

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f346-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Definition 14.3. OSCLCN: Internal L-F Oscillator Control	. 134
SFR Definition 14.4. OSCXCN: External Oscillator Control	. 137
SFR Definition 14.5. CLKMUL: Clock Multiplier Control	. 138
SFR Definition 14.6. CLKSEL: Clock Select	. 140
SFR Definition 15.1. XBR0: Port I/O Crossbar Register 0	. 148
SFR Definition 15.2. XBR1: Port I/O Crossbar Register 1	. 149
SFR Definition 15.3. XBR2: Port I/O Crossbar Register 2	. 149
SFR Definition 15.4. P0: Port0 Latch	. 150
SFR Definition 15.5. POMDIN: Port0 Input Mode	. 150
SFR Definition 15.6. P0MDOUT: Porto Output Mode	. 151
SFR Definition 15.7. P0SKIP: Port0 Skip	. 151
SFR Definition 15.8. P1: Port1 Latch	. 152
SFR Definition 15.9. P1MDIN: Port1 Input Mode	. 152
SFR Definition 15.10. P1MDOUT: Port1 Output Mode	. 152
SFR Definition 15.11. P1SKIP: Port1 Skip	. 153
SFR Definition 15.12. P2: Port2 Latch	. 153
SFR Definition 15.13. P2MDIN: Port2 Input Mode	. 153
SFR Definition 15.14. P2MDOUT: Port2 Output Mode	. 154
SFR Definition 15.15. P2SKIP: Port2 Skip	. 154
SFR Definition 15.16. P3: Port3 Latch	. 155
SFR Definition 15.17. P3MDIN: Port3 Input Mode	. 155
SFR Definition 15.18. P3MDOUT: Port3 Output Mode	. 155
SFR Definition 15.19. P3SKIP: Port3 Skip	. 156
SFR Definition 15.20. P4: Port4 Latch	. 156
SFR Definition 15.21. P4MDIN: Port4 Input Mode	. 157
SFR Definition 15.22. P4MDOUT: Port4 Output Mode	. 157
SFR Definition 16.1. USB0XCN: USB0 Transceiver Control	. 161
SFR Definition 16.2. USB0ADR: USB0 Indirect Address	. 163
SFR Definition 16.3. USB0DAT: USB0 Data	. 164
USB Register Definition 16.4. INDEX: USB0 Endpoint Index	. 165
USB Register Definition 16.5. CLKREC: Clock Recovery Control	. 166
USB Register Definition 16.6. FIFOn: USB0 Endpoint FIFO Access	. 168
USB Register Definition 16.7. FADDR: USB0 Function Address	. 169
USB Register Definition 16.8. POWER: USB0 Power	. 171
USB Register Definition 16.9. FRAMEL: USB0 Frame Number Low	. 172
USB Register Definition 16.10. FRAMEH: USB0 Frame Number High	. 172
USB Register Definition 16.11. IN1INT: USB0 IN Endpoint Interrupt	. 173
USB Register Definition 16.12. OUT1INT: USB0 Out Endpoint Interrupt	. 173
USB Register Definition 16.13. CMINT: USB0 Common Interrupt	. 174
USB Register Definition 16.14. IN1IE: USB0 IN Endpoint Interrupt Enable	. 175
USB Register Definition 16.15. OUT1IE: USB0 Out Endpoint Interrupt Enable	. 175
USB Register Definition 16.16. CMIE: USB0 Common Interrupt Enable	. 176
USB Register Definition 16.17. E0CSR: USB0 Endpoint0 Control	. 179
USB Register Definition 16.18. E0CNT: USB0 Endpoint 0 Data Count	. 180
- · · ·	

Figure 4.1. TQFP-48 Pinout Diagram (Top View)

