

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

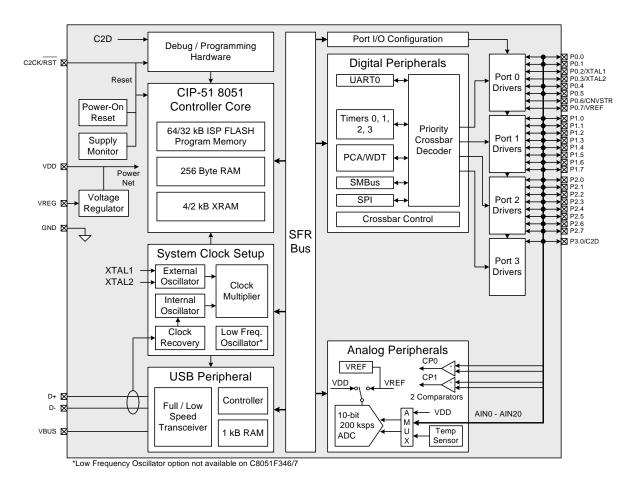
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

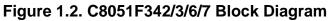
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

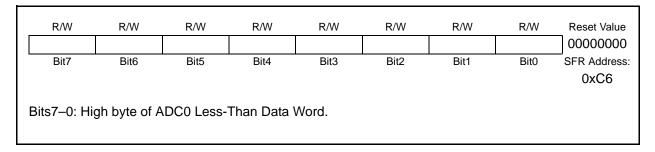
2000	
Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f346-gm

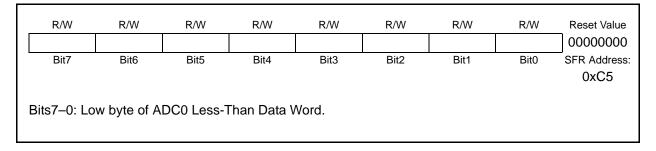
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Table of Contents

1	System Overview	17
	Absolute Maximum Ratings	
3.		
4.	Pinout and Package Definitions	
 5.	10-Bit ADC (ADC0, C8051F340/1/2/3/4/5/6/7/A/B Only)	
0.	5.1. Analog Multiplexer	
	5.2. Temperature Sensor	
	5.3. Modes of Operation	
	5.3.1. Starting a Conversion	
	5.3.2. Tracking Modes	
	5.3.3. Settling Time Requirements	
	5.4. Programmable Window Detector	
	5.4.1. Window Detector In Single-Ended Mode	
	5.4.2. Window Detector In Differential Mode	
6	Voltage Reference (C8051F340/1/2/3/4/5/6/7/A/B Only)	
о. 7.	Comparators	57
	Comparators Voltage Regulator (REG0)	59
0.		
	8.1. Regulator Mode Selection	
•	8.2. VBUS Detection	
9.	CIP-51 Microcontroller	
	9.1. Instruction Set	
	9.1.1. Instruction and CPU Timing	
	9.1.2. MOVX Instruction and Program Memory	
	9.2. Memory Organization.	
	9.2.1. Program Memory	
	9.2.2. Data Memory	
	9.2.3. General Purpose Registers	
	9.2.4. Bit Addressable Locations	
	9.2.5. Stack	
	9.2.6. Special Function Registers	
	9.2.7. Register Descriptions	
	9.3. Interrupt Handler	
	9.3.1. MCU Interrupt Sources and Vectors	
	9.3.2. External Interrupts	
	9.3.3. Interrupt Priorities	
	9.3.4. Interrupt Latency	
	9.3.5. Interrupt Register Descriptions	90
	9.4. Power Management Modes	97
	9.4.1. Idle Mode	97
	9.4.2. Stop Mode	97
10	Prefetch Engine	99
11.	Reset Sources 1	00
	11.1.Power-On Reset 1	01


C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D



SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D

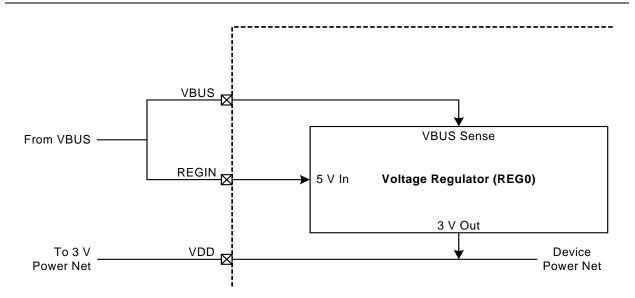


Figure 8.1. REG0 Configuration: USB Bus-Powered

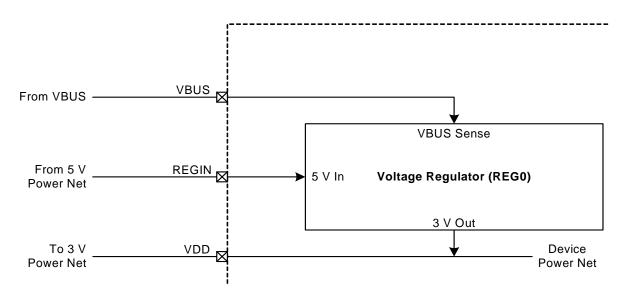
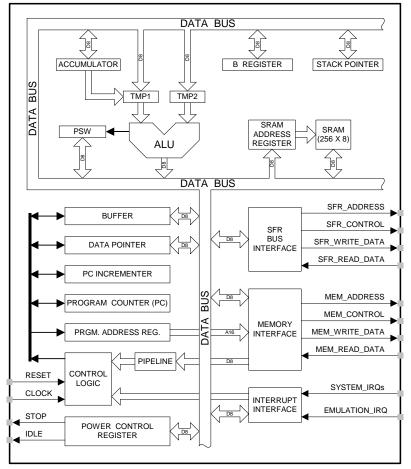


Figure 8.2. REG0 Configuration: USB Self-Powered


9. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are four 16-bit counter/timers (see description in **Section 21**), an enhanced full-duplex UART (see description in **Section 18**), an Enhanced SPI (see description in **Section 20**), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (**Section 9.2.6**), and 25 Port I/O (see description in **Section 15**). The CIP-51 also includes on-chip debug hardware (see description in **Section 23**), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 9.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 0 to 48 MHz Clock Frequency
- 256 Bytes of Internal RAM
- 25 Port I/O

- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

Figure 9.1. CIP-51 Block Diagram

9.2. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The CIP-51 memory organization is shown in Figure 9.2 and Figure 9.3.

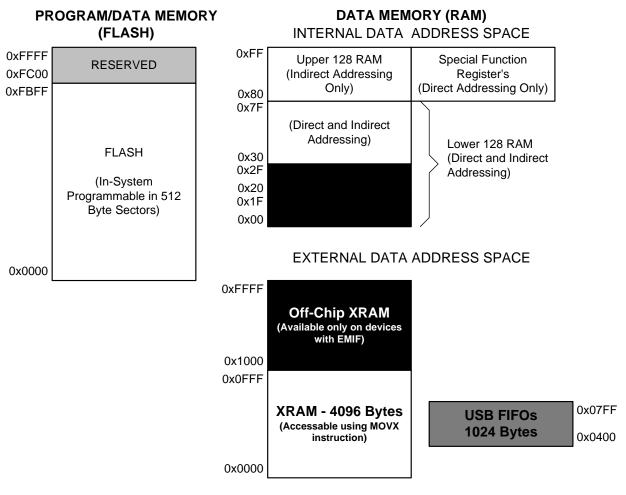


Figure 9.2. On-Chip Memory Map for 64 kB Devices

SFR Definition 9.6. B: B Register

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
[B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	00000000
-	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit	addressable) 0xF0
E	Bits7–0:	B: B Registe This register		a second ad	ccumulator	or certain a	rithmetic o	perations.	

9.3. Interrupt Handler

The CIP-51 includes an extended interrupt system supporting multiple interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies according to the specific version of the device. Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE-EIE2). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

9.3.1. MCU Interrupt Sources and Vectors

The MCU supports multiple interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 9.4 on page 90. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

9.3.2. External Interrupts

The INTO and INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (INTO Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (**Section "21.1. Timer 0 and Timer 1" on page 235**) select level or edge sensitive. The following table lists the possible configurations.

