E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f348-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1. System Overview	
Figure 1.1. C8051F340/1/4/5 Block Diagram	19
Figure 1.2. C8051F342/3/6/7 Block Diagram	20
Figure 1.3. C8051F348/C Block Diagram	
Figure 1.4. C8051F349/D Block Diagram	
Figure 1.5. C8051F34A/B Block Diagram	23
4. Pinout and Package Definitions	
Figure 4.1. TQFP-48 Pinout Diagram (Top View)	31
Figure 4.2. TQFP-48 Package Diagram	
Figure 4.3. TQFP-48 Recommended PCB Land Pattern	
Figure 4.4. LQFP-32 Pinout Diagram (Top View)	
Figure 4.5. LQFP-32 Package Diagram	
Figure 4.6. LQFP-32 Recommended PCB Land Pattern	36
Figure 4.7. QFN-32 Pinout Diagram (Top View)	
5. 10-Bit ADC (ADC0, C8051F340/1/2/3/4/5/6/7/A/B Only)	
Figure 5.1. ADC0 Functional Block Diagram	41
Figure 5.2. Temperature Sensor Transfer Function	43
Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 V)	44
Figure 5.4. 10-Bit ADC Track and Conversion Example Timing	46
Figure 5.5. ADC0 Equivalent Input Circuits	47
Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data	54
Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data	54
Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data	55
Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data	55
6. Voltage Reference (C8051F340/1/2/3/4/5/6/7/A/B Only)	
Figure 6.1. Voltage Reference Functional Block Diagram	57
7. Comparators	
Figure 7.1. Comparator Functional Block Diagram	60
Figure 7.2. Comparator Hysteresis Plot	
8. Voltage Regulator (REG0)	
Figure 8.1. REG0 Configuration: USB Bus-Powered	
Figure 8.2. REG0 Configuration: USB Self-Powered	70
Figure 8.3. REG0 Configuration: USB Self-Powered, Regulator Disabled	71
Figure 8.4. REG0 Configuration: No USB Connection	71
9. CIP-51 Microcontroller	
Figure 9.1. CIP-51 Block Diagram	73
Figure 9.2. On-Chip Memory Map for 64 kB Devices	
Figure 9.3. On-Chip Memory Map for 32 kB Devices	80
11. Reset Sources	
Figure 11.1. Reset Sources 1	
Figure 11.2. Power-On and VDD Monitor Reset Timing 1	01

Figure 19.1. UART1 Block Diagram 21	
Figure 19.2. UART1 Timing Without Parity or Extra Bit	
Figure 19.3. UART1 Timing With Parity 21	5
Figure 19.4. UART1 Timing With Extra Bit 21	5
Figure 19.5. Typical UART Interconnect Diagram 21	6
Figure 19.6. UART Multi-Processor Mode Interconnect Diagram	8
20. Enhanced Serial Peripheral Interface (SPI0)	
Figure 20.1. SPI Block Diagram 22	22
Figure 20.2. Multiple-Master Mode Connection Diagram	
Figure 20.3. 3-Wire Single Master and Slave Mode Connection Diagram	
Figure 20.4. 4-Wire Single Master Mode and Slave Mode Connection Diagram 22	
Figure 20.5. Master Mode Data/Clock Timing 22	
Figure 20.6. Slave Mode Data/Clock Timing (CKPHA = 0)	
Figure 20.7. Slave Mode Data/Clock Timing (CKPHA = 1)	
Figure 20.8. SPI Master Timing (CKPHA = 0) 23	
Figure 20.9. SPI Master Timing (CKPHA = 1)	
Figure 20.10. SPI Slave Timing (CKPHA = 0)	
Figure 20.11. SPI Slave Timing (CKPHA = 1)	
21. Timers	
Figure 21.1. T0 Mode 0 Block Diagram 23	36
Figure 21.2. T0 Mode 2 Block Diagram	
Figure 21.3. T0 Mode 3 Block Diagram	
Figure 21.4. Timer 2 16-Bit Mode Block Diagram	
Figure 21.5. Timer 2 8-Bit Mode Block Diagram	
Figure 21.6. Timer 2 Capture Mode (T2SPLIT = '0')	
Figure 21.7. Timer 2 Capture Mode $(T2SPLIT = '1')$	
Figure 21.8. Timer 3 16-Bit Mode Block Diagram	
Figure 21.9. Timer 3 8-Bit Mode Block Diagram	
Figure 21.10. Timer 3 Capture Mode (T3SPLIT = '0')	
Figure 21.11. Timer 3 Capture Mode (T3SPLIT = '1')	52
22. Programmable Counter Array (PCA0)	
Figure 22.1. PCA Block Diagram	55
Figure 22.2. PCA Counter/Timer Block Diagram	
Figure 22.3. PCA Interrupt Block Diagram	
Figure 22.4. PCA Capture Mode Diagram	
Figure 22.5. PCA Software Timer Mode Diagram	
Figure 22.6. PCA High Speed Output Mode Diagram	
Figure 22.7. PCA Frequency Output Mode	
Figure 22.8. PCA 8-Bit PWM Mode Diagram	
Figure 22.9. PCA 16-Bit PWM Mode	
Figure 22.10. PCA Module 4 with Watchdog Timer Enabled	
23. C2 Interface	<i>,</i> -т
Figure 23.1. Typical C2 Pin Sharing	73
	-

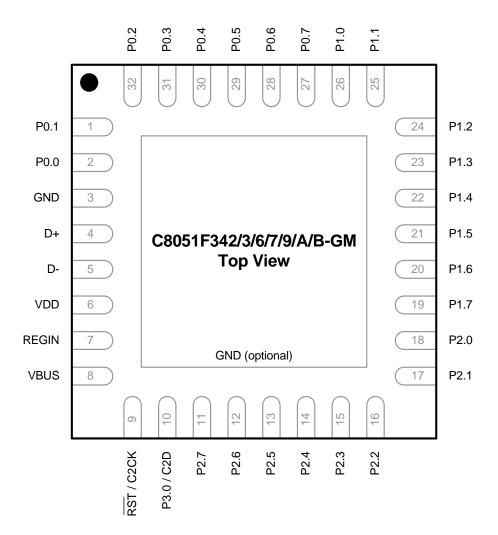


Figure 4.7. QFN-32 Pinout Diagram (Top View)

Table 9.3. Special Function Registers

Register	Address	Description	Page
ACC	0xE0	Accumulator	87
ADC0CF	0xBC	ADC0 Configuration	50
ADC0CN	0xE8	ADC0 Control	51
ADC0GTH	0xC4	ADC0 Greater-Than Compare High	52
ADC0GTL	0xC3	ADC0 Greater-Than Compare Low	52
ADC0H	0xBE	ADC0 High	50
ADC0L	0xBD	ADC0 Low	50
ADC0LTH	0xC6	ADC0 Less-Than Compare Word High	53
ADC0LTL	0xC5	ADC0 Less-Than Compare Word Low	53
AMX0N	0xBA	AMUX0 Negative Channel Select	49
AMX0P	0xBB	AMUX0 Positive Channel Select	48
В	0xF0	B Register	88
CKCON	0x8E	Clock Control	241
CLKMUL	0xB9	Clock Multiplier	138
CLKSEL	0xA9	Clock Select	140
CPT0CN	0x9B	Comparator0 Control	62
CPT0MD	0x9D	Comparator0 Mode Selection	64
CPT0MX	0x9F	Comparator0 MUX Selection	63
CPT1CN	0x9A	Comparator1 Control	65
CPT1MD	0x9C	Comparator1 Mode Selection	67
CPT1MX	0x9E	Comparator1 MUX Selection	66
DPH	0x83	Data Pointer High	86
DPL	0x82	Data Pointer Low	86
EIE1	0xE6	Extended Interrupt Enable 1	93
EIE2	0xE7	Extended Interrupt Enable 2	95
EIP1	0xF6	Extended Interrupt Priority 1	94
EIP2	0xF7	Extended Interrupt Priority 2	95
EMI0CN	0xAA	External Memory Interface Control	117
EMI0CF	0x85	External Memory Interface Configuration	118
EMIOTC	0x84	External Memory Interface Timing	123
FLKEY	0xB7	Flash Lock and Key	112
FLSCL	0xB6	Flash Scale	113
IE	0xA8	Interrupt Enable	91
IP	0xB8	Interrupt Priority	92
IT01CF	0xE4	INT0/INT1 Configuration	96
OSCICL	0xB3	Internal Oscillator Calibration	133
OSCICN	0xB2	Internal Oscillator Control	132
OSCLCN	0x86	Internal Low-Frequency Oscillator Control	134
OSCXCN	0xB1	External Oscillator Control	137
P0	0x80	Port 0 Latch	150
POMDIN	0xF1	Port 0 Input Mode Configuration	150
POMDOUT	0xA4	Port 0 Output Mode Configuration	151
POSKIP	0xD4	Port 0 Skip	151
P1	0x90	Port 1 Latch	152

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Table 9.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	Description	Page
P1MDIN	0xF2	Port 1 Input Mode Configuration	152
P1MDOUT	0xA5	Port 1 Output Mode Configuration	152
P1SKIP	0xD5	Port 1 Skip	153
P2	0xA0	Port 2 Latch	153
P2MDIN	0xF3	Port 2 Input Mode Configuration	153
P2MDOUT	0xA6	Port 2 Output Mode Configuration	154
P2SKIP	0xD6	Port 2 Skip	154
P3	0xB0	Port 3 Latch	155
P3MDIN	0xF4	Port 3 Input Mode Configuration	155
P3MDOUT	0xA7	Port 3 Output Mode Configuration	155
P3SKIP	0xDF	Port 3Skip	156
P4	0xC7	Port 4 Latch	156
P4MDIN	0xF5	Port 4 Input Mode Configuration	157
P4MDOUT	0xAE	Port 4 Output Mode Configuration	157
PCA0CN	0xD8	PCA Control	266
PCA0CPH0	0xFC	PCA Capture 0 High	270
PCA0CPH1	0xEA	PCA Capture 1 High	270
PCA0CPH2	0xEC	PCA Capture 2 High	270
PCA0CPH3	0xEE	PCA Capture 3High	270
PCA0CPH4	0xFE	PCA Capture 4 High	270
PCA0CPL0	0xFB	PCA Capture 0 Low	269
PCA0CPL1	0xE9	PCA Capture 1 Low	269
PCA0CPL2	0xEB	PCA Capture 2 Low	269
PCA0CPL3	0xED	PCA Capture 3 Low	269
PCA0CPL4	0xFD	PCA Capture 4 Low	269
PCA0CPM0	0xDA	PCA Module 0 Mode Register	268
PCA0CPM1	0xDB	PCA Module 1 Mode Register	268
PCA0CPM2	0xDC	PCA Module 2 Mode Register	268
PCA0CPM3	0xDD	PCA Module 3 Mode Register	268
PCA0CPM4	0xDE	PCA Module 4 Mode Register	268
PCA0H	0xFA	PCA Counter High	269
PCA0L	0xF9	PCA Counter Low	269
PCA0MD	0xD9	PCA Mode	267
PCON	0x87	Power Control	98
PFE0CN	0xAF	Prefetch Engine Control	99
PSCTL	0x8F	Program Store R/W Control	112
PSW	0xD0	Program Status Word	87
REF0CN	0xD1	Voltage Reference Control	58
REG0CN	0xC9	Voltage Regulator Control	72
RSTSRC	0xEF	Reset Source Configuration/Status	105
SBCON1	0xAC	UART1 Baud Rate Generator Control	220
SBRLH1	0xB5	UART1 Baud Rate Generator High	221
SBRLL1	0xB4	UART1 Baud Rate Generator Low	221
SBUF1	0xD3	UART1 Data Buffer	220
SCON1	0xD2	UART1 Control	218

SFR Definition 9.11. EIE2: Extended Interrupt Enable 2
--

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
-	-	-	-	-	-	ES1	EVBUS	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0xE7	
Bits7–2: Bit1: Bit0:	UNUSED. Read = 000000b. Write = don't care. ES1: Enable UART1 Interrupt. This bit sets the masking of the UART1 interrupt. 0: Disable UART1 interrupt. 1: Enable UART1 interrupt. EVBUS: Enable VBUS Level Interrupt. This bit sets the masking of the VBUS interrupt. 0: Disable all VBUS interrupts. 1: Enable interrupt requests generated by VBUS level sense.								

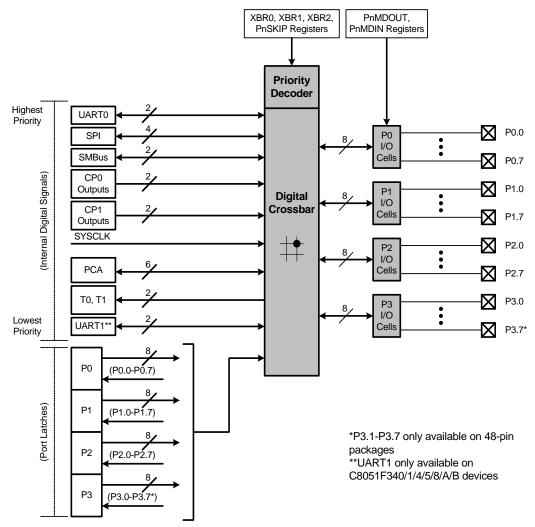
SFR Definition 9.12. EIP2: Extended Interrupt Priority 2

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	-	PS1	PVBUS	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF7
Bits7–2: Bit1: Bit0:	UNUSED. Read = 000000b. Write = don't care. PS1: UART1 Interrupt Priority Control. This bit sets the priority of the UART1 interrupt. 0: UART1 interrupt set to low priority level. 1: UART1 interrupts set to high priority level. PVBUS: VBUS Level Interrupt Priority Control. This bit sets the priority of the VBUS interrupt. 0: VBUS interrupt set to low priority level. 1: VBUS interrupt set to high priority level.							

Table 14.1. Oscillator Electrical Characteristics

V_{DD} = 2.7 to 3.6 V; -40 to +85 °C unless otherwise specified

Parameter	Conditions	Min	Тур	Max	Units		
Internal High-Frequency Oscillator (Using Factory-Calibrated Settings)							
Oscillator Frequency	IFCN = 11b	11.82	12.00	12.18	MHz		
Oscillator Supply Current (from V _{DD})	24 °C, V _{DD} = 3.0 V, OSCICN.7 = 1	_	685	—	μA		
Internal Low-Frequency Oscillator (Using Factory-Calibrated Settings)							
Oscillator Frequency	OSCLD = 11b	72	80	99	kHz		
Oscillator Supply Current (from V _{DD})	24 °C, V _{DD} = 3.0 V, OSCLCN.7 = 1	_	7.0	_	μA		
External USB Clock Require	ements						
USD Clock Fraguency'	Full Speed Mode	47.88	48	48.12	N 41 I		
USB Clock Frequency*	Low Speed Mode	5.91	6	6.09	MHz		

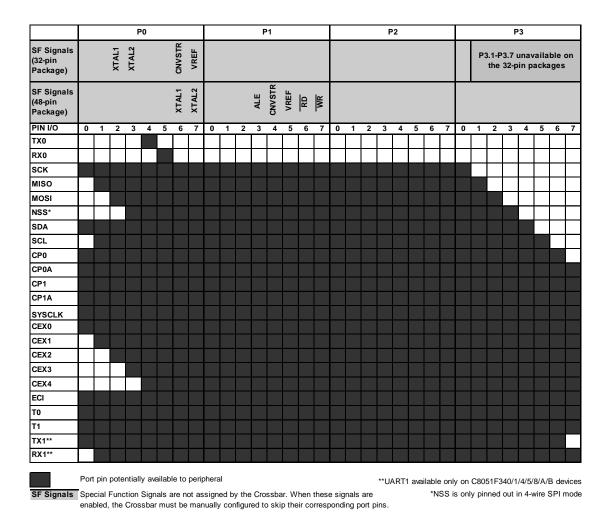

*Note: Applies only to external oscillator sources.

15. Port Input/Output

Digital and analog resources are available through 40 I/O pins (48-pin packages) or 25 I/O pins (32-pin packages). Port pins are organized as shown in Figure 15.1. Each of the Port pins can be defined as general-purpose I/O (GPIO) or analog input; Port pins P0.0-P3.7 can be assigned to one of the internal digital resources as shown in Figure 15.3. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 15.3 and Figure 15.4). The registers XBR0, XBR1, and XBR2 defined in SFR Definition 15.1, SFR Definition 15.2, and SFR Definition 15.3, are used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 15.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where n = 0, 1, 2, 3, 4). Complete Electrical Specifications for Port I/O are given in Table 15.1 on page 158.



15.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 15.3) assigns a priority to each I/O function, starting at the top with UART0. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource (excluding UART0, which is always at pins 4 and 5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to the VREF signal, external oscillator pins (XTAL1, XTAL2), the ADC's external conversion start signal (CNVSTR), EMIF control signals, and any selected ADC or Comparator inputs. The PnSKIP registers may also be used to skip pins to be used as GPIO. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 15.3 shows all the possible pins available to each peripheral. Figure 15.4 shows the Crossbar Decoder priority with no Port pins skipped. Figure 15.5 shows a Crossbar example with pins P0.2, P0.3, and P1.0 skipped.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
CP1AE		CPOAE	CP0E	SYSCKE	SMB0E	SPIOE	URTOE	00000000	
Bit7	Bit6								
Biti	Bito	Bito	BRT	Bito	DILL	Bitt	Dito	0xE1	
Bit7:	CP1AE: Cor	nparator1 A	svnchrono	us Output E	nable				
	0: Asynchro	•		•					
	1: Asynchro								
Bit6:	CP1E: Com	parator1 Ou	tput Enable	Э					
	0: CP1 unav	ailable at P	ort pin.						
	1: CP1 route	ed to Port pi	n.						
Bit5:	CP0AE: Cor	nparator0 A	synchrono	us Output E	nable				
	0: Asynchro								
	1: Asynchro								
Bit4:	CP0E: Com		•	Э					
	0: CP0 unav		•						
	1: CP0 route								
Bit3:	SYSCKE: /S		•						
	0: /SYSCLK								
Dito	1: /SYSCLK			oin.					
Bit2:	SMB0E: SM								
	0: SMBus I/			ins.					
Bit1:		1: SMBus I/O routed to Port pins.							
DILI.	SPI0E: SPI I/O Enable								
	0: SPI I/O unavailable at Port pins.								
Bit0:	1: SPI I/O routed to Port pins. URT0E: UART0 I/O Output Enable								
Dito.	0: UARTO I/O unavailable at Port pins.								
	1: UART0 TX0, RX0 routed to Port pins P0.4 and P0.5.								
		,		F					

SFR Definition 15.1. XBR0: Port I/O Crossbar Register 0

USB Register Definition 16.13. CMINT: USB0 Common Interrupt

R	R	R	R	R	R	R	R	Reset Value
-	-	-	-	SOF	RSTINT	RSUINT	SUSINT	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address:
Diti	Dito	Dito	DILT	DIG	DILZ	Ditt	Dito	
Bits7–4: Bit3: Bit2: Bit1: Bit1:	Unused. Rea SOF: Start of Set by hardw ware: an inter the actual SO This bit is cle 0: SOF intern 1: SOF intern RSTINT: Res Set by hardw This bit is cle 0: Reset inte 1: Reset inte RSUINT: Res Set by hardw mode. This bit is cle 0: Resume ir SUSINT: Sus When Susper ware when S reads the CM 0: Suspend i 1: Suspend i	f Frame Int vare when a prrupt will be DF signal is eared when rupt inactive. set Interrup vare when I eared when rrupt inactive sume Interrupt active sume Interrupt active sume Interrupt ina herrupt inactive sume Interrupt ina herrupt act spend Inter end detections support active support a	errupt a SOF token e generated s missed or software re- e. t-pending F Reset signa software re- ve. e. "upt-pending software re- ctive. ive. rupt-pending n is enable gnaling is de- er. active.	n is receive when hard corrupted. eads the CM lag ling is dete eads the CM g Flag naling is de eads the CM g Flag d (bit SUSE	ware expec /INT registe cted on the /INT registe /INT registe	ets to receive er. bus. er. he bus while er. er POWER)	e a SOF ev e USB0 is in , this bit is s	ent, even if n suspend set by hard-

SFR Definition 17.2	SMB0CN: SMBus Control
---------------------	-----------------------

R	R	R/W	R/W	R	R	R/W	R/W	Reset Value				
MASTE	R TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable				
							SFR Addres					
Bit7:	MASTER: SM											
	This read-only bit indicates when the SMBus is operating as a master.											
	0: SMBus operating in Slave Mode. 1: SMBus operating in Master Mode.											
Bit6:												
Dito.	TXMODE: SMBus Transmit Mode Indicator. This read-only bit indicates when the SMBus is operating as a transmitter.											
	0: SMBus in F				o oporating a	o a tranon						
	1: SMBus in T											
Bit5:	STA: SMBus	Start Flag.										
	Write:											
	0: No Start ge											
	1: When operating as a master, a START condition is transmitted if the bus is free (If the bus											
	is not free, the START is transmitted after a STOP is received or a timeout is detected). If											
	STA is set by software as an active Master, a repeated START will be generated after the next ACK cycle.											
	Read:											
	0: No Start or repeated Start detected.											
	1: Start or repeated Start detected.											
Bit4:	STO: SMBus	Stop Flag										
	Write:			_								
	0: No STOP condition is transmitted. 1: Setting STO to logic 1 causes a STOP condition to be transmitted after the next ACK											
	-	-										
	cycle. When t			-			-					
	and STO are set, a STOP condition is transmitted followed by a START condition. Read:											
	0: No Stop co	ndition de	tected.									
	1: Stop condit			ve Mode) c	or pending (if i	in Master	Mode).					
Bit3:	ACKRQ: SME	Bus Ackno	wledge Re	quest								
	This read-only bit is set to logic 1 when the SMBus has received a byte and needs the ACK											
DVA	bit to be writte				e value.							
Bit2:	ARBLOST: SI					hitrotion .	uhila anara	1				
	This read-only transmitter. A	•	•				•	iting as a				
Bit1:	ACK: SMBus						uon.					
Ditt.	This bit define		0 0	level and r	ecords incom	ina ACK le	evels. It sh	ould be writ				
	ten each time											
			•		,							
	0: A "not acknowledge" has been received (if in Transmitter Mode) OR will be transmitted (if in Receiver Mode).											
	1: An "acknowledge" has been received (if in Transmitter Mode) OR will be transmitted (if in											
Bito	Receiver Mode).											
Bit0:	SI: SMBus Int	•	-					aloored by				
	This bit is set	by nardwa	are under th	ie condition	is listed in Tal	ole 17.3. S	o must de	cleared by				

	Values Read						Values Written																
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options		STo	ACK														
er .		0	0	0	A slave byte was transmitted; NACK received.	No action required (expect- ing STOP condition).	0	0	х														
Slave Transmitter	0100	0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	х														
		0	1	х	A Slave byte was transmitted; error detected.	No action required (expect- ing Master to end transfer).	0	0	х														
Slav	0101	0	x	x	An illegal STOP or bus error was detected while a Slave Transmis- sion was in progress.				x														
	0010	1	0	x	A slave address was received;	Acknowledge received address.	0	0	1														
			U	^		Do not acknowledge received address.	0	0	0														
						Acknowledge received address.		0	1														
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	x	Lost arbitration as master; slave address received; ACK	Do not acknowledge received address.	0	0	0
						Reschedule failed transfer; do not acknowledge received address.	1	0	0														
iver	0010	0	1	х	Lost arbitration while attempting a	Abort failed transfer.	0	0	Х														
Slave Receive					repeated START.	Reschedule failed transfer.	1	0	Х														
	0001	1	1	Х	Lost arbitration while attempting a STOP.	No action required (transfer complete/aborted).	0	0	0														
		0	0	х	A STOP was detected while addressed as a Slave Transmitter or Slave Receiver.	Clear STO.	0	0	x														
		0) 1	х	Lost arbitration due to a detected	Abort transfer.		0	Х														
				^	STOP.	Reschedule failed transfer.		0	Х														
	0000	1	1	1	1	1	1	1	1	1	1	1	1	1	0	x	A slave byte was received; ACK	Acknowledge received byte; Read SMB0DAT.	0	0	1		
					requested.	Do not acknowledge received byte.		0	0														
		1	1	x	Lost arbitration while transmitting	Abort failed transfer.	0	0	0														
					a data byte as master.	Reschedule failed transfer.	1	0	0														

