

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f34b-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D

SFR Definition 14.3. OSCLCN: Internal L-F Oscillator Control	. 134
SFR Definition 14.4. OSCXCN: External Oscillator Control	. 137
SFR Definition 14.5. CLKMUL: Clock Multiplier Control	. 138
SFR Definition 14.6. CLKSEL: Clock Select	. 140
SFR Definition 15.1. XBR0: Port I/O Crossbar Register 0	. 148
SFR Definition 15.2. XBR1: Port I/O Crossbar Register 1	. 149
SFR Definition 15.3. XBR2: Port I/O Crossbar Register 2	. 149
SFR Definition 15.4. P0: Port0 Latch	. 150
SFR Definition 15.5. POMDIN: Port0 Input Mode	. 150
SFR Definition 15.6. P0MDOUT: Porto Output Mode	. 151
SFR Definition 15.7. P0SKIP: Port0 Skip	. 151
SFR Definition 15.8. P1: Port1 Latch	. 152
SFR Definition 15.9. P1MDIN: Port1 Input Mode	. 152
SFR Definition 15.10. P1MDOUT: Port1 Output Mode	. 152
SFR Definition 15.11. P1SKIP: Port1 Skip	. 153
SFR Definition 15.12. P2: Port2 Latch	. 153
SFR Definition 15.13. P2MDIN: Port2 Input Mode	. 153
SFR Definition 15.14. P2MDOUT: Port2 Output Mode	. 154
SFR Definition 15.15. P2SKIP: Port2 Skip	. 154
SFR Definition 15.16. P3: Port3 Latch	. 155
SFR Definition 15.17. P3MDIN: Port3 Input Mode	. 155
SFR Definition 15.18. P3MDOUT: Port3 Output Mode	. 155
SFR Definition 15.19. P3SKIP: Port3 Skip	. 156
SFR Definition 15.20. P4: Port4 Latch	. 156
SFR Definition 15.21. P4MDIN: Port4 Input Mode	. 157
SFR Definition 15.22. P4MDOUT: Port4 Output Mode	. 157
SFR Definition 16.1. USB0XCN: USB0 Transceiver Control	. 161
SFR Definition 16.2. USB0ADR: USB0 Indirect Address	. 163
SFR Definition 16.3. USB0DAT: USB0 Data	. 164
USB Register Definition 16.4. INDEX: USB0 Endpoint Index	. 165
USB Register Definition 16.5. CLKREC: Clock Recovery Control	. 166
USB Register Definition 16.6. FIFOn: USB0 Endpoint FIFO Access	. 168
USB Register Definition 16.7. FADDR: USB0 Function Address	. 169
USB Register Definition 16.8. POWER: USB0 Power	. 171
USB Register Definition 16.9. FRAMEL: USB0 Frame Number Low	. 172
USB Register Definition 16.10. FRAMEH: USB0 Frame Number High	. 172
USB Register Definition 16.11. IN1INT: USB0 IN Endpoint Interrupt	. 173
USB Register Definition 16.12. OUT1INT: USB0 Out Endpoint Interrupt	. 173
USB Register Definition 16.13. CMINT: USB0 Common Interrupt	. 174
USB Register Definition 16.14. IN1IE: USB0 IN Endpoint Interrupt Enable	. 175
USB Register Definition 16.15. OUT1IE: USB0 Out Endpoint Interrupt Enable	. 175
USB Register Definition 16.16. CMIE: USB0 Common Interrupt Enable	. 176
USB Register Definition 16.17. E0CSR: USB0 Endpoint0 Control	. 179
USB Register Definition 16.18. E0CNT: USB0 Endpoint 0 Data Count	. 180
- · · ·	

5.1. Analog Multiplexer

AMUX0 selects the positive and negative inputs to the ADC. The positive input (AIN+) can be connected to individual Port pins, the on-chip temperature sensor, or the positive power supply (V_{DD}). The negative input (AIN-) can be connected to individual Port pins, VREF, or GND. When GND is selected as the negative input, ADC0 operates in Single-ended Mode; at all other times, ADC0 operates in Differential Mode. The ADC0 input channels are selected in the AMX0P and AMX0N registers as described in SFR Definition 5.1 and SFR Definition 5.2.

The conversion code format differs between Single-ended and Differential modes. The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit (ADC0CN.0). When in Single-ended Mode, conversion codes are represented as 10-bit unsigned integers. Inputs are measured from '0' to VREF x 1023/1024. Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H and ADC0L registers are set to '0'.

Input Voltage (Single-Ended)	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
VREF x 1023/1024	0x03FF	0xFFC0
VREF x 512/1024	0x0200	0x8000
VREF x 256/1024	0x0100	0x4000
0	0x0000	0x0000

When in Differential Mode, conversion codes are represented as 10-bit signed 2's complement numbers. Inputs are measured from –VREF to VREF x 511/512. Example codes are shown below for both right-justified and left-justified data. For right-justified data, the unused MSBs of ADC0H are a sign-extension of the data word. For left-justified data, the unused LSBs in the ADC0L register are set to '0'.

Input Voltage (Differential)	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
VREF x 511/512	0x01FF	0x7FC0
VREF x 256/512	0x0100	0x4000
0	0x0000	0x0000
–VREF x 256/512	0xFF00	0xC000
–VREF	0xFE00	0x8000

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to '0' the corresponding bit in register PnMDIN (for n = 0,1,2,3). To force the Crossbar to skip a Port pin, set to '1' the corresponding bit in register PnSKIP (for n = 0,1,2). See **Section "15. Port Input/Output" on page 142** for more Port I/O configuration details.

5.3. Modes of Operation

ADC0 has a maximum conversion speed of 200 ksps. The ADC0 conversion clock is a divided version of the system clock, determined by the AD0SC bits in the ADC0CF register (system clock divided by (AD0SC + 1) for $0 \le AD0SC \le 31$).

5.3.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the following:

- 1. Writing a '1' to the AD0BUSY bit of register ADC0CN
- 2. A Timer 0 overflow (i.e., timed continuous conversions)
- 3. A Timer 2 overflow
- 4. A Timer 1 overflow
- 5. A rising edge on the CNVSTR input signal
- 6. A Timer 3 overflow

Writing a '1' to AD0BUSY provides software control of ADC0 whereby conversions are performed "on-demand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte overflows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit mode. See **Section "21. Timers" on page 235** for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as a Port pin. When the CNVSTR input is used as the ADC0 conversion source, the associated Port pin should be skipped by the Digital Crossbar. To configure the Crossbar to skip a pin, set the corresponding bit in the PnSKIP register to '1'. See **Section "15. Port Input/Output" on page 142** for details on Port I/O configuration.

7. Comparators

C8051F34x devices include two on-chip programmable voltage Comparators. A block diagram of the comparators is shown in Figure 7.1, where "n" is the comparator number (0 or 1). The two Comparators operate identically with the following exceptions: (1) Their input selections differ, and (2) Comparator0 can be used as a reset source. For input selection details, refer to SFR Definition 7.2 and SFR Definition 7.5.

Each Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0, CP1), or an asynchronous "raw" output (CP0A, CP1A). The asynchronous signal is available even when the system clock is not active. This allows the Comparators to operate and generate an output with the device in STOP mode. When assigned to a Port pin, the Comparator outputs may be configured as open drain or push-pull (see Section "15.2. Port I/O Initialization" on page 147). Comparator0 may also be used as a reset source (see Section "11.5. Comparator0 Reset" on page 103).

The Comparator0 inputs are selected in the CPT0MX register (SFR Definition 7.2). The CMX0P1-CMX0P0 bits select the Comparator0 positive input; the CMX0N1-CMX0N0 bits select the Comparator0 negative input. The Comparator1 inputs are selected in the CPT1MX register (SFR Definition 7.5). The CMX-1P1-CMX1P0 bits select the Comparator1 positive input; the CMX1N1-CMX1N0 bits select the Comparator1 negative input.

Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see **Section "15.3. General Purpose Port I/O" on page 150**).

SFR	Definition	7.6.	CPT1MD:	Comparator1	Mode	Selection

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
-	-	CP1RIE	CP1FIE	-	-	CP1MD1	CP1MD0	00000010			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0x9C			
Bits7–6:	UNUSED. R	Read = $00b$,	Write = dor	n't care.							
Bit5:	CP1RIE: Comparator1 Rising-Edge Interrupt Enable.										
	0: Comparator1 rising-edge interrupt disabled.										
	1: Comparat	tor1 rising-e	dge interru	ot enabled.							
Bit4:	CP1FIE: Co	mparator1 l	Falling-Edge	e Interrupt E	nable.						
	0: Comparat	tor1 falling-	edge interru	pt disabled.							
	1: Comparat	tor1 falling-	edge interru	pt enabled.							
Bits1–0:	CP1MD1–C	P1MD0: Co	mparator1	Mode Selec	:t.						
	These bits s	elect the re	sponse time	e for Compa	rator1.						
	Mode	CP1MD1	CP1MD0	CP1 Res	ponse Tim	e*					
	0	0	0	Fastest	Response						
	1	0	1								
	2	1	0								
	3	1	1	Lowest Power							
* See Tab	le 7.1 for res	ponse time	parameters	5.							

C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D

Table 9.1. CIP-51 I	Instruction Set Summary	(Continued)
---------------------	-------------------------	-------------

Mnemonic	Bytes	Clock Cvcles	
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, #data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
	Data Transfer		
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2

Table 9.3. Special Function Registers

Register	Address	Address Description				
ACC	0xE0	Accumulator	87			
ADC0CF	0xBC	ADC0 Configuration	50			
ADC0CN	0xE8	ADC0 Control	51			
ADC0GTH	0xC4	ADC0 Greater-Than Compare High	52			
ADC0GTL	0xC3	ADC0 Greater-Than Compare Low	52			
ADC0H	0xBE	ADC0 High	50			
ADC0L	0xBD	ADC0 Low	50			
ADC0LTH	0xC6	ADC0 Less-Than Compare Word High	53			
ADC0LTL	0xC5	ADC0 Less-Than Compare Word Low	53			
AMX0N	0xBA	AMUX0 Negative Channel Select	49			
AMX0P	0xBB	AMUX0 Positive Channel Select	48			
В	0xF0	B Register	88			
CKCON	0x8E	Clock Control	241			
CLKMUL	0xB9	Clock Multiplier	138			
CLKSEL	0xA9	Clock Select	140			
CPT0CN	0x9B	Comparator0 Control	62			
CPT0MD	0x9D	Comparator0 Mode Selection	64			
CPT0MX	0x9F	Comparator0 MUX Selection	63			
CPT1CN	0x9A	Comparator1 Control	65			
CPT1MD	0x9C	Comparator1 Mode Selection	67			
CPT1MX	0x9E	Comparator1 MUX Selection	66			
DPH	0x83	Data Pointer High	86			
DPL	0x82	Data Pointer Low	86			
EIE1	0xE6	Extended Interrupt Enable 1	93			
EIE2	0xE7	Extended Interrupt Enable 2	95			
EIP1	0xF6	Extended Interrupt Priority 1	94			
EIP2	0xF7	Extended Interrupt Priority 2	95			
EMIOCN	0xAA	External Memory Interface Control	117			
EMI0CF	0x85	External Memory Interface Configuration	118			
EMI0TC	0x84	External Memory Interface Timing	123			
FLKEY	0xB7	Flash Lock and Key	112			
FLSCL	0xB6	Flash Scale	113			
IE	0xA8	Interrupt Enable	91			
IP	0xB8	Interrupt Priority	92			
IT01CF	0xE4	INT0/INT1 Configuration	96			
OSCICL	0xB3	Internal Oscillator Calibration	133			
OSCICN	0xB2	Internal Oscillator Control	132			
OSCLCN	0x86	Internal Low-Frequency Oscillator Control	134			
OSCXCN	0xB1	External Oscillator Control	137			
P0	0x80	Port 0 Latch	150			
POMDIN	0xF1	Port 0 Input Mode Configuration	150			
POMDOUT	0xA4	Port 0 Output Mode Configuration	151			
P0SKIP	0xD4	Port 0 Skip	151			
P1	0x90	Port 1 Latch	152			

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D

R/W	R	R/W	R/W	R	R/W	R/W	R	Reset Value			
USBRS	F FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xEF			
Bit7:	USBRSF: USB Reset Flag										
	0: Read: Last reset was not a USB reset; Write: USB resets disabled.										
D:40.	1: Read: Las	st reset was	a USB res	set; Write: L	ISB resets e	enabled.					
DILO.	0: Source of	last reset w	iuicaloi.	lach road/w	rita/arasa ar	ror					
	1: Source of	last reset w	ias nut a r ias a Flash	read/write/	arase error	101.					
Bit5 [.]	CORSEF: Co	mparator0	Reset Ena	ble and Flag	ומסט טווטו. ז						
Bitol	0: Read: So	urce of last	reset was i	not Compar	ator0: Write	: Comparat	tor0 is not a	a reset			
	source.				,						
	1: Read: So	urce of last	reset was (Comparator	0; Write: Co	omparator0	is a reset	source			
	(active-low).										
Bit4:	SWRSF: Sol	ftware Rese	et Force an	d Flag.							
	0: Read: So	urce of last	reset was i	not a write t	o the SWRS	SF bit; Write	e: No Effec	t.			
D'IO	1: Read: So	urce of last	was a write	e to the SWI	RSF bit; Wr i	te: Forces	a system r	eset.			
Bit3:	WDIRSF: W	atchdog III	mer Reset	Flag. /DT time out							
	1: Source of	last reset w	as not a w	timeout							
Bit2.	MCDRSE M	lissing Cloc	k Detector	Flag							
BRZ.	0: Read: So	urce of last	reset was i	not a Missin	a Clock Det	ector timeo	out: Write:	Missina			
	Clock Detect	tor disabled			3		,	g			
	1: Read: So	urce of last	reset was a	a Missing C	lock Detecto	or timeout; N	Write: Miss	sing Clock			
	Detector ena	abled; trigge	ers a reset i	f a missing	clock condit	ion is deteo	cted.				
Bit1:	PORSF: Pov	ver-On / V _D	_D Monitor I	Reset Flag.							
	This bit is se	t anytime a	power-on	reset occurs	s. Writing thi	s bit selects	s/deselects	s the V _{DD}			
	monitor as a	reset sourc	e. Note: w	riting '1' to	this bit bef	ore the V _D	D monitor	is enabled			
	and stabilize	ed can cau	se a syste	m reset. Se	ee register V	/DM0CN (S	SFR Definit	ion 11.1).			
	0: Read: Las	st reset was	not a pow	er-on or V _{DI}	_C monitor re	set; Write:	V _{DD} monit	or is not a			
	reset source										
	1: Read: Las	st reset was	a power-or	n or V _{DD} mo	nitor reset; a	all other res	et flags inc	leterminate;			
	Write: V _{DD} r	nonitor is a	reset source	ce.							
Bit0:	PINRSF: HV	V Pin Reset	Flag.	= .							
	0: Source of last reset was not RST pin.										
	1: Source of	last reset w	as RST pi	า.							
Note: Fo	r bits that ac	t as both re	eset sourc	e enables (on a write)	and reset	indicator	flags (on a			
read), re	ad-modify-w	rite instruc	tions read	and modif	y the sourc	e enable o	only. This a	applies to			
bits: USI	BRSF, CORSE	EF, SWRSF,	MCDRSF,	PORSF.							

SFR Definition 11.2. RSTSRC: Reset Source

13.5. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMI0CF.4) bit.

13.5.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 13.2.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the 'Q' outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time RD or WR is asserted.

See Section "13.7.2. Multiplexed Mode" on page 127 for more information.

Figure 13.2. Multiplexed Configuration Example

14.1. Programmable Internal High-Frequency (H-F) Oscillator

All C8051F34x devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL register shown in SFR Definition 14.2. The OSCICL register is factory calibrated to obtain a 12 MHz internal oscillator frequency. Electrical specifications for the precision internal oscillator are given in Table 14.1 on page 141. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

14.1.1. Internal H-F Oscillator Suspend Mode

The internal high-frequency oscillator may be placed in Suspend mode by writing '1' to the SUSPEND bit in register OSCICN. In Suspend mode, the internal H-F oscillator is stopped until a non-idle USB event is detected (**Section 16**) or VBUS matches the polarity selected by the VBPOL bit in register REGOCN (**Section 8.2**). Note that the USB transceiver can still detect USB events when it is disabled.

D/\\/	D		D		D ///		D ///	Posot Valuo
			ĸ	r/ vv	R/W			
		SUSPEND	-	-	-		IFCINU	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB2
Bit7:	IOSCEN: In	ternal H-F O	scillator En	able Bit.				
	0: Internal H	I-F Oscillator	Disabled.					
	1: Internal H	I-F Oscillator	Enabled.					
Bit6:	IFRDY: Inter	rnal H-F Osc	illator Freq	uency Read	ly Flag.			
	0: Internal H	I-F Oscillator	is not runr	ning at prog	rammed fre	quency.		
	1: Internal H	I-F Oscillator	is running	at program	med freque	ency.		
Bit5:	SUSPEND:	Force Suspe	end		•			
	Writing a '1'	to this bit will	force the i	nternal H-F	oscillator to	be stopped	d. The osci	llator will be
	re-started or	n the next no	n-idle USB	event (i.e.,	RESUME	sianalina) or	VBUS inte	errupt event
	(see SFR D	efinition 8.1).		(- ,		5 5 5/ 5		
Bits4–2:	UNUSED, R	Read = $000b$.	Write $= do$	on't care.				
Bits1–0	IFCN1-0. In	ternal H-F O	scillator Fr	equency Co	ontrol			
Bito i oi	00. SYSCI k	C derived from	n Internal I	H-F Oscillat	or divided h	w 8		
		C derived from	n Internal I	H-F Oscillat	or divided b	$\sqrt{4}$		
		C derived from	n Internal I	H-F Oscillat	or divided b	y 1 .		
	11. SVSCI k	C derived from	n Internal I		or divided b	y <u>2</u> .		
	11. 01 00LP					y i.		

SFR Definition 14.1. OSCICN: Internal H-F Oscillator Control

14.4. 4x Clock Multiplier

The 4x Clock Multiplier allows a 12 MHz oscillator to generate the 48 MHz clock required for Full Speed USB communication (see **Section "16.4. USB Clock Configuration" on page 166**). A divided version of the Multiplier output can also be used as the system clock. C8051F340/1/2/3 devices can use the 48 MHz Clock Multiplier output as system clock. See Table 3.1, "Global DC Electrical Characteristics," on page 25 for system clock frequency specifications. See **Section 14.5** for details on system clock and USB clock source selection.

The 4x Clock Multiplier is configured via the CLKMUL register. The procedure for configuring and enabling the 4x Clock Multiplier is as follows:

- 1. Reset the Multiplier by writing 0x00 to register CLKMUL.
- 2. Select the Multiplier input source via the MULSEL bits.
- 3. Enable the Multiplier with the MULEN bit (CLKMUL | = 0x80).
- 4. Delay for $>5 \ \mu s$.
- 5. Initialize the Multiplier with the MULINIT bit (CLKMUL | = 0xC0).
- 6. Poll for MULRDY = '1'.

Important Note: When using an external oscillator as the input to the 4x Clock Multiplier, the external source must be enabled and stable before the Multiplier is initialized. See Section 14.5 for details on selecting an external oscillator source.

SFR Definition 14.5. CLKMUL: Clock Multiplier Control

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value			
MULEN	MULINIT	MULRDY	-	-	-	MUL	SEL	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address			
								0xB9			
D :/ 7											
Bit7:	MULEN: Clock Multiplier Enable										
	0: Clock Mul	tiplier disab	ied.								
D:40.	1: CIOCK MUI	tiplier enabl	ed.								
BITO:			er Initialize		or io onoble		مامام				
	I NIS DIT SNOU	lid be a '0' v	vnen the Ci			ea. Once en	abled, wri	iting a "1" to			
	this bit will in	itialize the C		nier. The Mi	JLRDYDIU	reads 1 wh	en the Cic	ock multiplier			
DitE		look Multipli	or Boody								
DID.	This road or	lock Multipli	too tho stat	us of the Cl	ook Multipli	ior					
	0: Clock Mul	tiplier not re	ies ine siai								
	1: Clock Mul	tiplier ready	(locked)								
Bits4-2.	Linused Re	ad = 000b.	Vrite – don	't care							
Bits1–0	MULSEL C	ock Multipli	er Innut Sel	ect							
Bitor o.	These bits s	elect the clo	ock supplied	to the Cloc	k Multiplie	r					
	MU	LSEL	S	elected Clo	ock						
	(00	In	ternal Oscill	ator						
	(01	Ex	ternal Oscil	lator						
		10	Exte	ernal Oscilla	tor / 2						
		11		RESERVE	D						
			1								

15.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 15.3) assigns a priority to each I/O function, starting at the top with UART0. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource (excluding UART0, which is always at pins 4 and 5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to the VREF signal, external oscillator pins (XTAL1, XTAL2), the ADC's external conversion start signal (CNVSTR), EMIF control signals, and any selected ADC or Comparator inputs. The PnSKIP registers may also be used to skip pins to be used as GPIO. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 15.3 shows all the possible pins available to each peripheral. Figure 15.4 shows the Crossbar Decoder priority with no Port pins skipped. Figure 15.5 shows a Crossbar example with pins P0.2, P0.3, and P1.0 skipped.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
CP1AE	CP1E	CP0AE	CP0E	SYSCKE	SMB0E	SPIOE	URTOE			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xE1		
Bit7:	CP1AE: Comparator1 Asynchronous Output Enable									
	0: Asynchronous CP1 unavailable at Port pin.									
	1: Asynchronous CP1 routed to Port pin.									
Bit6:	CP1E: Comparator1 Output Enable									
	0: CP1 unavailable at Port pin.									
D:+C.	1: CP1 routed to Port pin.									
BIID:	CPUAE: Comparatoru Asynchronous Output Enable									
	0: Asynchronous CP0 unavailable at Port pin. 1: Asynchronous CP0 routed to Port pin.									
Bit4 [.]	CPOF: Comparator() Output Enable									
BRIL	0. CP0 unavailable at Port pin									
	1: CP0 routed to Port pin.									
Bit3:	SYSCKE: /SYSCLK Output Enable									
	0: /SYSCLK unavailable at Port pin.									
	1: /SYSCLK output routed to Port pin.									
Bit2:	SMB0E: SMBus I/O Enable									
	0: SMBus I/O unavailable at Port pins.									
Dive	1: SMBus I/O routed to Port pins.									
Bit1:	SPIUE: SPI I/O Enable									
	U: SPI I/O unavailable at POR pins.									
Bit∩	I. SFI 1/O TOULEU LO FOIL PINS. LIRTAE: LIARTA I/A Autout Enable									
Dito.	0. HARTO I/O unavailable at Port pins									
	1: UARTO TX0, RX0 routed to Port pins P0.4 and P0.5.									

SFR Definition 15.1. XBR0: Port I/O Crossbar Register 0

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
ſ		USBODAT									
L	Bit7	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0							SFR Address: 0x97		
		This SFR is	used to indi	irectly read	and write U	SB0 registe	ers.				
		Write Procedure:									
		1. Poll for B	USY (USB	0ADR.7) =	> '0'.						
		2. Load the	target USB	0 register a	ddress into	the USBAD	DR bits in r	register U	SB0ADR.		
		3. Write dat	a to USB0D	DAT.							
		Repeat (Step 2 may be skipped when writing to the same USB0 register).									
	Dood Drocodurou										
		1. Poll for BUSY (USB_0ADR.7) => '0'.									
		3. Write '1' to the BUSY bit in register USB0ADR (steps 2 and 3 can be performed in the									
		same writ	te).	0				•			
		4. Poll for B	USY (USB	0ADR.7) =	> '0'.						
		5. Read dat	a from USB	BODAT.							
Repeat from Step 2 (Step 2 may be skipped when reading the same USB0 re may be skipped when the AUTORD bit (USB0ADR.6) is logic 1).									egister; Step 3		

SFR Definition 16.3. USB0DAT: USB0 Data

3

19.3. Configuration and Operation

UART1 provides standard asynchronous, full duplex communication. It can operate in a point-to-point serial communications application, or as a node on a multi-processor serial interface. To operate in a point-to-point application, where there are only two devices on the serial bus, the MCE1 bit in SMOD1 should be cleared to '0'. For operation as part of a multi-processor communications bus, the MCE1 and XBE1 bits should both be set to '1'. In both types of applications, data is transmitted from the microcontroller on the TX1 pin, and received on the RX1 pin. The TX1 and RX1 pins are configured using the crossbar and the Port I/O registers, as detailed in **Section "15. Port Input/Output" on page 142**.

In typical UART communications, The transmit (TX) output of one device is connected to the receive (RX) input of the other device, either directly or through a bus transceiver, as shown in Figure 19.5.

Figure 19.5. Typical UART Interconnect Diagram

19.3.1. Data Transmission

Data transmission is double-buffered, and begins when software writes a data byte to the SBUF1 register. Writing to SBUF1 places data in the Transmit Holding Register, and the Transmit Holding Register Empty flag (THRE1) will be cleared to '0'. If the UARTs shift register is empty (i.e., no transmission is in progress) the data will be placed in the shift register, and the THRE1 bit will be set to '1'. If a transmission is in progress, the data will remain in the Transmit Holding Register until the current transmission is complete. The TI1 Transmit Interrupt Flag (SCON1.1) will be set at the end of any transmission (the beginning of the stop-bit time). If enabled, an interrupt will occur when TI1 is set.

If the extra bit function is enabled (XBE1 = '1') and the parity function is disabled (PE1 = '0'), the value of the TBX1 (SCON1.3) bit will be sent in the extra bit position. When the parity function is enabled (PE1 = '1'), hardware will generate the parity bit according to the selected parity type (selected with S1PT[1:0]), and append it to the data field. Note: when parity is enabled, the extra bit function is not available.

19.3.2. Data Reception

Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the stop bit is received, the data byte will be stored in the receive FIFO if the following conditions are met: the receive FIFO (3 bytes deep) must not be full, and the stop bit(s) must be logic 1. In the event that the receive FIFO is full, the incoming byte will be lost, and a Receive FIFO Overrun Error will be generated (OVR1 in register SCON1 will be set to logic 1). If the stop bit(s) were logic 0, the incoming data will not be stored in the receive FIFO. If the reception conditions are met, the data is stored in the receive FIFO, and the RI1 flag will be set. Note: when MCE1 = '1', RI1 will only be set if the extra bit was equal to '1'. Data can be read from the receive FIFO by reading the SBUF1 register. The SBUF1 register represents the oldest byte in the FIFO. After SBUF1 is read, the next byte in the FIFO is immediately loaded into SBUF1, and

216

space is made available in the FIFO for another incoming byte. If enabled, an interrupt will occur when RI1 is set. RI1 can only be cleared to '0' by software when there is no more information in the FIFO. The recommended procedure to empty the FIFO contents is as follows:

- 1. Clear RI1 to '0'.
- 2. Read SBUF1.
- 3. Check RI1, and repeat at step 1 if RI1 is set to '1'.

If the extra bit function is enabled (XBE1 = '1') and the parity function is disabled (PE1 = '0'), the extra bit for the oldest byte in the FIFO can be read from the RBX1 bit (SCON1.2). If the extra bit function is not enabled, the value of the stop bit for the oldest FIFO byte will be presented in RBX1. When the parity function is enabled (PE1 = '1'), hardware will check the received parity bit against the selected parity type (selected with S1PT[1:0]) when receiving data. If a byte with parity error is received, the PERR1 flag will be set to '1'. This flag must be cleared by software. Note: when parity is enabled, the extra bit function is not available.

19.3.3. Multiprocessor Communications

UART1 supports multiprocessor communication between a master processor and one or more slave processors by special use of the extra data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its extra bit is logic 1; in a data byte, the extra bit is always set to logic 0.

Setting the MCE1 bit (SMOD1.7) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the extra bit is logic 1 (RBX1 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned address. If the addresses match, the slave will clear its MCE1 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE1 bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCE1 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 19.6. UART Multi-Processor Mode Interconnect Diagram

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value			
OVR1	PERR1	THRE1	REN1	TBX1	RBX1	TI1	RI1	00100000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	SFR Address: 0xD2										
-											
Bit7:	OVR1: Receive FIFO Overrun Flag.										
	I his bit is used to indicate a receive FIFO overrun condition.										
	U. Receive FIFO Overrun has not occurred.										
	FIFO)				onning onai						
	This bit must be cleared to '0' by software.										
Bit6:	PERR1: Par	ity Error Fla	ig.								
	When parity is enabled, this bit is used to indicate that a parity error has occurred. It is set to										
	'1' when the parity of the oldest byte in the FIFO does not match the selected Parity Type.										
	0: Parity Erro	or has not c	occurred.								
	1: Parity Erro	or has occu	rred.	<i>t</i>							
Bit5	I his bit must be cleared to '0' by software.										
DID.	INKET: Transmit Holding Register Empty Flag.										
	1: Transmit H	Holding Rea	gister Empty	/ - it is safe	to write to S	SBUF1.					
Bit4:	REN1: Rece	ive Enable.	,	,							
	This bit enab	les/disable	s the UART	receiver. W	/hen disable	ed, bytes ca	n still be re	ead from the			
	receive FIFC).									
	0: UART1 re	ception dis	abled.								
B 10	1: UART1 reception enabled.										
Bit3: IBX1: Extra Transmission Bit.						when VDI					
	The logic level of this bit will be assigned to the extra transmission bit when XBE1 is set to										
Bit2 [.]	RRX1. Extra Receive Rit										
DILL.	RBX1 is assi	igned the v	alue of the e	extra bit who	en XBE1 is	set to '1'. If	XBE1 is cl	eared to '0',			
	RBX1 will be assigned the logic level of the first stop bit. This bit is not valid when Parity is										
	enabled.										
Bit1:	TI1: Transmi	it Interrupt F	Flag.								
	Set to a '1' by hardware after data has been transmitted, at the beginning of the STOP bit.										
	When the UARI1 interrupt is enabled, setting this bit causes the CPU to vector to the										
BitO	UAR IT Interrupt service routine. This bit must be cleared manually by software.										
Dito.	RIT. Receive IIIIEIIUPI FIBY. Set to '1' by bardware when a byte of data has been received by LIAPT1 (set at the STOP bit										
	sampling time). When the UART1 interrupt is enabled, setting this bit to '1' causes the CPU										
	to vector to the UART1 interrupt service routine. This bit must be cleared manually by soft-										
	ware. Note the	hat RI1 will	remain set t	o '1' as long	g as there is	still data in	the UART	FIFO. After			
	the last byte	has been s	hifted from	the FIFO to	SBUF1, R	l1 can be cl	eared.				

SFR Definition 19.1. SCON1: UART1 Control

SFR Definition 19.2. SMOD1: UART1 Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
MCE1	S1PT1	S1PT0	PE1	S1DL1	S1DL0	XBE1	SBL1	00001100				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
	SFR Address: 0xE5											
Bit7:	MCE1: Multi	processor (Communica	tion Enable								
	0: RI will be activated if stop bit(s) are '1'.											
	T. KI WIII DE	activated II	stop bit(s) a	and extra bi	tale i (ex	tra bit must	be enable	dusing				
	Note: This fu	unction is no	ot available	when hard	vare paritv i	is enabled.						
Bits6–5:	S1PT[1:0]: F	Parity Type.			iaio painy i							
	00: Odd	5 51										
	01: Even											
	10: Mark	10: Mark										
D:44	11: Space											
BIT4:	This bit activ	=nable. vates bardw	are parity a	onoration a	nd checking	a The parity	u tuno is sa	lected by				
	hits S1PT1-() when nari	are parity y tv is enable	d		g. The parity	y type is se	elected by				
	0: Hardware	parity is dis	sabled.	u.								
	1: Hardware parity is enabled.											
Bits3-2:	S1DL[1:0]: Data Length.											
	00: 5-bit data											
	01: 6-bit data											
	10: /-bit data											
Bit1.	II. O-DIL Udla XRE1: Extra Rit Enable											
Ditt.	When enabled, the value of TBX1 will be appended to the data field.											
	0: Extra Bit Disabled.											
	1: Extra Bit Enabled.											
Bit0:	SBL1: Stop I	Bit Length										
	0: Short - Stop bit is active for one bit time.											
	1: Long - Stop bit is active for two bit times (data length = 6, $/$, or 8 bits), or 1.5 bit times							bit times				
	(uata length	= 5 DHS).										

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 20.9. SPI Master Timing (CKPHA = 1)

23.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming functions may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (RST) and C2D (P3.0) pins. Note that the C2D pin is shared on the 32-pin packages only (C8051F342/3/6/7/9/A/B). In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 23.1.

Figure 23.1. Typical C2 Pin Sharing

The configuration in Figure 23.1 assumes the following:

- 1. The <u>user input</u> (b) cannot change state while the target device is halted.
- 2. The \overline{RST} pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

