

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f346-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1. System Overview	
Figure 1.1. C8051F340/1/4/5 Block Diagram	19
Figure 1.2. C8051F342/3/6/7 Block Diagram	20
Figure 1.3. C8051F348/C Block Diagram	21
Figure 1.4. C8051F349/D Block Diagram	22
Figure 1.5. C8051F34A/B Block Diagram	23
4. Pinout and Package Definitions	
Figure 4.1. TQFP-48 Pinout Diagram (Top View)	31
Figure 4.2. TQFP-48 Package Diagram	32
Figure 4.3. TQFP-48 Recommended PCB Land Pattern	33
Figure 4.4. LQFP-32 Pinout Diagram (Top View)	34
Figure 4.5. LQFP-32 Package Diagram	35
Figure 4.6. LQFP-32 Recommended PCB Land Pattern	36
Figure 4.7. QFN-32 Pinout Diagram (Top View)	37
5. 10-Bit ADC (ADC0, C8051F340/1/2/3/4/5/6/7/A/B Only)	
Figure 5.1. ADC0 Functional Block Diagram	41
Figure 5.2. Temperature Sensor Transfer Function	43
Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 V)	44
Figure 5.4. 10-Bit ADC Track and Conversion Example Timing	46
Figure 5.5. ADC0 Equivalent Input Circuits	47
Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data	54
Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data	54
Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data	55
Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data	55
6. Voltage Reference (C8051F340/1/2/3/4/5/6/7/A/B Only)	
Figure 6.1. Voltage Reference Functional Block Diagram	57
7. Comparators	
Figure 7.1. Comparator Functional Block Diagram	60
Figure 7.2. Comparator Hysteresis Plot	61
8. Voltage Regulator (REG0)	
Figure 8.1. REG0 Configuration: USB Bus-Powered	70
Figure 8.2. REG0 Configuration: USB Self-Powered	70
Figure 8.3. REG0 Configuration: USB Self-Powered, Regulator Disabled	71
Figure 8.4. REG0 Configuration: No USB Connection	71
9. CIP-51 Microcontroller	
Figure 9.1. CIP-51 Block Diagram	73
Figure 9.2. On-Chip Memory Map for 64 kB Devices	79
Figure 9.3. On-Chip Memory Map for 32 kB Devices	80
11. Reset Sources	
Figure 11.1. Reset Sources1	00
Figure 11.2. Power-On and VDD Monitor Reset Timing	01

	Table 17.2. Minimum SDA Setup and Hold Times	193
	Table 17.3. Sources for Hardware Changes to SMB0CN	197
	Table 17.4. SMBus Status Decoding	203
18.	. UARTO	
	Table 18.1. Timer Settings for Standard Baud Rates	
	Using the Internal Oscillator	212
19.	. UART1 (C8051F340/1/4/5/8/A/B/C Only)	
	Table 19.1. Baud Rate Generator Settings for Standard Baud Rates	214
20.	. Enhanced Serial Peripheral Interface (SPI0)	
	Table 20.1. SPI Slave Timing Parameters	234
22.	Programmable Counter Array (PCA0)	
	Table 22.1. PCA Timebase Input Options	256
	Table 22.2. PCA0CPM Register Settings for PCA Capture/Compare Modules	257
	Table 22.3. Watchdog Timer Timeout Intervals1	265

Figure 1.5. C8051F34A/B Block Diagram

5.3. Modes of Operation

ADC0 has a maximum conversion speed of 200 ksps. The ADC0 conversion clock is a divided version of the system clock, determined by the AD0SC bits in the ADC0CF register (system clock divided by (AD0SC + 1) for $0 \le AD0SC \le 31$).

5.3.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the following:

- 1. Writing a '1' to the AD0BUSY bit of register ADC0CN
- 2. A Timer 0 overflow (i.e., timed continuous conversions)
- 3. A Timer 2 overflow
- 4. A Timer 1 overflow
- 5. A rising edge on the CNVSTR input signal
- 6. A Timer 3 overflow

Writing a '1' to AD0BUSY provides software control of ADC0 whereby conversions are performed "on-demand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte overflows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit mode. See **Section "21. Timers" on page 235** for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as a Port pin. When the CNVSTR input is used as the ADC0 conversion source, the associated Port pin should be skipped by the Digital Crossbar. To configure the Crossbar to skip a pin, set the corresponding bit in the PnSKIP register to '1'. See **Section "15. Port Input/Output" on page 142** for details on Port I/O configuration.

5.3.3. Settling Time Requirements

When the ADC0 input configuration is changed (i.e., a different AMUX0 selection is made), a minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion. Note that in low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most applications, these three SAR clocks will meet the minimum tracking time requirements.

Figure 5.5 shows the equivalent ADC0 input circuits for both Differential and Single-ended modes. Notice that the equivalent time constant for both input circuits is the same. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 5.1. When measuring the Temperature Sensor output or V_{DD} with respect to GND, R_{TOTAL} reduces to R_{MUX} . See Table 5.1 for ADC0 minimum settling time requirements.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$

Equation 5.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the AMUX0 resistance and any external source resistance.

n is the ADC resolution in bits (10).

Single-Ended Mode

Figure 5.5. ADC0 Equivalent Input Circuits

9.2.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic I. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

SFR Definition 9.1. DPL: Data Pointer Low Byte

SFR Definition 9.2. DPH: Data Pointer High Byte

SFR Definition 9.3. SP: Stack Pointer

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	Ν	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	Ν	ET2 (IE.5)	PT2 (IP.5)
SPI0	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y	N	ESPI0 (IE.6)	PSPI0 (IP.6)
SMB0	0x003B	7	SI (SMB0CN.0)	Y	Ν	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
USB0	0x0043	8	Special	Ν	N	EUSB0 (EIE1.1)	PUSB0 (EIP1.1)
ADC0 Window Compare	0x004B	9	AD0WINT (ADC0CN.3)	Y	Ν	EWADC0 (EIE1.2)	PWADC0 (EIP1.2)
ADC0 Conversion Complete	0x0053	10	AD0INT (ADC0CN.5)	Y	Ν	EADC0 (EIE1.3)	PADC0 (EIP1.3)
Programmable Counter Array	0x005B	11	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y	N	EPCA0 (EIE1.4)	PPCA0 (EIP1.4)
Comparator0	0x0063	12	CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5)	Ν	Ν	ECP0 (EIE1.5)	PCP0 (EIP1.5)
Comparator1	0x006B	13	CP1FIF (CPT1CN.4) CP1RIF (CPT1CN.5)	Ν	N	ECP1 (EIE1.6)	PCP1 (EIP1.6)
Timer 3 Overflow	0x0073	14	TF3H (TMR3CN.7) TF3L (TMR3CN.6)	Ν	Ν	ET3 (EIE1.7)	PT3 (EIP1.7)
VBUS Level	0x007B	15	N/A	N/A	N/A	EVBUS (EIE2.0)	PVBUS (EIP2.0)
UART1	0x0083	16	RI1 (SCON1.0) TI1 (SCON1.1)	Ν	Ν	ES1 (EIE2.1)	PS1 (EIP2.1)

Table 9.4. Interrupt Summary

9.3.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

SFR Definition 9.11. EIE2: Extended	Interrupt Enable 2
-------------------------------------	--------------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	-	ES1	EVBUS	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE7
Bits7–2: Bit1: Bit0:	UNUSED. R ES1: Enable This bit sets 0: Disable U 1: Enable U EVBUS: Ena This bit sets 0: Disable al 1: Enable int	ead = 0000 UART1 Int the maskin ART1 interr ART1 interr able VBUS the maskin I VBUS inte errupt requ	00b. Write = errupt. g of the UA upt. Level Interru g of the VB errupts. ests genera	= don't care RT1 interru upt. US interrup ated by VBL	pt. t. IS level sen	ISE.		

SFR Definition 9.12. EIP2: Extended Interrupt Priority 2

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
-	-	-	-	-	-	PS1	PVBUS	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0xF7	
Bits7-2:UNUSED. Read = 000000b. Write = don't care.Bit1:PS1: UART1 Interrupt Priority Control.This bit sets the priority of the UART1 interrupt.0:UART1 interrupt set to low priority level.1:UART1 interrupts set to high priority level.									
Bit0:	PVBUS: VBI This bit sets 0: VBUS inte 1: VBUS inte	US Level In the priority errupt set to errupt set to	terrupt Prio of the VBU low priority high priorit	rity Control. S interrupt. Ievel. y level.					

Figure 12.1. Flash Program Memory Map and Security Byte

SFR Definition 12.3. FLSCL: Flash Scale

5.4.4	-	-	-	-	5	-	-	D
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
FOSE	Reserved	Reserved	FLRT	Reserved	Reserved	Reserved	Reserved	10000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB6
Bits7:	FOSE: Flash	n One-shot	Enable					
	This bit enab	les the Fla	sh read one	e-shot. Whe	n the Flash	one-shot d	isabled. th	e Flash
	sense amps	are enable	d for a full o	lock cycle d	during Flash	reads. At s	svstem clo	ck frequen-
	cies below 1	0 MHz. disa	abling the F	lash one-sh	ot will incre	ase system	power co	nsumption.
	0: Flash one	-shot disab	led.					
	1: Flash one	-shot enabl	ed.					
Bits6–5:	RESERVED	. Read = 00	b. Must Wr	ite 00b.				
Bit 4:	FLRT: FLAS	H Read Tim	ne.					
	This bit shou	ld be progra	ammed to t	he smallest	allowed val	ue, accordi	ng to the s	vstem clock
	speed.						0	
	0: SYSCLK	<= 25 MHz.						
	1: SYSCLK	<= 48 MHz.						
Bits3–0:	RESERVED	. Read = 00	00b. Must	Write 0000b).			

14. Oscillators

C8051F34x devices include a programmable internal high-frequency oscillator, a programmable internal low-frequency oscillator (C8051F340/1/2/3/4/5/8/9/A/B/C/D), an external oscillator drive circuit, and a 4x Clock Multiplier. The internal high-frequency and low-frequency oscillators can be enabled/disabled and adjusted using the special function registers, as shown in Figure 14.1. The system clock (SYSCLK) can be derived from either of the internal oscillators, the external oscillator circuit, or the 4x Clock Multiplier divided by 2. The USB clock (USBCLK) can be derived from the internal oscillator, external oscillator, or 4x Clock Multiplier. Oscillator electrical specifications are given in Table 14.1.

Figure 14.1. Oscillator Diagram

SFR Definition	14.4.	OSCXCN:	External	Oscillator	Control
-----------------------	-------	----------------	----------	------------	---------