SFR Definition 9.13. IT01CF: INT0/INT1 Configuration

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
IN1PL	IN1SL2	IN1SL1	IN1SL0	IN0PL	IN0SL2	IN0SL1	IN0SL0	00000001				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xE4				
Note: Re	fer to SFR Def	inition 21	for INT0/1	edae- or le	vel-sensitiv	e interrupt s	selection	-				
1000110				ougo or le		o interrupt e						
Bit7:	IN1PL: INT1	Polarity										
Bitti	0: INT1 input	is active lo	W.									
	1: INT1 input	is active h	iah.									
Bits6–4:	IN1SL2-0: IN	IT1 Port Pi	n Selection	Bits								
	These bits select which Port pin is assigned to INT1. Note that this pin assignment is inde-											
	pendent of the Crossbar; INT1 will monitor the assigned Port pin without disturbing the											
	peripheral that	at has beer	n assigned t	he Port pin	via the Cro	ssbar. The	Crossbar v	vill not				
	assign the Pc	ort pin to a	peripheral if	it is configu	ured to skip	the selected	l pin (accoi	mplished by				
	setting to '1' t	he corresp	onding bit i	n register F	OSKIP).		•					
	IN1SL2-0	INT	1 Port Pin									
	000		P0.0									
	001		P0.1									
	010		P0.2									
	011		P0.3									
	100		P0.4									
	101		P0.5									
	110		P0.6									
	111		P0.7									
Bit3:	IN0PL: INT0	Polarity										
	0: INT0 interr	upt is activ	e low.									
	1: INT0 interr	<u>upt i</u> s activ	e high.									
Bits2–0:	INT0SL2-0: I	NT0 Port F	Pin Selection	n Bits								
	These bits se	lect which	Port pin is a	assigned to	INT0. Note	that this pir	n assignme	ent is inde-				
	pendent of th	e Crossba	r. INTO will r	monitor the	assigned P	ort pin with	out disturbi	ing the				
	peripheral that	at has beer	n assigned t	he Port pin	via the Cro	ssbar. The	Crossbar v	vill not				
	assign the Po	ort pin to a p	peripheral if	it is configu	ired to skip	the selected	i pin (accoi	mplished by				
	setting to 11 t	ne corresp	onding bit i	n register F	USKIP).							
			<u> </u>									
	INUSL2-0	INI	0 Port Pin									
	000		P0.0									
	001		P0.1									
	010		P0.2									
	011		P0.3									
	100		P0.4									
	101		P0.5									
	110		P0.6									
	111		P0.7									

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
GF5	GF4	GF3	GF2	GF1	GF0	STOP	IDLE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x87
Bits7–2: Bit1: Bit0:	GF5–GF0: G These are go STOP: Stop Setting this b 1: CPU goes IDLE: Idle M Setting this b 1: CPU goes Ports, and A	General Pur eneral purp Mode Select bit will place into Stop r ode Select. bit will place into Idle m nalog Perip	pose Flags ose flags fo ct. the CIP-51 node (interr the CIP-51 ode. (Shuts herals are s	5–0. r use under in Stop mo nal oscillato in Idle moo off clock to still active.)	software co ode. This bit r stopped). de. This bit o CPU, but c	ontrol. t will always will always l clock to Tim	be read a be read as ers, Interr	as 0. s 0. upts, Serial

SFR Definition 9.14. PCON: Power Control

SFR Definition 12.3. FLSCL: Flash Scale

5.4.4	-		-	-	5	-	-	D			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
FOSE	Reserved	Reserved	FLRT	Reserved	Reserved	Reserved	Reserved	10000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xB6			
Bits7:	FOSE: Flash	n One-shot	Enable								
	This bit enab	les the Fla	sh read one	e-shot. Whe	n the Flash	one-shot d	isabled. th	e Flash			
	sense amps are enabled for a full clock cycle during Flash reads. At system clock frequen-										
	cies below 10 MHz disabling the Flash one-shot will increase system power consumption										
	0: Flash one	-shot disab	led.								
	1: Flash one	-shot enabl	ed.								
Bits6–5:	RESERVED	. Read = 00	b. Must Wr	ite 00b.							
Bit 4:	FLRT: FLAS	H Read Tim	ne.								
	This bit shou	ld be progra	ammed to t	he smallest	allowed val	ue, accordi	ng to the s	vstem clock			
	speed.						0				
	0: SYSCLK	<= 25 MHz.									
	1: SYSCLK	<= 48 MHz.									
Bits3–0:	RESERVED	. Read = 00	00b. Must	Write 0000b).						