Table 17.4. SMBus Status Decoding (Continued)

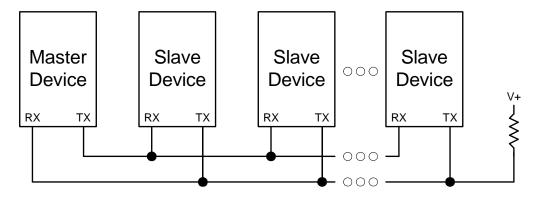


Figure 18.6. UART Multi-Processor Mode Interconnect Diagram

19.3. Configuration and Operation

UART1 provides standard asynchronous, full duplex communication. It can operate in a point-to-point serial communications application, or as a node on a multi-processor serial interface. To operate in a point-to-point application, where there are only two devices on the serial bus, the MCE1 bit in SMOD1 should be cleared to '0'. For operation as part of a multi-processor communications bus, the MCE1 and XBE1 bits should both be set to '1'. In both types of applications, data is transmitted from the microcontroller on the TX1 pin, and received on the RX1 pin. The TX1 and RX1 pins are configured using the crossbar and the Port I/O registers, as detailed in **Section "15. Port Input/Output" on page 142**.

In typical UART communications, The transmit (TX) output of one device is connected to the receive (RX) input of the other device, either directly or through a bus transceiver, as shown in Figure 19.5.

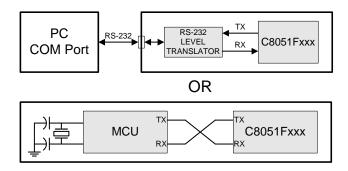


Figure 19.5. Typical UART Interconnect Diagram

19.3.1. Data Transmission

Data transmission is double-buffered, and begins when software writes a data byte to the SBUF1 register. Writing to SBUF1 places data in the Transmit Holding Register, and the Transmit Holding Register Empty flag (THRE1) will be cleared to '0'. If the UARTs shift register is empty (i.e., no transmission is in progress) the data will be placed in the shift register, and the THRE1 bit will be set to '1'. If a transmission is in progress, the data will remain in the Transmit Holding Register until the current transmission is complete. The TI1 Transmit Interrupt Flag (SCON1.1) will be set at the end of any transmission (the beginning of the stop-bit time). If enabled, an interrupt will occur when TI1 is set.

If the extra bit function is enabled (XBE1 = '1') and the parity function is disabled (PE1 = '0'), the value of the TBX1 (SCON1.3) bit will be sent in the extra bit position. When the parity function is enabled (PE1 = '1'), hardware will generate the parity bit according to the selected parity type (selected with S1PT[1:0]), and append it to the data field. Note: when parity is enabled, the extra bit function is not available.

19.3.2. Data Reception

Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the stop bit is received, the data byte will be stored in the receive FIFO if the following conditions are met: the receive FIFO (3 bytes deep) must not be full, and the stop bit(s) must be logic 1. In the event that the receive FIFO is full, the incoming byte will be lost, and a Receive FIFO Overrun Error will be generated (OVR1 in register SCON1 will be set to logic 1). If the stop bit(s) were logic 0, the incoming data will not be stored in the receive FIFO. If the reception conditions are met, the data is stored in the receive FIFO, and the RI1 flag will be set. Note: when MCE1 = '1', RI1 will only be set if the extra bit was equal to '1'. Data can be read from the receive FIFO by reading the SBUF1 register. The SBUF1 register represents the oldest byte in the FIFO. After SBUF1 is read, the next byte in the FIFO is immediately loaded into SBUF1, and