R	R/W	R/W	R/W	R	R/W	R/W	R/W	Reset Value
XTLVLD	XOSCM	1D2 XOSCMD1	XOSCMD0	-	XFCN2	XFCN1	XFCN0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB1
Bit7:	XTLVLD:	Crystal Oscilla	tor Valid Fla	g.				
	(Read or	nly when XOSC	MD = 11x.)					
	0: Crysta	l Oscillator is u	nused or not	t yet stable.				
54.6.4	1: Crysta	l Oscillator is ru	inning and s	table.				
Bits6-4:		J2–0: External	Oscillator Me	ode Bits.				
		ernal Oscillator	circuit oli.					
		arnal CMOS Cl	ock Mode wi	th divide by	2 stana			
	100' RC	Oscillator Mode		IT UNDE Dy	z slage.			
	101: Cap	acitor Oscillato	r Mode.					
	110: Crys	stal Oscillator M	lode.					
	111: Crys	stal Oscillator M	lode with div	vide by 2 sta	age.			
Bit3:	RESERV	/ED. Read = 0,	Write = don'	't care.				
Bits2–0:	XFCN2-	0: External Osc	illator Frequ	ency Contro	ol Bits.			
	000-111:	See table belo	w:					
	XFCN	Crystal (XOSC	MD = 11x)	RC (XOSC	MD = 10x)	C (XOS	CMD = 10x	.)
	000	f ≤ 32 k	Hz	f ≤ 25	kHz	K Fac	tor = 0.87	
	001	32 kHz < t ≤	84kHz	25 kHz < f	\leq 50 kHz	K Fac	tor = 2.6	
	010	84 kHz < f ≤	225 kHz	50 kHz < f	≤ 100 kHz	K Fac	ctor = 1.1	
	011	$225 \text{ kHz} < f \le$	590 kHz	$\frac{100 \text{ kHz} < 1}{200 \text{ kHz}}$	$\leq 200 \text{ kHz}$	K Fa	ctor = 22	
	100	590 KHZ < f ≤		200 KHZ < 1	≤ 400 KHZ	K Fa	$\frac{100}{100}$	
	101	1.5 MHZ < f		400 KHZ < 1		K Fac	$\frac{180}{180}$	
	110	$\frac{4 \text{ IMHZ} < f \le}{10 \text{ MHZ}}$		$\frac{800 \text{ KHZ} < 1}{4 \text{ C} \text{ MHZ} < 1}$	$\leq 1.6 \text{ MHZ}$	K Fac	tor = 664	
	111	$10 \text{ MHz} < 1 \le$	30 MHZ	1.6 IVIHZ < 1	\leq 3.2 IVIHZ	K Fac	or = 1590	
CRYSTA	L MODE (Circuit from Fig	gure 14.1, Op	ption 1; XO	SCMD = 11	x)		
	Choose 2	XFCN value to	match crysta	al or resona	tor frequence	су.		
		· - · · · ·						
RC MOD	E (Circuit	from Figure 14	.1, Option 2;	XOSCMD	= 10x)			
	Choose		match freque	ency range:				
	t = 1.23(10°) / (R x C), \	vhere					
	f = freque	ency of clock in						
	C = Capa $R = Pull_{-}$	un resistor value	r le in kO					
			0 III N22					
C MODE	(Circuit fr	om Figure 14.1	, Option 3: X	(OSCMD =	10x)			
	Choose I	K Factor (KF) fo	or the oscilla	tion frequer	ncy desired:			
	f = KF / ((C x V_{DD}) , when	е	•				
	f = freque	ency of clock in	MHz					
	C = capa	citor value the	XTAL2 pin ir	n pF				
	$V_{DD} = Pc$	ower Supply on	MCU in volt	S				

USB Register Definition 16.17. E0CSR: USB0 Endpoint0 Control

R/W	R/W	R/W	R	R/W	R/W	R/W	R	Reset Value
SSUEN	O SOPRDY	SDSTL	SUEND	DATAEND	STSTL	INPRDY	OPRDY	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address:
								0x11
D:+7.		an dead Cat	un Find					
BIT/:	SSUEND: Se	are should	up Ena sot this hit	to '1' after se	nvicina a 9	Satun End (k		
	Hardware cle	ears the SU	IFND hit w	hen software	writes '1'	to SSUEND) event.
	Read: This b	oit always re	eads '0'.		WINCO I			
Bit6:	SOPRDY: Se	erviced OP	RDY					
	Write: Softw	are should	write '1' to	this bit after	servicing a	a received E	ndpoint0 p	acket. The
	OPRDY bit w	vill be clear	ed by a wri	te of '1' to So	OPRDY.			
Ditc	Read: This b	oit always re	eads '0'.					
DIID.	Software car	u Stall write '1' to	this hit to	terminate the	ourrent tr	ansfer (due	to an erro	r condition
	unexpected t	transfer reg	uest. etc.).	Hardware w	vill clear thi	s bit to '0' w	hen the S	TALL hand-
	shake is tran	smitted.	, ,					
Bit4:	SUEND: Set	up End						
	Hardware se	ts this read	-only bit to	'1' when a c	ontrol tran	saction ends	s before so	oftware has
	written '1' to	the DATAE	ND bit. Ha	rdware clears	s this bit w	hen software	e writes '1'	to SSU-
Bit3 [.])ata End						
Bitol	Software sho	ould write '1	' to this bit	:				
	1. When wri	ting '1' to IN	NPRDY for	the last outg	oing data	packet.		
	2. When wri	ting '1' to IN	NPRDY for	a zero-lengt	h data pac	ket.		
	3. When write	ting '1' to S	OPRDY af	ter servicing	the last inc	coming data	packet.	
Bit2.	STSTI · Sent	tomatically	cleared by	naroware.				
DILZ.	Hardware se	ts this bit to	o '1' after tr	ansmitting a	STALL ha	ndshake siq	nal. This fl	ag must be
	cleared by so	oftware.						
Bit1:	INPRDY: IN	Packet Rea	ady					
	Software sho	ould write '1	' to this bit	after loading	a data pa	cket into the		0 FIFO for
	transmit. Har	dware clea	rs this bit a	and generate	s an interr	upt under ei	ther of the	following
	1 The packe	t is transmi	itted					
	2. The packe	t is overwri	tten bv an	incomina SE	TUP pack	et.		
	3. The packe	et is overwri	tten by an	incoming OL	JT packet.			
Bit0:	OPRDY: OU	T Packet R	eady					
	Hardware se	ts this read	-only bit ar	nd generates	an interru	pt when a da	ata packet	has been
	received. Thi	IS DIT IS Clea	ared only w	nen software	e writes '1'	to the SOPH	KUY DIt.	

17. SMBus

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock as a master or slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. Three SFRs are associated with the SMBus: SMB0CF configures the SMBus; SMB0CN controls the status of the SMBus; and SMB0DAT is the data register, used for both transmitting and receiving SMBus data and slave addresses.

Figure 17.1. SMBus Block Diagram

21.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/ timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

21.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, USB Start-of-Frame (SOF) capture mode, or Low-Frequency Oscillator (LFO) Falling Edge capture mode. The Timer 2 operation mode is defined by the T2SPLIT (TMR2CN.3), T2CE (TMR2CN.4) bits, and T2CSS (TMR2CN.1) bits.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

21.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT = '0' and T2CE = '0', Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 21.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled, an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x000.

Figure 21.4. Timer 2 16-Bit Mode Block Diagram

22.2.3. High Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn) Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 22.6. PCA High Speed Output Mode Diagram

22.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 22.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 22.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

Figure 22.7. PCA Frequency Output Mode

SFR Definition 22.4. PCA0L: PCA Counter/Timer Low Byte

R/V	/ R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF9
Bits 7–	0: PCA0L: PC The PCA0L	A Counter/T register hol	imer Low B ds the low b	oyte. oyte (LSB) c	of the 16-bit	PCA Coun	ter/Timer.	

SFR Definition 22.5. PCA0H: PCA Counter/Timer High Byte

SFR Definition 22.6. PCA0CPLn: PCA Capture Module Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xFB, 0xE9, 0xEB, 0xED, 0xFD
PCA0CPLn Address:PCA0CPL0 = $0xFB (n = 0)$, PCA0CPL1 = $0xE9 (n = 1)$, PCA0CPL2 = $0xEB (n = 2)$, PCA0CPL3 = $0xED (n = 3)$, PCA0CPL4 = $0xFD (n = 4)$								
Bits7–0: PCA0CPLn: PCA Capture Module Low Byte. The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n.								

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com