13.6.1. Internal XRAM Only

When EMI0CF.[3:2] are set to '00', all MOVX instructions will target the internal XRAM space on the device. Memory accesses to addresses beyond the populated space will wrap on 2k or 4k boundaries (depending on the RAM available on the device). As an example, the addresses 0x1000 and 0x2000 both evaluate to address 0x0000 in on-chip XRAM space.

- 8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address and R0 or R1 to determine the low-byte of the effective address.
- 16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.

13.6.2. Split Mode without Bank Select

When EMI0CF.[3:2] are set to '01', the XRAM memory map is split into two areas, on-chip space and off-chip space.

- Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.
- Effective addresses above the internal XRAM size boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-chip or off-chip. However, in the "No Bank Select" mode, an 8-bit MOVX operation will not drive the upper 8-bits A[15:8] of the Address Bus during an off-chip access. This allows the user to manipulate the upper address bits at will by setting the Port state directly via the port latches. This behavior is in contrast with "Split Mode with Bank Select" described below. The lower 8-bits of the Address Bus A[7:0] are driven, determined by R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip or off-chip, and unlike 8-bit MOVX operations, the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

SFR Definition 14.3. OSCLCN: Internal L-F Oscillator Control

R/W	R	R/W	R	R/W	R/W	R/W	R/W	Reset Value				
OSCLE	N OSCLRDY	OSCLF3	OSCLF2	OSCLF1	OSCLF0	OSCLD1	OSCLD0	00vvvv00				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0x86				
Bit7:	 : OSCLEN: Internal L-F Oscillator Enable. 0: Internal L-F Oscillator Disabled. 1: Internal L-F Oscillator Enabled. : OSCLRDY: Internal L-F Oscillator Ready Flag. 											
Bit6:	OSCLRDY: Internal L-F Oscillator Ready Flag. 0: Internal L-F Oscillator frequency not stabilized. 1: Internal L-F Oscillator frequency stabilized.											
Bits5–2:	 is5-2: OSCLF[3:0]: Internal L-F Oscillator Frequency Control bits. Fine-tune control bits for the internal L-F Oscillator frequency. When set to 0000b, the L-F oscillator operates at its fastest setting. When set to 1111b, the L-F oscillator operates at its slowest setting. 											
Bits1–0:	OSCLD[1:0]: 00: Divide by 01: Divide by 10: Divide by 11: Divide by	Internal L-I 8 selected 4 selected. 2 selected 1 selected	- Oscillator	Divider Sel	ect.							

SFR Definition	14.4.	OSCXCN:	External	Oscillator	Control
-----------------------	-------	----------------	----------	------------	---------

R	R/W	R/W	R/W	R	R/W	R/W	R/W	Reset Value					
XTLVLD	XOSCM	1D2 XOSCMD1	XOSCMD0	-	XFCN2	XFCN1	XFCN0	00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
								0xB1					
Bit7:	XTLVLD:	Crystal Oscilla	tor Valid Fla	g.									
	(Read or	nly when XOSC	MD = 11x.)										
	0: Crysta	l Oscillator is u	nused or not	t yet stable.									
54.6.4	1: Crysta	l Oscillator is ru	inning and s	table.									
Bits6-4:		J2–0: External	Oscillator Me	ode Bits.									
)10: External CMOS Clock Mode											
	010. EXIC	arnal CMOS Cl	ock Mode wi	th divide by	2 stana								
	100' RC	Oscillator Mode		IT UNDE Dy	z slage.								
	101: Cap	acitor Oscillato	r Mode.										
	110: Crys	stal Oscillator M	lode.										
	111: Crys	stal Oscillator M	lode with div	vide by 2 sta	age.								
Bit3:	RESERV	/ED. Read = 0,	Write = don'	't care.									
Bits2–0:	XFCN2-	0: External Osc	illator Frequ	ency Contro	ol Bits.								
	000-111:	See table belo	w:										
	XFCN	Crystal (XOSC	MD = 11x)	RC (XOSC	MD = 10x)	C (XOS	CMD = 10x	.)					
	000	f ≤ 32 k	Hz	f ≤ 25	kHz	K Fac	tor = 0.87						
	001	32 kHz < t ≤	84kHz	25 kHz < f	\leq 50 kHz	K Fac	tor = 2.6						
	010	84 kHz < f ≤	225 kHz	50 kHz < f	≤ 100 kHz	K Fac	ctor = 1.1						
	011	$225 \text{ kHz} < f \le$	590 kHz	$\frac{100 \text{ kHz} < 1}{200 \text{ kHz}}$	$\leq 200 \text{ kHz}$	K Fa	ctor = 22						
	100	590 KHZ < f ≤		200 KHZ < 1	≤ 400 KHZ	K Fa	$\frac{100}{100}$						
	101	1.5 MHZ < f		400 KHZ < 1		K Fac	$\frac{180}{180}$						
	110	$\frac{4 \text{ IMHZ} < f \le}{10 \text{ MHZ}}$		$\frac{800 \text{ KHZ} < 1}{4 \text{ C} \text{ MHZ} < 1}$	$\leq 1.6 \text{ MHZ}$	K Fac	tor = 664						
	111	$10 \text{ MHz} < 1 \le$	30 MHZ	1.6 IVIHZ < 1	\leq 3.2 IVIHZ	K Fac	or = 1590						
CRYSTA	L MODE (Circuit from Fig	gure 14.1, Op	ption 1; XO	SCMD = 11	x)							
	Choose 2	XFCN value to	match crysta	al or resona	tor frequence	су.							
		· - · · · ·											
RC MOD	E (Circuit	from Figure 14	.1, Option 2;	XOSCMD	= 10x)								
	Choose		match freque	ency range:									
	t = 1.23(10°) / (R x C), \	vhere										
	f = freque	ency of clock in											
	C = Capa $R = Pull_{-}$	un resistor value	r Ia in kO										
			0 III N22										
C MODE	(Circuit fr	om Figure 14.1	, Option 3: X	(OSCMD =	10x)								
	Choose I	K Factor (KF) fo	or the oscilla	tion frequer	ncy desired:								
	f = KF / (C x V _{DD}), where												
	f = freque	ency of clock in	MHz										
	C = capa	citor value the	XTAL2 pin ir	n pF									
	$V_{DD} = Pc$	ower Supply on	MCU in volt	S									

14.4. 4x Clock Multiplier

The 4x Clock Multiplier allows a 12 MHz oscillator to generate the 48 MHz clock required for Full Speed USB communication (see **Section "16.4. USB Clock Configuration" on page 166**). A divided version of the Multiplier output can also be used as the system clock. C8051F340/1/2/3 devices can use the 48 MHz Clock Multiplier output as system clock. See Table 3.1, "Global DC Electrical Characteristics," on page 25 for system clock frequency specifications. See **Section 14.5** for details on system clock and USB clock source selection.

The 4x Clock Multiplier is configured via the CLKMUL register. The procedure for configuring and enabling the 4x Clock Multiplier is as follows:

- 1. Reset the Multiplier by writing 0x00 to register CLKMUL.
- 2. Select the Multiplier input source via the MULSEL bits.
- 3. Enable the Multiplier with the MULEN bit (CLKMUL | = 0x80).
- 4. Delay for $>5 \ \mu s$.
- 5. Initialize the Multiplier with the MULINIT bit (CLKMUL | = 0xC0).
- 6. Poll for MULRDY = '1'.

Important Note: When using an external oscillator as the input to the 4x Clock Multiplier, the external source must be enabled and stable before the Multiplier is initialized. See Section 14.5 for details on selecting an external oscillator source.

SFR Definition 14.5. CLKMUL: Clock Multiplier Control

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value				
MULEN	MULINIT	MULRDY	-	-	-	MUL	SEL	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address				
								0xB9				
D :/ 7												
Bit7:	MULEN: Clo	ck Multiplie	r Enable									
	0: Clock Multiplier disabled.											
D:40.	1: Clock Multiplier enabled.											
BITO:			er Initialize		or io onoble		مامام					
	I NIS DIT SNOU	lid be a '0' v	vnen the Ci			ea. Once en	abled, wri	iting a "1" to				
	this bit will in	itialize the C		nier. The Mi	JLRDYDIU	reads 1 wh	en the Cic	ock multiplier				
DitE		look Multipli	or Boody									
DID.	This road or	lock Multipli	too tho stat	us of the Cl	ook Multipli	ior						
	0: Clock Mul	tiplier not re	ies ine siai									
	1: Clock Mul	tiplier ready	(locked)									
Bits4-2.	Linused Re	ad = 000b.	Vrite – don	't care								
Bits1–0	MULSEL C	ock Multipli	er Innut Sel	ect								
Bitor o.	These bits s	elect the clo	ock supplied	to the Cloc	k Multiplie	r						
	MU	LSEL	S	elected Clo	ock							
	(00	In	ternal Oscill	ator							
	(01	Ex	ternal Oscil	lator							
		10	Exte	ernal Oscilla	tor / 2							
		11		RESERVE	D							
			1									

SFR Definition 15.14. P2MDOUT: Port2 Output Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xA6
Bits7–0:	Output Conf ter P2MDIN 0: Correspor 1: Correspor	iguration Bi is logic 0. nding P2.n (nding P2.n (ts for P2.7– Output is op Output is pu	-P2.0 (respe ben-drain. ush-pull.	ctively): igr	nored if corre	espondin	g bit in regis-

SFR Definition 15.15. P2SKIP: Port2 Skip

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD6
Bits7–0:	P2SKIP[7:0] These bits so log inputs (for lator circuit, 0: Correspon 1: Correspon	: Port2 Cros elect Port p or ADC or C CNVSTR ir nding P2.n nding P2.n	ssbar Skip I ins to be sk comparator) aput) should pin is not sk pin is skippe	Enable Bits. ipped by the or used as be skipped ipped by the ed by the Cu	e Crossbar special fund by the Cro e Crossbar. rossbar.	Decoder. P ctions (VRE ssbar.	ort pins us F input, e	sed as ana- xternal oscil-

16.5. FIFO Management

1024 bytes of on-chip XRAM are used as FIFO space for USB0. This FIFO space is split between Endpoints0-3 as shown in Figure 16.3. FIFO space allocated for Endpoints1-3 is configurable as IN, OUT, or both (Split Mode: half IN, half OUT).

16.5.1. FIFO Split Mode

The FIFO space for Endpoints1-3 can be split such that the upper half of the FIFO space is used by the IN endpoint, and the lower half is used by the OUT endpoint. For example: if the Endpoint3 FIFO is configured for Split Mode, the upper 256 bytes (0x0540 to 0x063F) are used by Endpoint3 IN and the lower 256 bytes (0x0440 to 0x053F) are used by Endpoint3 OUT.

If an endpoint FIFO is not configured for Split Mode, that endpoint IN/OUT pair's FIFOs are combined to form a single IN *or* OUT FIFO. In this case only one direction of the endpoint IN/OUT pair may be used at a time. The endpoint direction (IN/OUT) is determined by the DIRSEL bit in the corresponding endpoint's EINCSRH register (see SFR Definition 16.20).

USB Register Definition 16.13. CMINT: USB0 Common Interrupt

_	_	_	_	_	_	_	_					
R	R	R	R	R	R	R	R	Reset Value				
-	-	-	-	SOF	RSTINT	RSUINT	SUSINT	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address:				
								0x06				
Bits/-4:	Unused. Read = 00000; Write = don't care.											
Bit3:	SOF: Start of Frame Interrupt											
	Set by hardy	vare when a	a SOF tokel	n is receive	d. This inter	rrupt event i	IS SYNTNESI	zed by hard-				
	ware: an inte		e generated	when hard	ware expec	cts to receiv	e a SOF ev	vent, even li				
	This bit is cla	or signal is	software re	corrupted.	AINT registe	or.						
	0. SOF inter	runt inactiv			int registe	51.						
	1: SOF inter	rupt active	0.									
Bit2:	RSTINT: Res	set Interrup	t-pendina F	laq								
DILL.	Set by hardy	vare when	Reset signa	lina is dete	cted on the	bus.						
	This bit is cle	eared when	software re	eads the CN	INT registe	er.						
	0: Reset inte	rrupt inacti	ve.		0							
	1: Reset inte	rrupt active).									
Bit1:	RSUINT: Re	sume Interi	upt-pending	g Flag								
	Set by hardv	vare when I	Resume sig	naling is de	tected on th	he bus while	e USB0 is i	n suspend				
	mode.											
	This bit is cle	eared when	software re	eads the CN	INT registe	er.						
	0: Resume in	nterrupt ina	ctive.									
BHA	1: Resume in	nterrupt act	ive.									
Bit0:	SUSINT: Su	spend Inter	rupt-pendin	g Flag	• • • • • • • • • • • • • • • • • • •		d. 1. 1. 10 1.					
	when Suspe	end detectio	on is enable		IN IN registe	er POWER)	, this dit is	set by hard-				
	ware when a	ANT regist	gnaling is de	elected on t	ne bus. This	s bit is clear	red when s	oitware				
		nterrunt inc	er. Active									
	0. Suspend interrupt Indulive.											
		nonupi ac										

17.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 17.2). The higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER and TXMODE indicate the master/slave state and transmit/receive modes, respectively.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a '1' to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a '1' to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 17.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI.

Table 17.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 17.4 for SMBus status decoding using the SMB0CN register.

17.5.4. Slave Transmitter Mode

Serial data is transmitted on SDA and the clock is received on SCL. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. Upon entering Slave Transmitter Mode, an interrupt is generated and the ACKRQ bit is set. Software responds to the received slave address with an ACK, or ignores the received slave address with a NACK. If the received slave address is ignored, slave interrupts will be inhibited until a START is detected. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface enters Slave Transmitter Mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (Note: an error condition may be generated if SMB0DAT is written following a received NACK while in Slave Transmitter Mode). The interface exits Slave Transmitter Mode after receiving a STOP. Note that the interface will switch to Slave Receiver Mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 17.8 shows a typical Slave Transmitter sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that the 'data byte transferred' interrupts occur **after** the ACK cycle in this mode.

Figure 17.8. Typical Slave Transmitter Sequence

17.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. In the table below, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. Note that the shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed but do not conform to the SMBus specification.

SFR Definition 19.5. SBRLH1: UART1 Baud Rate Generator High Byte

SFR Definition 19.6. SBRLL1: UART1 Baud Rate Generator Low Byte

20.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CFG.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CFG.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 20.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 20.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 20.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

20.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

R	R/W	R/W	R/W	R	R	R	R	Reset Value
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xA1
BIT 7:	SPIBSY: SPI Busy (read only). This bit is set to logic 1 when a SPI transfer is in pregnance (Master er stave Master)							
Dit 6.	I his bit is set to logic 1 when a SPI transfer is in progress (Master or slave Mode).							
Dit 0.	NOTEN. Master mode. Operate in slave mode.							
	1. Enable master mode. Operate as a master							
Bit 5 [.]	CKPHA: SPI0 Clock Phase							
2.1.01	This bit cont	rols the SPI	0 clock pha	ase.				
	0: Data cente	ered on firs	t edge of S	CK period.*				
	1: Data cente	ered on sec	ond edge c	of SCK peric	d.*			
Bit 4:	CKPOL: SPI	0 Clock Pol	larity.					
	This bit contr	rols the SPI	0 clock pol	arity.				
	0: SCK line low in idle state.							
	1: SCK line h	high in idle :	state.					
Bit 3:	SLVSEL: Slave Selected Flag (read only).							
	This bit is se	t to logic 1	whenever the	he NSS pin	is low indic	ating SPI0 i	s the selec	ted slave. It
	is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the					licate the		
D:+ 0.	instantaneous value at the NSS pin, but rather a de-glitched version of the pin input. NSSIN: NSS Instantaneous Pin Input (read only). This bit mimics the instantaneous value that is present on the NSS port pin at the time that						nput.	
BIT 2:							a time that	
Bit 1	SRMT Shift	Register Fr	nntv (Valid	in Slave Mc	u. de read or	nlv)		
Dit 1.	This bit will h	ne set to loo	lic 1 when a	all data has	heen transf	erred in/ou	t of the shi	ft register
	and there is no new information available to read from the transmit buffer or write to					te to the		
receive buffer. It returns to logic 0 when a data byte is transferred to the sh					he shift red	aister from		
the transmit buffer or by a transition on SCK.					J			
	NOTE: SRM	T = 1 when	in Master I	Mode.				
Bit 0:	RXBMT: Red	ceive Buffer	Empty (Va	lid in Slave	Mode, read	only).		
	This bit will be set to logic 1 when the receive buffer has been read and contains no new information. If there is new information available in the receive buffer that has not been re					s no new		
						t been read,		
	this bit will return to logic 0.							
NOTE: RXBMT = 1 when in Master Mode.								
Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is								

SFR Definition 20.1. SPI0CFG: SPI0 Configuration

Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one SYSCLK before the end of each data bit, to provide maximum settling time for the slave device. See Table 20.1 for timing parameters.

21.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is '1' and T3CE = '0', Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 21.5. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bit (T3XCLK in TMR3CN), as follows:

T3MH	T3XCLK	TMR3H Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

T3ML	T3XCLK	TMR3L Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows from 0xFF to 0x00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 21.9. Timer 3 8-Bit Mode Block Diagram

22.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 22.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 22.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

Figure 22.7. PCA Frequency Output Mode

$Offset = (256 \times PCA0CPL4) + (256 - PCA0L)$

Equation 22.4. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCA0L overflows while there is a match between PCA0CPH4 and PCA0H. Software may force a WDT reset by writing a '1' to the CCF4 flag (PCA0CN.4) while the WDT is enabled.

22.3.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

- 1. Disable the WDT by writing a '0' to the WDTE bit.
- 2. Select the desired PCA clock source (with the CPS2-CPS0 bits).
- 3. Load PCA0CPL4 with the desired WDT update offset value.
- 4. Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
- 5. Enable the WDT by setting the WDTE bit to '1'.
- 6. (optional) Lock the WDT (prevent WDT disable until the next system reset) by setting the WDLCK bit to '1'.
- 7. Write a value to PCA0CPH4 to reload the WDT.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCA0MD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, PCA0L defaults to 0x00, and PCA0CPL4 defaults to 0x00. Using Equation 22.4, this results in a WDT timeout interval of 256 PCA clocks. Table 22.3 lists some example timeout intervals for typical system clocks.

System Clock (Hz)	PCA0CPL4	Timeout Interval (ms)
12,000,000	255	65.5
12,000,000	128	33.0
12,000,000	32	8.4
24,000,000	255	32.8
24,000,000	128	16.5
24,000,000	32	4.2
1,500,000 ²	255	524.3
1,500,000 ²	128	264.2
1,500,000 ²	32	67.6
32,768	255	24,000
32,768	128	12,093.75
32,768	32	3,093.75

Table 22.3. Watchdog Timer Timeout Intervals¹

Notes:

- 1. Assumes SYSCLK / 12 as the PCA clock source, and a PCA0L
- value of 0x00 at the update time.
- **2.** System Clock reset frequency.