216

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0x89			
Bit7:	GATE1: Ti	imer 1 Gate	e Control.								
	0: Timer 1 enabled when TR1 = 1 irrespective of INT1 logic level.										
	1: Timer 1 enabled only when TR1 = 1 AND INT1 is active as defined by bit IN1PL in register										
Dire			Definition 9.13).							
Bit6:		inter/Timer			-l. d. C			N N			
			mer 1 increme			•		,			
	(T1).	r Function.	Timer 1 increi	nemed by r	lign-to-low	transitions c	on externa	i input pin			
Bits5–4:		M0 [.] Timer	1 Mode Select								
5100 4.			Timer 1 opera								
	T1M1	T1M0		Mode							
	0	0): 13-bit cou							
	0	1	Mode 1: 16-bit counter/timer Mode 2: 8-bit counter/timer with								
	1	0	Mode 2:			1					
	4	4		auto-reloa	-						
	1	1	MOde	e 3: Timer 1	inactive						
Bit3:	GATE0: Ti	imer 0 Gate	e Control.								
2.1101		GATE0: Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of $\overline{INT0}$ logic level.									
	1: Timer 0 enabled only when TR0 = 1 AND INT0 is active as defined by bit IN0PL in register										
			Definition 9.13					0			
Bit2:	C/T0: Cou	inter/Timer	Select.								
	0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.2).										
	1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin										
	(T0).		o Maria Oalari								
Bits1–0:			0 Mode Select Timer 0 opera								
	THESE DILS			allon mode.							
	T0M1	T0M0		Mode							
	0	0): 13-bit cou							
	0	1		: 16-bit cou							
	1	0	Mode 2:	8-bit counte		ו ו					
		_		auto-reloa							
	1	1	Mode 3:	Two 8-bit co	unter/timer	S					

SFR Definition 21.2. TMOD: Timer Mode

When T2SPLIT = '1', the Timer 2 registers (TMR2H and TMR2L) act as two 8-bit counters. Each counter counts up independently and overflows from 0xFF to 0x00. Each time a capture event is received, the contents of the Timer 2 registers are latched into the Timer 2 Reload registers (TMR2RLH and TMR2RLL). A Timer 2 interrupt is generated if enabled.

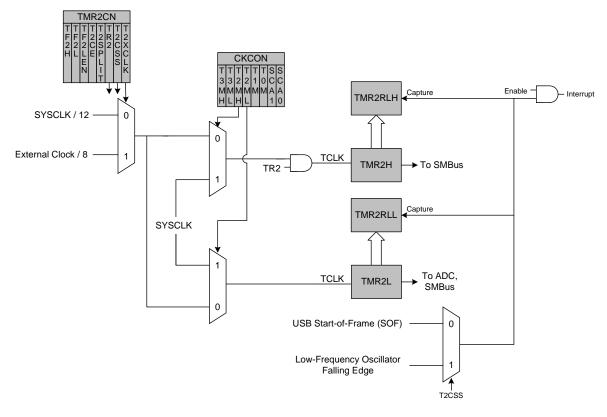


Figure 21.7. Timer 2 Capture Mode (T2SPLIT = '1')

21.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, USB Start-of-Frame (SOF) capture mode, or Low-Frequency Oscillator (LFO) Rising Edge capture mode. The Timer 3 operation mode is defined by the T3SPLIT (TMR3CN.3), T3CE (TMR3CN.4) bits, and T3CSS (TMR3CN.1) bits.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

21.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is '0' and T3CE = '0', Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TM3RLL) is loaded into the Timer 3 register as shown in Figure 21.4, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled, an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x00.

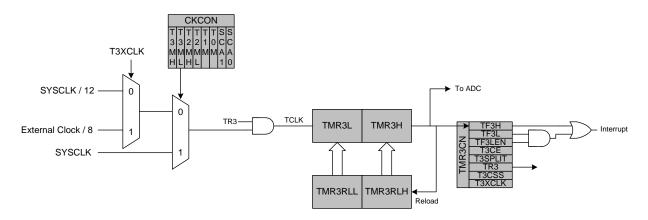


Figure 21.8. Timer 3 16-Bit Mode Block Diagram

SFR Definition 22.7. PCA0CPHn: PCA Capture Module High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xFC, 0xEA, 0xEC,0xEE, 0xFE		
PCA0CPHn Address:PCA0CPH0 = $0xFC$ (n = 0), PCA0CPH1 = $0xEA$ (n = 1), PCA0CPH2 = $0xEC$ (n = 2), PCA0CPH3 = $0xEE$ (n = 3), PCA0CPH4 = $0xFE$ (n = 4)										
Bits7–0: PCA0CPHn: PCA Capture Module High Byte. The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n.										

NOTES: