAMEH	0x0D	Frame Number High Byte	172
INDEX	0x0E	Endpoint Index Selection	165
CLKREC	0x0F	Clock Recovery Control	166
FIFOn	0x20-0x23	Endpoints0-3 FIFOs	168
		Indexed Registers	
E0CSR	0x11	Endpoint0 Control / Status	179
EINCSRL		Endpoint IN Control / Status Low Byte	182
EINCSRH	0x12	Endpoint IN Control / Status High Byte	183
EOUTCSRL	0x14	Endpoint OUT Control / Status Low Byte	185
EOUTCSRH	0x15	Endpoint OUT Control / Status High Byte	186
E0CNT	0x16	Number of Received Bytes in Endpoint0 FIFO	180
EOUTCNTL	01X0	Endpoint OUT Packet Count Low Byte	186
EOUTCNTH	0x17	Endpoint OUT Packet Count High Byte	186

Table 16.2. USB0 Controller Registers

USB Register Definition 16.4. INDEX: USB0 Endpoint Index

USB Register Definition 16.21. EOUTCSRL: USB0 OUT Endpoint Control Low Byte

W	R/W	R/W	R/W	R	R/W	R	R/W	Reset Value
CLRDT	STSTL	SDSTL	FLUSH	DATERR	OVRUN	FIFOFUL	OPRDY	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0x14
Bit7:	CLRDT: Clea Write: Softw Read: This b	are should	write '1' to	this bit to re	set the OU	T endpoint c	lata toggle	to '0'.
Bit6:	STSTL: Sen Hardware se be cleared b	ets this bit to	o '1' when a	a STALL har	ndshake sig	ınal is transı	nitted. This	s flag must
Bit5:	SDSTL: Sen Software sho '0' to this bit	ould write '1		•				ould write
Bit4:		to this bit flu r is reset an st write '1' t FO flush is o a for the cur	d the OPR o FLUSH fo complete. rent packet	DY bit is cle or each pach has already	ared. If the ket. Hardwa	FIFO conta are resets th from the FIF	ins multiple le FLUSH t D, the FLUS	e packets, bit to '0'
Bit3:	DATERR: Da In ISO mode It is cleared	ata Error e, this bit is s when softw						uffing error.
Bit2:	OVRUN: Da This bit is se endpoint FIF 0: No data o	et by hardwa O. This bit						
Bit1:	1: A data part FIFOFUL: O This bit indic point (DBIEN	UT FIFO Fi ates the co	ull ntents of th	e OUT FIF	D. If double	buffering is	enabled fo	r the end-
Bit0:	FIFO is full v 0: OUT endp 1: OUT endp OPRDY: OU Hardware se ware should	when the Fl point FIFO i point FIFO i T Packet R ets this bit to	FO contain s not full. s full. eady o '1' and ge	s one packe nerates an i	et. nterrupt wh	en a data pa	acket is ava	ailable. Soft-

The direction bit (R/W) occupies the least-significant bit position of the address byte. The direction bit is set to logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 17.3 illustrates a typical SMBus transaction.

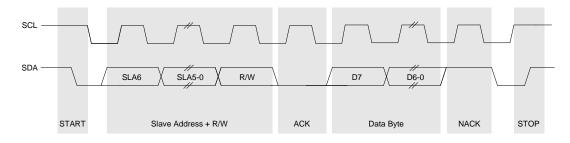


Figure 17.3. SMBus Transaction

17.3.1. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see **Section "17.3.4. SCL High (SMBus Free) Timeout" on page 191**). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

20.3. SPI0 Slave Mode Operation

When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0, and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 20.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master device.

3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and re-enabling SPI0 with the SPIEN bit. Figure 20.3 shows a connection diagram between a slave device in 3-wire slave mode and a master device.

20.4. SPI0 Interrupt Sources

When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

Note that all of the following bits must be cleared by software.

- 1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPI0 modes.
- 2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes.
- 3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master, and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the bus.
- 4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

21.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, USB Start-of-Frame (SOF) capture mode, or Low-Frequency Oscillator (LFO) Rising Edge capture mode. The Timer 3 operation mode is defined by the T3SPLIT (TMR3CN.3), T3CE (TMR3CN.4) bits, and T3CSS (TMR3CN.1) bits.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

21.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is '0' and T3CE = '0', Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TM3RLL) is loaded into the Timer 3 register as shown in Figure 21.4, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled, an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x00.

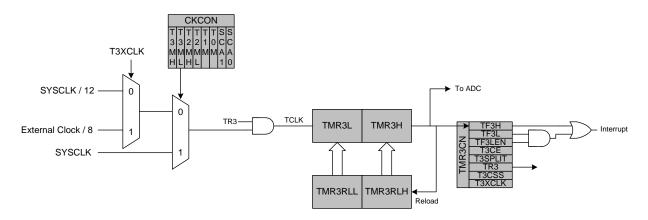


Figure 21.8. Timer 3 16-Bit Mode Block Diagram

22.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/ timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

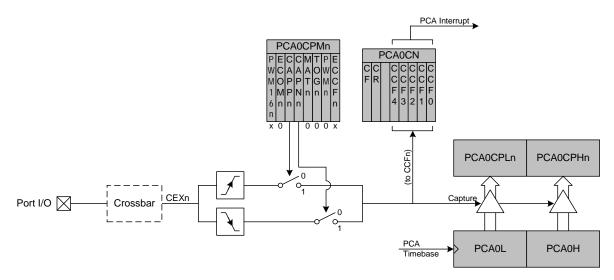
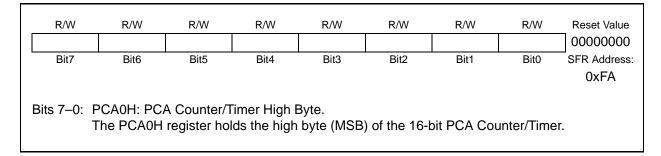


Figure 22.4. PCA Capture Mode Diagram


Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

SFR Definition 22.4. PCA0L: PCA Counter/Timer Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xF9
	PCA0L: PCA The PCA0L r				f the 16-bit	PCA Count	er/Timer.	

SFR Definition 22.5. PCA0H: PCA Counter/Timer High Byte

SFR Definition 22.6. PCA0CPLn: PCA Capture Module Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xFB, 0xE9, 0xEB, 0xED, 0xFD			
PCA0CPLr	PCA0CPLn Address: PCA0CPL0 = $0xFB$ (n = 0), PCA0CPL1 = $0xE9$ (n = 1), PCA0CPL2 = $0xEB$ (n = 2), PCA0CPL3 = $0xED$ (n = 3), PCA0CPL4 = $0xFD$ (n = 4)										
	PCA0CPLn: The PCA0C	•			SB) of the 1	6-bit captur	e module	n.			

NOTES: