

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f34b-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

USB Register Definition 16.19. EINCSRL: USB0 IN Endpoint Control Low Byte USB Register Definition 16.20. EINCSRH: USB0 IN Endpoint Control High Byte	182 183
USB Register Definition 16.21. EOUTCSRL: USB0 OUT	405
	185
USB Register Definition 16.22. EOUTCSRH: USBU OUT	100
LISP Degister Definition 16.22 FOUTONTLY USPO OUT Endnaint Count Low	100
USB Register Definition 16.23. EOUTONTL, USB0 OUT Endpoint Count Ligh	100
USB Register Definition 16.24. EOUTONTH: USB0 OUT Endpoint Count High	100
SFR Definition 17.1. SMB0CF: SMB0S Clock/Conliguration	194
SFR Definition 17.2. SMD0CN. SMD0S CONTOL	190
SFR Definition 17.3. SMB0DAT: SMB0S Data	198
SFR Definition 18.1. SCONU: Serial POILU Control	210
SFR Definition 18.2. SBUFU: Senai (UARTU) Poll Data Buller	211
SFR Definition 19.1. SCON1: UART1 Control	218
SFR Definition 19.2. SMOD1: UART1 Mode	219
SFR Definition 19.3. SBUFT: UARTI Data Buffer	220
SFR Definition 19.4. SBCON1: UART1 Baud Rate Generator Control	220
SFR Definition 19.5. SBRLH1: UART1 Baud Rate Generator High Byte	221
SFR Definition 19.6. SBRLL1: UART1 Baud Rate Generator Low Byte	221
SFR Definition 20.1. SPIUCFG: SPIU Configuration	229
	230
	231
	231
SFR Definition 21.1. ICON: Timer Control	239
SFR Definition 21.2. TMOD: Timer Mode	240
SFR Definition 21.3. CKCON: Clock Control	241
SFR Definition 21.4. ILU: Timer 0 Low Byte	242
SFR Definition 21.5. IL1: Timer 1 Low Byte	242
SFR Definition 21.6. THU: Timer 0 High Byte	242
SFR Definition 21.7. TH1: Timer 1 High Byte	242
SFR Definition 21.8. IMR2CN: Timer 2 Control	247
SFR Definition 21.9. IMR2RLL: Timer 2 Reload Register Low Byte	248
SFR Definition 21.10. IMR2RLH: Timer 2 Reload Register High Byte	248
SFR Definition 21.11. IMR2L: Timer 2 Low Byte	248
SFR Definition 21.12. IMR2H Timer 2 High Byte	248
SFR Definition 21.13. IMR3CN: Timer 3 Control	253
SFR Definition 21.14. IMR3RLL: Timer 3 Reload Register Low Byte	254
SFR Definition 21.15. IMR3RLH: Timer 3 Reload Register High Byte	254
SFR Definition 21.16. IMR3L: Timer 3 Low Byte	254
SFR Definition 21.17. IMR3H Timer 3 High Byte	254
SFR Definition 22.1. PCA0CN: PCA Control	266
SFR Definition 22.2. PCA0MD: PCA Mode	267
SFR Definition 22.3. PCA0CPMn: PCA Capture/Compare Mode	268
SFR Definition 22.4. PCA0L: PCA Counter/Timer Low Byte	269
SFR Definition 22.5. PCA0H: PCA Counter/Timer High Byte	269

Figure 1.3. C8051F348/C Block Diagram

SFR Definition 5.2. AMX0N: AMUX0 Negative Channel Select

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Valu
-	-	-	AMX0N4	AMX0N3	AMX0N2	2 AMX0N1	AMX0N0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres 0xBA
Bits7–5:	UNUSED, R	ead = 000	b: Write = do	on't care.				
Bits4–0:	AMX0N4–0:	AMUX0 N	egative Inpu	it Selection.				
	Note that wh	en GND is	selected as	the Negati	ve Input, A	ADC0 operate	es in Single	e-ended
	mode. For al	l other Neg	gative Input	selections,	ADC0 ope	erates in Diffe	erential mod	le.
	AMX	N4-0	ADC0	Negative I	nput	ADC0 Neg	gative Inpu	It
			(32-	pin Packag	je)	(48-pin	Package)	
	000	000		P1.0		Р	2.0	
	000	01		P1.1		Р	2.1	
	000)10		P1.2		Р	2.2	
	000)11			P2.3			
	001	00		P1.4		Р	2.5	
	001	01		P1.5		Р	2.6	
	00110 00111 01000			P1.6		Р	3.0	
				P1.7		Р	3.1	
				P2.0		Р	3.4	
	010	01001		P2.1		Р	3.5	
	010)10		P2.2		Р	3.7	
	010)11		P2.3		Р	4.0	
	011	00		P2.4		Р	4.3	
	011	01		P2.5		Р	4.4	
	011	10		P2.6		Р	4.5	
	011	11		P2.7		Р	4.6	
	100	000		P3.0		RESE	ERVED	
	100	01		P0.0		P	0.3	
	100)10		P0.1		P	0.4	
	100)11		P0.4		P	1.1	
	101	00		P0.5		P	1.2	
	10101 ·	11101	R	ESERVED		RESE	ERVED	
	111	10		VREF		VF	REF	
	111	11	GND (Si	ngle-Ended	Mode)	GND (Single	 Ended Mo 	de)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
-	-	-	-	REFSL	TEMPE	BIASE	REFBE	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xD1				
Bits7–3:	ts7–3: UNUSED. Read = 00000b: Write = don't care.											
Bit3:	REFSL: Volt	age Refere	nce Select.									
	This bit sele	cts the sour	ce for the ir	nternal volta	ae referenc	æ.						
	0: VREF pin	used as vo	ltage refere	ence.	<u> </u>							
	י 1: V חם used	as voltage	reference.									
Bit2.	TEMPE: Ten	nerature S	ensor Enab	ole Bit								
DILZ.	0: Internal Te	emperature	Sensor off	Die Dit.								
	1: Internal Te	emperature	Sensor on									
Rit1 ·	BIASE: Inter	nal Analog	Bias Gener	ator Enable	Rit							
Ditt.	0: Internal B	ias General	for off									
	1: Internal B	ias Cenerat	tor on									
Bit0	REFRE: Inte	rnal Refere	nce Ruffer I	Enable Bit								
Dito.	0: Internal P	oforonco Bi	uffor disable									
	1: Internal P	eference B	uffer enable	od Internal v	voltago refe	ronco drivo	n on the V	DEE nin				
		elerence D			voltage lele			iver pill.				

SFR Definition 6.1. REF0CN: Reference Control

Table 6.1. Voltage Reference Electrical Characteristics

V_{DD} = 3.0 V; –40 to +85 °C Unless Otherwise Specified

Parameter	Conditions	Min	Тур	Max	Units						
	Internal Reference (REFBE = 1)										
Output Voltage	25 °C ambient	2.38	2.44	2.50	V						
VREF Short-Circuit Current				10	mA						
VREF Temperature Coeffi- cient			15		ppm/°C						
Load Regulation	Load = 0 to 200 µA to GND		1.5		ppm/µA						
VREF Turn-on Time 1	4.7 μF tantalum, 0.1 μF ceramic bypass		2		ms						
VREF Turn-on Time 2	0.1 µF ceramic bypass		20		μs						
VREF Turn-on Time 3	no bypass cap		10		μs						
Power Supply Rejection			140		ppm/V						
	External Reference (REFBE = 0	0)									
Input Voltage Range		0		V _{DD}	V						
Input Current	Sample Rate = 200 ksps; VREF = 3.0 V		12		μA						
	Bias Generators										
ADC Bias Generator	BIASE = '1'		100		μA						
Reference Bias Generator			40		μA						

8. Voltage Regulator (REG0)

C8051F34x devices include a voltage regulator (REG0). When enabled, the REG0 output appears on the V_{DD} pin and can be used to power external devices. REG0 can be enabled/disabled by software using bit REGEN in register REG0CN. See Table 8.1 for REG0 electrical characteristics.

Note that the VBUS signal must be connected to the VBUS pin when using the device in a USB network. The VBUS signal should only be connected to the REGIN pin when operating the device as a bus-powered function. REG0 configuration options are shown in Figure 8.1–Figure 8.4.

8.1. Regulator Mode Selection

REG0 offers a low power mode intended for use when the device is in suspend mode. In this low power mode, the REG0 output remains as specified; however the REG0 dynamic performance (response time) is degraded. See Table 8.1 for normal and low power mode supply current specifications. The REG0 mode selection is controlled via the REGMOD bit in register REG0CN.

8.2. VBUS Detection

When the USB Function Controller is used (see section **Section "16. Universal Serial Bus Controller (USB0)" on page 159**), the VBUS signal should be connected to the VBUS pin. The VBSTAT bit (register REGOCN) indicates the current logic level of the VBUS signal. If enabled, a VBUS interrupt will be generated when the VBUS signal matches the polarity selected by the VBPOL bit in register REGOCN. The VBUS interrupt is level-sensitive, and has no associated interrupt pending flag. The VBUS interrupt will be active as long as the VBUS signal matches the polarity selected by VBPOL. See Table 8.1 for VBUS input parameters.

Important Note: When USB is selected as a reset source, a system reset will be generated when the VBUS signal matches the polarity selected by the VBPOL bit. See **Section "11. Reset Sources" on page 100** for details on selecting USB as a reset source

Table 8.1. Voltage Regulator Electrical Specifications

-40 to +85 °C unless otherwise spe

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range ¹		2.7		5.25	V
Output Voltage (V _{DD}) ²	Output Current = 1 to 100 mA	3.0	3.3	3.6	V
Output Current ²				100	mA
VBUS Detection Input Low Voltage				1.0	V
VBUS Detection Input High Voltage		3.0			V
Bias Current	Normal Mode (REGMOD = '0') Low Power Mode (REGMOD = '1')		65 35	111 61	μA
Dropout Voltage (V _{DO}) ³			1		mV/mA

Notes:

1. Input range specified for regulation. When an external regulator is used, should be tied to V_{DD} .

- 2. Output current is total regulator output, including any current required by the C8051F34x.
- 3. The minimum input voltage is 2.70 V or VDD + V_{DO} (max load), whichever is greater.

11.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pull-up and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 11.1 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

11.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If more than 100 µs pass between rising edges on the system clock, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read '1', signifying the MCD as the reset source; otherwise, this bit reads '0'. Writing a '1' to the MCDRSF bit enables the Missing Clock Detector; writing a '0' disables it. The state of the RST pin is unaffected by this reset.

11.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a '1' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), a system reset is generated. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read '1' signifying Comparator0 as the reset source; otherwise, this bit reads '0'. The state of the RST pin is unaffected by this reset.

11.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in **Section "22.3. Watchdog Timer Mode" on page 264**; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to '1'. The state of the RST pin is unaffected by this reset.

11.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to "1", and a MOVX write operation is attempted above address 0x7FFF (32 kB Flash devices) or 0xFBFF (64 kB Flash devices).
- A Flash read is attempted above user code space. This occurs when a MOVC operation is attempted above address 0x7FFF (32 kB Flash devices) or 0xFBFF (64 kB Flash devices).
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above 0x7FFF (32 kB Flash devices) or 0xFBFF (64 kB Flash devices).
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "12.3. Security Options" on page 109).
- A Flash Write or Erase is attempted when the V_{DD} monitor is not enabled.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the \overline{RST} pin is unaffected by this reset.

R/W	R	R/W	R/W	R	R/W	R/W	R	Reset Value				
USBRS	F FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xEF				
Bit7:	USBRSF: US	SB Reset F	lag									
	0: Read: Last reset was not a USB reset; Write: USB resets disabled.											
D:40.	1: Read: Las	st reset was	a USB res	set; Write: L	ISB resets e	enabled.						
DILO.	0: Source of	last reset w	iuicaloi.	lach road/w	rita/arasa ar	ror						
	1: Source of	last reset w	ias nut a r ias a Flash	read/write/	arase error	101.						
Bit5 [.]	CORSEF: Co	mparator0	Reset Ena	ble and Flag	ומסט טווטו. ז							
Bitol	0: Read: So	urce of last	reset was i	not Compar	ator0: Write	: Comparat	tor0 is not a	a reset				
	source.				,							
	1: Read: So	urce of last	reset was (Comparator	0; Write: Co	omparator0	is a reset	source				
	(active-low).											
Bit4:	SWRSF: Sol	ftware Rese	et Force an	d Flag.								
	0: Read: So	urce of last	reset was i	not a write t	o the SWRS	SF bit; Write	e: No Effec	t.				
D'IO	1: Read: So	urce of last	was a write	e to the SWI	RSF bit; Wr i	te: Forces	a system r	eset.				
Bit3:	WDIRSF: W	atchdog III	mer Reset	Flag. /DT time out								
	1: Source of	last reset w	as not a w	timeout								
Bit2.	MCDRSE M	lissing Cloc	k Detector	Flag								
BRZ.	0: Read: So	urce of last	reset was i	not a Missin	a Clock Det	ector timeo	out: Write:	Missina				
	Clock Detect	tor disabled			3		,					
	1: Read: So	urce of last	reset was a	a Missing C	lock Detecto	or timeout; N	Write: Miss	sing Clock				
	Detector ena	abled; trigge	ers a reset i	f a missing	clock condit	ion is deteo	cted.					
Bit1:	PORSF: Pov	ver-On / V _D	_D Monitor I	Reset Flag.								
	This bit is se	t anytime a	power-on	reset occurs	s. Writing thi	s bit selects	s/deselects	s the V _{DD}				
	monitor as a	reset sourc	e. Note: w	riting '1' to	this bit bef	ore the V _D	D monitor	is enabled				
	and stabilize	ed can cau	se a syste	m reset. Se	ee register V	/DM0CN (S	SFR Definit	ion 11.1).				
	0: Read: Las	st reset was	not a pow	er-on or V _{DI}	_C monitor re	set; Write:	V _{DD} monit	or is not a				
	reset source											
	1: Read: Las	st reset was	a power-or	n or V _{DD} mo	nitor reset; a	all other res	et flags inc	leterminate;				
	Write: V _{DD} r	nonitor is a	reset source	ce.								
Bit0:	PINRSF: HV	V Pin Reset	Flag.	= .								
	0: Source of	last reset w	as <u>not RS</u>	T pin.								
	1: Source of	last reset w	as RST pi	า.								
Note: Fo	r bits that ac	t as both re	eset sourc	e enables (on a write)	and reset	indicator	flags (on a				
read), re	ad-modify-w	rite instruc	tions read	and modif	y the sourc	e enable o	only. This a	applies to				
bits: USI	BRSF, CORSE	EF, SWRSF,	MCDRSF,	PORSF.								

SFR Definition 11.2. RSTSRC: Reset Source

13. External Data Memory Interface and On-Chip XRAM

4k Bytes (C8051F340/2/4/6/A/C/D) or 2k Bytes (C8051F341/3/5/7/8/9/B) of RAM are included on-chip, and mapped into the external data memory space (XRAM). The 1k Bytes of USB FIFO space can also be mapped into XRAM address space for additional general-purpose data storage. Additionally, an External Memory Interface (EMIF) is available on the C8051F340/1/4/5/8/C devices, which can be used to access off-chip data memories and memory-mapped devices connected to the GPIO ports. The external memory space may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using the MOVX indirect addressing mode using R0 or R1. If the MOVX instruction is used with an 8-bit address operand (such as @R1), then the high byte of the 16-bit address is provided by the External Memory Interface Control Register (EMIOCN, shown in SFR Definition 13.1). Note: the MOVX instruction can also be used for writing to the FLASH memory. See **Section "12. Flash Memory" on page 107** for details. The MOVX instruction accesses XRAM by default.

13.1. Accessing XRAM

The XRAM memory space is accessed using the MOVX instruction. The MOVX instruction has two forms, both of which use an indirect addressing method. The first method uses the Data Pointer, DPTR, a 16-bit register which contains the effective address of the XRAM location to be read from or written to. The second method uses R0 or R1 in combination with the EMI0CN register to generate the effective XRAM address. Examples of both of these methods are given below.

13.1.1. 16-Bit MOVX Example

The 16-bit form of the MOVX instruction accesses the memory location pointed to by the contents of the DPTR register. The following series of instructions reads the value of the byte at address 0x1234 into the accumulator A:

MOV	DPTR, #1234h	;	load	DPTR with	10	5-bit a	address	s to	read	(0x1234)
MOVX	A, @DPTR	;	load	contents	of	0x1234	4 into	acci	umulat	cor A

The above example uses the 16-bit immediate MOV instruction to set the contents of DPTR. Alternately, the DPTR can be accessed through the SFR registers DPH, which contains the upper 8-bits of DPTR, and DPL, which contains the lower 8-bits of DPTR.

13.1.2. 8-Bit MOVX Example

The 8-bit form of the MOVX instruction uses the contents of the EMI0CN SFR to determine the upper 8-bits of the effective address to be accessed and the contents of R0 or R1 to determine the lower 8-bits of the effective address to be accessed. The following series of instructions read the contents of the byte at address 0x1234 into the accumulator A.

MOV	EMIOCN, #12h	;	load	high byte of address into EMIOCN
MOV	R0, #34h	;	load	low byte of address into R0 (or R1)
MOVX	a, @R0	;	load	contents of $0x1234$ into accumulator A

13.2. Accessing USB FIFO Space

The C8051F34x devices include 1k of RAM which functions as USB FIFO space. Figure 13.1 shows an expanded view of the FIFO space and user XRAM. FIFO space is normally accessed via USB FIFO registers; see **Section "16.5. FIFO Management" on page 167** for more information on accessing these FIFOs. The MOVX instruction should not be used to load or modify USB data in the FIFO space.

Unused areas of the USB FIFO space may be used as general purpose XRAM if necessary. The FIFO block operates on the USB clock domain; thus the USB clock must be active when accessing FIFO space. Note that the number of SYSCLK cycles required by the MOVX instruction is increased when accessing USB FIFO space.

To access the FIFO RAM directly using MOVX instructions, the following conditions must be met: (1) the USBFAE bit in register EMI0CF must be set to '1', and (2) the USB clock must be greater than or equal to twice the SYSCLK (USBCLK \geq 2 x SYSCLK). When this bit is set, the USB FIFO space is mapped into XRAM space at addresses 0x0400 to 0x07FF. The normal XRAM (on-chip or external) at the same addresses cannot be accessed when the USBFAE bit is set to '1'.

Important Note: The USB clock must be active when accessing FIFO space.

Figure 13.1. USB FIFO Space and XRAM Memory Map with USBFAE set to '1'

13.7.1.3.8-bit MOVX with Bank Select: EMI0CF[4:2] = '110'.

Muxed 8-bit WRITE with Bank Select

Figure 13.7. Non-multiplexed 8-bit MOVX with Bank Select Timing

14.1. Programmable Internal High-Frequency (H-F) Oscillator

All C8051F34x devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL register shown in SFR Definition 14.2. The OSCICL register is factory calibrated to obtain a 12 MHz internal oscillator frequency. Electrical specifications for the precision internal oscillator are given in Table 14.1 on page 141. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

14.1.1. Internal H-F Oscillator Suspend Mode

The internal high-frequency oscillator may be placed in Suspend mode by writing '1' to the SUSPEND bit in register OSCICN. In Suspend mode, the internal H-F oscillator is stopped until a non-idle USB event is detected (**Section 16**) or VBUS matches the polarity selected by the VBPOL bit in register REGOCN (**Section 8.2**). Note that the USB transceiver can still detect USB events when it is disabled.

R/W	R	RW	R	R/W	R/W	R/W	R/W	Reset Value
IOSCEI	N IFRDY	SUSPEND	-	-	-	IFCN1	IFCN0	10000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB2
Bit7:	IOSCEN: In	ternal H-F O	scillator En	able Bit.				
	0: Internal H	I-F Oscillator	Disabled.					
Dire	1: Internal H	I-F Oscillator	Enabled.	-				
Bit6:	IFRDY: Intel	rnal H-F Osc	illator Freq	uency Read	dy Flag.	~		
	1: Internal F	I-F Oscillator	is not runr	at program	rammed fre mod frogue	quency.		
Bit5.	SUSPEND.	Force Suspe	nd not	at program	meu neque	iicy.		
Dito.	Writing a '1'	to this bit will	force the i	nternal H-F	oscillator to	be stopped	. The osci	llator will be
	re-started or	n the next no	n-idle USB	event (i.e.,	RESUME	signaling) or	VBUS inte	errupt event
	(see SFR D	efinition 8.1).		(,		0 0/		•
Bits4–2:	UNUSED. F	Read = $000b$,	Write = do	on't care.				
Bits1–0:	IFCN1-0: In	iternal H-F O	scillator Fr	equency Co	ontrol.			
	00: SYSCL	< derived from	n Internal I	H-F Oscillat	or divided b	oy 8.		
	01: SYSCL	< derived from	n Internal I	H-F Oscillat	or divided b	oy 4.		
	10: SYSCL	C derived from	n Internal I	H-F Oscillat	or divided b	oy 2.		
	TT: SYSCLP	caerivea from	n internal H	H-F USCIIIat	or aivided b	у 1.		

SFR Definition 14.1. OSCICN: Internal H-F Oscillator Control

Figure 15.2. Port I/O Cell Block Diagram

SFR Definition 15.11. P1SKIP: Port1 Skip

Γ	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 0000000
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD5
E	Bits7–0:	P1SKIP[7:0] These bits so log inputs (fo lator circuit, 0: Correspor 1: Correspor	: Port1 Cros elect Port p or ADC or C CNVSTR in nding P1.n nding P1.n	ssbar Skip I ins to be sk comparator) iput) should pin is not sk pin is skippe	Enable Bits. ipped by the or used as l be skipped sipped by the ed by the Ci	e Crossbar special fun by the Cro e Crossbar. ossbar.	Decoder. P ctions (VRE ssbar.	ort pins us F input, e	sed as ana- xternal oscil-

SFR Definition 15.12. P2: Port2 Latch

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bit	t addressable)) 0xA0
Bits7–0:	P2.[7:0] Write - Outp 0: Logic Low 1: Logic Hig Read - Alwa pin when cou 0: P2.n pin is 1: P2.n pin is	ut appears o Output. n Output (hi ys reads '0' nfigured as s logic low. s logic high.	on I/O pins igh impedar if selected digital input	per Crossba nce if corres as analog in t.	ar Registers ponding P2 nput in regis	s (when XB 2MDOUT.n ster P2MDI	ARE = '1'). bit = 0). N. Directly	reads Port

SFR Definition 15.13. P2MDIN: Port2 Input Mode

17.5.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. After each byte is received, ACKRQ is set to '1' and an interrupt is generated. Software must write the ACK bit (SMB0CN.1) to define the outgoing acknowledge value (Note: writing a '1' to the ACK bit generates an ACK; writing a '0' generates a NACK). Software should write a '0' to the ACK bit after the last byte is received, to transmit a NACK. The interface exits Master Receiver Mode after the SMB0DAT is written while an active Master Receiver. Figure 17.6 shows a typical Master Receiver sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK cycle in this mode.

Figure 17.6. Typical Master Receiver Sequence

_											
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
									00000000		
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
								SFR Address	s: 0xD3		
	Bits7–0:	SBUF1[7:0]:	Serial Data	a Buffer Bits	7–0 (MSB-	LSB)					
		This SFR is	used to bot	h send data	a from the U	ART and to	read recei	ved data fr	om the		
		UART1 rece	ive FIFO.								
		Write: Writin	g a byte to	SBUF1 initi	ates the trai	nsmission. \	When data	is written to	o SBUF1, it		
		first goes to the Transmit Holding Register, where it is held for serial transmission. When the									
		transmit shift register is available, data is transferred into the shift register, and SBUF1 may									
		be written again.									
		Read: Reading SBUF1 retrieves data from the receive FIFO. When read, the oldest byte in									
		the receive FIFO is returned, and removed from the FIFO. Up to three bytes may be held in									
		the FIFO. If there are additional bytes available in the FIFO, the RI1 bit will remain at logic									
		'1', even afte	er being clea	ared by soft	ware.				-		
	Bits7–0:	SBUF1[7:0]: This SFR is UART1 rece Write: Writin first goes to t transmit shift be written ag Read: Readi the receive F the FIFO. If t '1', even after	Serial Data used to bot ive FIFO. g a byte to the Transm t register is gain. ing SBUF1 FIFO is retu there are ac er being clea	a Buffer Bits h send data SBUF1 initi it Holding R available, c retrieves da rned, and re dditional byt ared by soft	57–0 (MSB- a from the U ates the tran egister, whe data is trans ata from the emoved fror tes available tware.	LSB) ART and to hsmission. N ere it is held ferred into t receive FIF n the FIFO. e in the FIFO	v read recei When data for serial tr he shift reg O. When r Up to three O, the RI1 I	ived data fro is written to ransmissior gister, and S ead, the old e bytes ma bit will rema	om the o SBUF1, n. When th SBUF1 ma dest byte in y be held i ain at logic		

SFR Definition 19.3. SBUF1: UART1 Data Buffer

SFR Definition 19.4. SBCON1: UART1 Baud Rate Generator Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
Reserve	d SB1RUN	Reserved	Reserved	Reserved	Reserved	SB1PS1	SB1PS0	0000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-	
							SFR Address	0xAC	
Bit7: Bit6:	RESERVED: Read = 0b; Must write 0b. SB1RUN: Baud Rate Generator Enable. 0: Baud Rate Generator is disabled. UART1 will not function. 1: Baud Rate Generator is enabled.								
Bits5–2: Bits1–0:	RESERVED SB1PS[1:0]: 00: Prescale 01: Prescale 10: Prescale 11: Prescale	: Read = 00 Baud Rate rr = 12 rr = 4 rr = 48 r = 1	000b; Must (Prescaler (write 0000b Select.					