C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D

IT0	IN0PL	INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

INT0 and INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 9.13). Note that INT0 and INT0 Port pin assignments are independent of any Crossbar assignments. INT0 and INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to INT0 and/or INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBR0 (see **Section "15.1. Priority Crossbar Decoder" on page 144** for complete details on configuring the Crossbar). In the typical configuration, the external interrupt pin should be skipped in the crossbar and configured as open-drain with the pin latch set to '1'.

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT1 external interrupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

9.3.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 9.4.

9.3.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 6 system clock cycles: 1 clock cycle to detect the interrupt and 5 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 20 system clock cycles: 1 clock cycle to detect the interrupt, 6 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 5 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Note that the CPU is stalled during Flash write/erase operations and USB FIFO MOVX accesses (see **Section "13.2. Accessing USB FIFO Space" on page 115**). Interrupt service latency will be increased for interrupts occurring while the CPU is stalled. The latency for these situations will be determined by the standard interrupt service procedure (as described above) and the amount of time the CPU is stalled.

11.1. Power-On Reset

During power-up, the device is held in a reset state and the \overline{RST} pin is driven low until V_{DD} settles above V_{RST}. A Power-On Reset delay (T_{PORDelay}) occurs before the device is released from reset; this delay is typically less than 0.3 ms. Figure 11.2. plots the power-on and V_{DD} monitor reset timing.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} monitor is enabled following a power-on reset.

Software can force a power-on reset by writing '1' to the PINRSF bit in register RSTSRC.

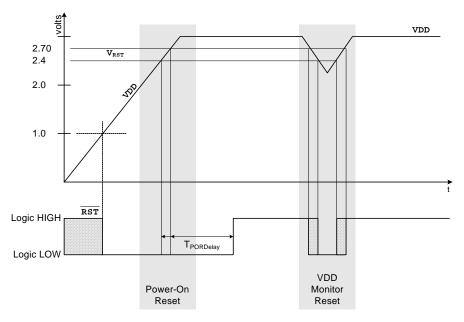


Figure 11.2. Power-On and V_{DD} Monitor Reset Timing

13.5. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMI0CF.4) bit.

13.5.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 13.2.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the 'Q' outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.

See Section "13.7.2. Multiplexed Mode" on page 127 for more information.

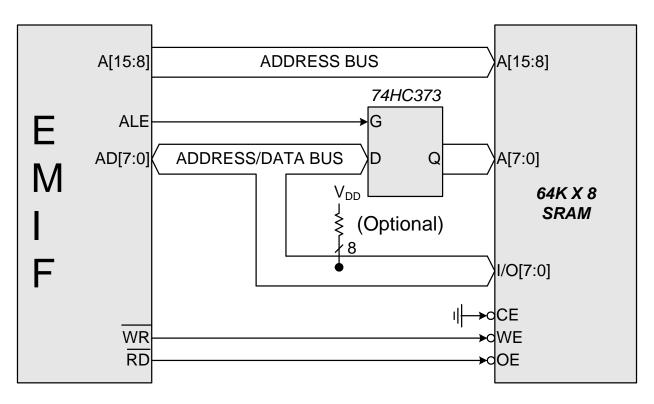


Figure 13.2. Multiplexed Configuration Example

14.3.3. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 14.1, Option 2. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

$$f = \frac{1.23(10^3)}{\text{RC}} = \frac{1.23(10^3)}{[246 \times 50]} = 0.1 \text{ MHz} = 100 \text{ kHz}$$

Referring to the table in SFR Definition 14.4, the required XFCN setting is 010b. Programming XFCN to a higher setting in RC mode will improve frequency accuracy at an increased external oscillator supply current.

14.3.4. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 14.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the equations below. Assume $V_{DD} = 3.0$ V and C = 50 pF:

$$f = \frac{KF}{(C \times V_{DD})} = \frac{KF}{(50 \text{ x } 3)\text{MHz}}$$

$$f = \frac{KF}{150 \text{ MHz}}$$

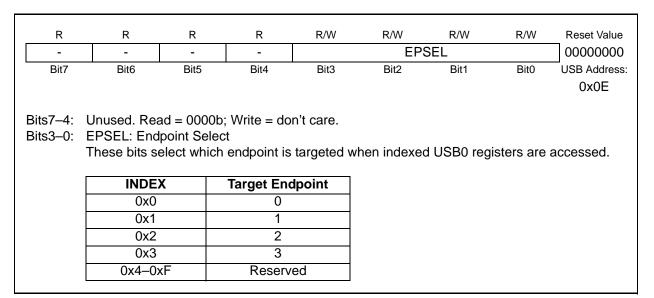
If a frequency of roughly 150 kHz is desired, select the K Factor from the table in SFR Definition 14.4 as KF = 22:

$$f = \frac{22}{150} = 0.146$$
 MHz, or 146 kHz

Therefore, the XFCN value to use in this example is 011b.

136

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP1AE		CPOAE	CP0E	SYSCKE	SMB0E	SPIOE	URTOE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
DIL7	DILO	БЦЭ	DIL4	BIIS	DILZ	DILI	DILU	OxE1
								UXEI
Bit7:	CP1AE: Cor	nnarator1 A	synchrono	us Output F	nahle			
Ditr.	0: Asynchroi	•		•				
	1: Asynchro							
Bit6:	CP1E: Com			•				
	0: CP1 unav		•					
	1: CP1 route	ed to Port pi	n.					
Bit5:	CP0AE: Cor	nparator0 [•] A	synchrono	us Output E	nable			
	0: Asynchro	nous CP0 u	navailable	at Port pin.				
	1: Asynchro	nous CP0 re	outed to Po	ort pin.				
Bit4:	CP0E: Com	parator0 Ou	tput Enable	e				
	0: CP0 unav							
	1: CP0 route							
Bit3:	SYSCKE: /S		•					
	0: /SYSCLK							
	1: /SYSCLK			oin.				
Bit2:	SMB0E: SM							
	0: SMBus I/		•	ins.				
DIM	1: SMBus I/		Port pins.					
Bit1:	SPI0E: SPI		• D = = • = := =					
	0: SPI I/O ur		•					
Dit0.	1: SPI I/O ro		•					
Bit0:	URT0E: UAI 0: UART0 I/		•					
	1: UARTO T				nd P0 5			
	1. UAILIO I.	NO, INNO 100		. pins r 0.4 a	nu r 0.J.			


SFR Definition 15.1. XBR0: Port I/O Crossbar Register 0

USB Register Name	USB Register Address	Description	Page Number
Name	Address	Interrupt Registers	
	0.00		470
IN1INT	0x02	Endpoint0 and Endpoints1-3 IN Interrupt Flags	173
OUT1INT	0x04	Endpoints1-3 OUT Interrupt Flags	173
CMINT	0x06	Common USB Interrupt Flags	174
IN1IE	0x07	Endpoint0 and Endpoints1-3 IN Interrupt Enables	175
OUT1IE	0x09	Endpoints1-3 OUT Interrupt Enables	175
CMIE	0x0B	Common USB Interrupt Enables	176
		Common Registers	
FADDR	0x00	Function Address	169
POWER	0x01	Power Management	171
FRAMEL	0x0C	Frame Number Low Byte	172
FRAMEH	0x0D	Frame Number High Byte	172
INDEX	0x0E	Endpoint Index Selection	165
CLKREC	0x0F	Clock Recovery Control	166
FIFOn	0x20-0x23	Endpoints0-3 FIFOs	168
		Indexed Registers	
E0CSR	0x11	Endpoint0 Control / Status	179
EINCSRL	0.00	Endpoint IN Control / Status Low Byte	182
EINCSRH	0x12	Endpoint IN Control / Status High Byte	183
EOUTCSRL	0x14	Endpoint OUT Control / Status Low Byte	185
EOUTCSRH	0x15	Endpoint OUT Control / Status High Byte	186
E0CNT	0x16	Number of Received Bytes in Endpoint0 FIFO	180
EOUTCNTL	01X0	Endpoint OUT Packet Count Low Byte	186
EOUTCNTH	0x17	Endpoint OUT Packet Count High Byte	186

Table 16.2. USB0 Controller Registers

USB Register Definition 16.4. INDEX: USB0 Endpoint Index

17.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 17.2). The higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER and TXMODE indicate the master/slave state and transmit/receive modes, respectively.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a '1' to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a '1' to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 17.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI.

Table 17.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 17.4 for SMBus status decoding using the SMB0CN register.

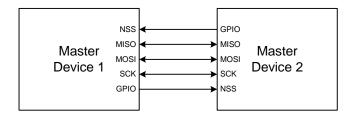
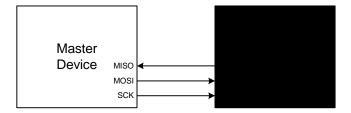



Figure 20.2. Multiple-Master Mode Connection Diagram

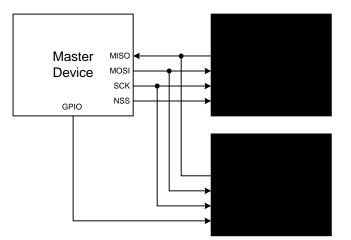


Figure 20.4. 4-Wire Single Master Mode and Slave Mode Connection Diagram

20.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 20.5. For slave mode, the clock and data relationships are shown in Figure 20.6 and Figure 20.7.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 20.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.

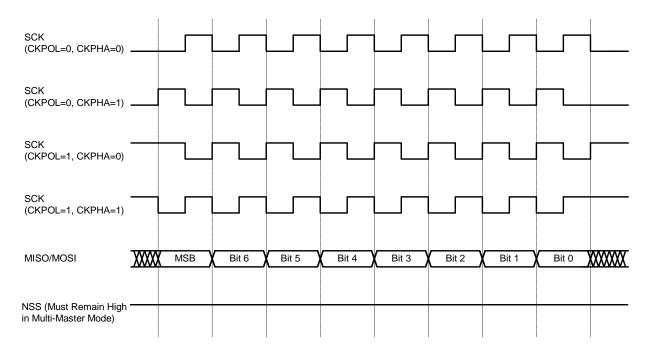
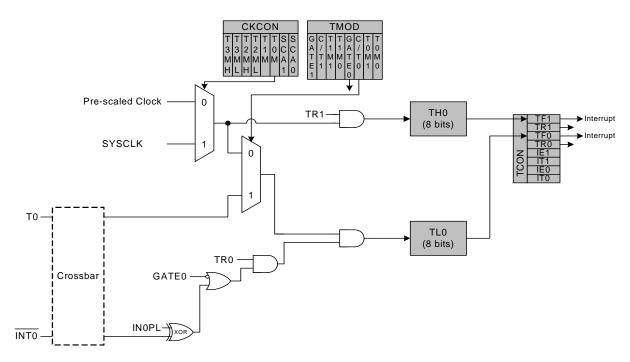


Figure 20.5. Master Mode Data/Clock Timing



C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D

21.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/ timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

21.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, USB Start-of-Frame (SOF) capture mode, or Low-Frequency Oscillator (LFO) Rising Edge capture mode. The Timer 3 operation mode is defined by the T3SPLIT (TMR3CN.3), T3CE (TMR3CN.4) bits, and T3CSS (TMR3CN.1) bits.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

21.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is '0' and T3CE = '0', Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TM3RLL) is loaded into the Timer 3 register as shown in Figure 21.4, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled, an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x00.

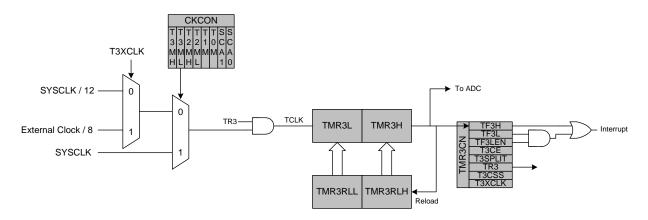


Figure 21.8. Timer 3 16-Bit Mode Block Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
TF3H	TF3L	TF3LEN	T3CE	T3SPLIT	TR3	T3CSS	T3XCLK	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0x91		
Bit7:	TF3H: Time			-						
	Set by hard									
	this will occu									
	enabled, set	•								
Ditc	TF3H is not				and must	be cleared i	by software			
Bit6:	TF3L: Timer Set by hard			•	orflowe from	m OvEE to O		this hit is		
	set, an interi									
	will set wher									
	ically cleared	•		o regulación				or automat		
Bit5:	TF3LEN: Tir			pt Enable.						
	This bit enal		•	•	errupts. If T	F3LEN is s	et and Time	er 3 inter-		
	rupts are en									
	This bit shou	uld be cleare	d when op	perating Time	er 3 in 16-b	it mode.				
	0: Timer 3 L	ow Byte inte	rrupts disa	abled.						
	1: Timer 3 L	•	•	bled.						
Bit4:	T3CE: Timer 3 Capture Enable									
	0: Capture f									
				imer is in ca						
	by bit T3CS									
	(TMR3H and TMR3RLH),	,					икзкеп а	na		
Bit3:	T3SPLIT: Ti			-	eu (il ellabi	eu).				
Dito.	When this bi				bit timers v	with auto-re	load			
	0: Timer 3 o		•				loud.			
	1: Timer 3 o									
Bit2:	TR3: Timer									
	This bit enables/disables Timer 3. In 8-bit mode, this bit enables/disables TMR3H only;									
	TMR3L is al	•	ed in this m	node.						
	0: Timer 3 d									
	1: Timer 3 e									
Bit1:	T3CSS: Tim	•					(4)			
	This bit sele		•		men bit 13	CE IS SET TO	1.			
	0: Capture s					ator				
Bit0:	1: Capture s T3XCLK: Tir					a.01.				
Dito.	This bit sele				ner 3. If Ti	mer 3 is in 8	3-bit mode	this bit		
	selects the e									
	Select bits (•				
	external cloc			-						
	0: Timer 3 e	xternal clock	selection	is the syster	n clock div	ided by 12.				
				is the extern		•	Note that th	e external		
	oscillator so	urce divided	by 8 is sy	nchronized w	vith the sys	stem clock.				

SFR Definition 21.13. TMR3CN: Timer 3 Control

22.4. Register Descriptions for PCA

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 22.1. PCA0CN: PCA Control

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres				
						(bit	addressable) 0xD8				
Bit7:	CF: PCA Co	unter/Time	r Overflow F	lag.								
	Set by hardv	vare when	the PCA Co	unter/Timer	overflows f	rom 0xFFFI	to 0x000	0. When the				
	Counter/Tim											
	to the PCA i	nterrupt se	rvice routine	. This bit is	not automa	tically clear	ed by harc	ware and				
	must be clea	ared by sof	tware.									
Bit6:	CR: PCA Co	ounter/Time	er Run Contr	ol.								
	This bit enab			Counter/Tim	ier.							
	0: PCA Cou											
	1: PCA Cou											
Bit5:	UNUSED. R	,										
Bit4:		CCF4: PCA Module 4 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF4 interrupt is										
					•			•				
	enabled, set	-				•		outine. Thi				
D:40.	bit is not aut				a must be d	cleared by s	sontware.					
Bit3:	CCF3: PCA		•		nturo ocou	a Mhanth	o CCE2 int	orrupt in				
	This bit is set by hardware when a match or capture occurs. When the CCF3 interrupt is											
	enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.											
		•		ardwara an		loarod by a	offware	outine. This				
Sit2.	bit is not aut	omatically	cleared by h			cleared by s	oftware.	outine. This				
Bit2:	bit is not aut CCF2: PCA	omatically Module 2 (cleared by h Capture/Con	npare Flag.	d must be o	-						
3it2:	bit is not aut CCF2: PCA This bit is se	omatically Module 2 (t by hardw	cleared by h Capture/Con are when a	npare Flag. match or ca	d must be o pture occur	s. When th	e CCF2 int	errupt is				
Bit2:	bit is not aut CCF2: PCA This bit is se enabled, set	omatically Module 2 (t by hardw ting this bit	cleared by h Capture/Con are when a causes the	npare Flag. match or ca CPU to veo	d must be o pture occur tor to the P	s. When th CA interrup	e CCF2 int ot service re	errupt is				
	bit is not aut CCF2: PCA This bit is se enabled, set bit is not aut	omatically Module 2 (t by hardw ting this bit omatically	cleared by h Capture/Con are when a causes the cleared by h	npare Flag. match or ca CPU to veo ardware an	d must be o pture occur tor to the P	s. When th CA interrup	e CCF2 int ot service re	errupt is				
Bit2: Bit1:	bit is not aut CCF2: PCA This bit is se enabled, set bit is not aut CCF1: PCA	omatically Module 2 (It by hardw ting this bit omatically Module 1 (cleared by h Capture/Con are when a causes the cleared by h Capture/Con	npare Flag. match or ca CPU to veo ardware an npare Flag.	d must be o pture occur tor to the P d must be o	s. When th CA interrup cleared by s	e CCF2 int et service re oftware.	errupt is outine. This				
	bit is not aut CCF2: PCA This bit is se enabled, set bit is not aut CCF1: PCA This bit is se	omatically Module 2 (at by hardw ting this bit omatically Module 1 (at by hardw	cleared by h Capture/Con are when a causes the cleared by h Capture/Con are when a	npare Flag. match or ca CPU to veo ardware an npare Flag. match or ca	d must be o pture occur tor to the P d must be o pture occur	s. When th CA interrup cleared by s	e CCF2 int at service re software. e CCF1 int	errupt is outine. This errupt is				
	bit is not aut CCF2: PCA This bit is se enabled, set bit is not aut CCF1: PCA This bit is se enabled, set	omatically Module 2 (t by hardw ting this bit omatically Module 1 (t by hardw ting this bit	cleared by h Capture/Con are when a causes the cleared by h Capture/Con are when a causes the	npare Flag. match or ca CPU to veo ardware an npare Flag. match or ca CPU to veo	d must be o pture occur tor to the P d must be o pture occur tor to the P	s. When th CA interrup cleared by s s. When th CA interrup	e CCF2 int at service re coftware. e CCF1 int at service re	errupt is outine. This errupt is				
	bit is not aut CCF2: PCA This bit is se enabled, set bit is not aut CCF1: PCA This bit is se enabled, set bit is not aut	omatically Module 2 (t by hardw ting this bit omatically Module 1 (t by hardw ting this bit omatically	cleared by h Capture/Con are when a causes the cleared by h Capture/Con are when a causes the cleared by h	npare Flag. match or ca CPU to veo ardware an npare Flag. match or ca CPU to veo ardware an	d must be o pture occur tor to the P d must be o pture occur tor to the P	s. When th CA interrup cleared by s s. When th CA interrup	e CCF2 int at service re coftware. e CCF1 int at service re	errupt is outine. This errupt is				
Bit1:	bit is not aut CCF2: PCA This bit is se enabled, set bit is not aut CCF1: PCA This bit is se enabled, set	omatically Module 2 (et by hardw ting this bit omatically Module 1 (et by hardw ting this bit omatically Module 0 (cleared by h Capture/Con are when a causes the cleared by h Capture/Con are when a causes the cleared by h Capture/Con	npare Flag. match or ca CPU to veo ardware an npare Flag. match or ca CPU to veo ardware an npare Flag.	d must be o pture occur tor to the P d must be o pture occur tor to the P d must be o	rs. When th CA interrup cleared by s rs. When th CA interrup cleared by s	e CCF2 int at service re oftware. e CCF1 int at service re oftware.	errupt is outine. This errupt is outine. This				
Bit1:	bit is not aut CCF2: PCA This bit is se enabled, set bit is not aut CCF1: PCA This bit is se enabled, set bit is not aut CCF0: PCA	omatically Module 2 (et by hardw ting this bit omatically Module 1 (et by hardw ting this bit omatically Module 0 (et by hardw	cleared by h Capture/Con are when a causes the cleared by h Capture/Con are when a cleared by h Capture/Con are when a	npare Flag. match or ca CPU to veo ardware an npare Flag. match or ca CPU to veo ardware an npare Flag. match or ca	d must be o pture occur tor to the P d must be o pture occur tor to the P d must be o pture occur	rs. When th CA interrup cleared by s rs. When th CA interrup cleared by s	e CCF2 int of service re oftware. e CCF1 int of service re oftware. e CCF0 int	errupt is outine. This errupt is outine. This errupt is				