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0x89			
Bit7:	GATE1: Timer 1 Gate Control.										
	0: Timer 1	enabled v	/hen IR1 = 1 i	rrespective	of IN I 1 log	jic level.					
		INTOTCE (see SER Definition 9.13)									
Dit6.	INTUTCE (see SER Definition 9.13).										
Dito.	0. Timer F	unction: Ti	mer 1 increme	onted by clo	ck defined	by T1M bit ()			
	1: Counter	Function	Timer 1 increi	mented by the	niah-to-low	transitions of	n external	input pin			
	(T1).	i unotion.		nontou by i	light to low			input pin			
Bits5-4:	T1M1–T1M	M0: Timer	1 Mode Select								
	These bits	select the	Timer 1 opera	ation mode.							
			-								
	T1M1	T1M0		Mode							
	0	0	Mode 0): 13-bit cou	nter/timer						
	0	1	Mode 1	: 16-bit cou	nter/timer						
	1	0	Mode 2:	Mode 2: 8-bit counter/timer with							
				auto-reloa							
	1	1	Mode 3: Timer 1 inactive								
Bit2.		mor 0 Gat	o Control								
DIIJ.	0. Timer 0		/hen TR() – 1 i	rrespective		nic level					
	1. Timer 0	enabled o	nlv when TR0	= 1 AND IN	T0 is active	as defined h	ov bit INOF	l in register			
	INT01CF (see SFR I	Definition 9.13).			<i>y b</i> it ii toi	Linioglotoi			
Bit2:	C/T0: Cou	nter/Timer	Select.								
	0: Timer F	unction: Ti	mer 0 increme	nted by clo	ck defined	by T0M bit (CKCON.2).			
	1: Counter	Function:	Timer 0 increi	mented by h	nigh-to-low	transitions o	n externa	input pin			
	(T0).										
Bits1–0:	T0M1–T0	M0: Timer	0 Mode Select								
	These bits	select the	e Timer 0 opera	ation mode.							
	TOM1	томо		Mode							
			Mode (13-bit cou	nter/timer						
	0	0	Mode 1	· 16-bit cou	nter/timer						
	0	1	Mode 2	8-hit counte	r/timer with	1					
	1	0	111000 Z.	auto-reloa	d	•					
	1	1	Mode 3:	Two 8-bit co	unter/timer	S					
	L										

SFR Definition 21.2. TMOD: Timer Mode

21.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT = '1' and T2CE = '0', Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-reload mode as shown in Figure 21.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

T2MH	T2XCLK	TMR2H Clock Source				
0	0	SYSCLK / 12				
0	1	External Clock / 8				
1	Х	SYSCLK				

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	Х	SYSCLK

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from 0xFF to 0x00. When Timer 2 interrupts are enabled, an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 21.5. Timer 2 8-Bit Mode Block Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W Reset Value		
TF2H	TF2L	TF2LEN	T2CE	T2SPLIT	TR2	T2CSS	T2XCLK 00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Address:		
	(bit addressable) 0xC8								
Bit7:	IF2H: Timer 2 High Byte Overflow Flag.								
	Set by hardy	are when t	he limer 2	high byte o	Verflows fro	m UxFF to (DX00. In 16 bit mode,		
	enabled setting this bit causes the CPU to vector to the Timer 2 interrupt servi								
	TF2H is not	automatical	lv cleared b	v hardware	and must l	be cleared b	ov software		
Bit6:	TF2L: Timer	2 Low Byte	Overflow F	Flag.					
	Set by hardv	vare when t	he Timer 2	low byte ov	erflows fror	n 0xFF to 0	x00. When this bit is		
	set, an interr	upt will be g	enerated if	TF2LEN is	set and Tin	ner 2 interru	pts are enabled. TF2L		
	will set when	the low by	e overflows	s regardless	of the Tim	er 2 mode.	This bit is not automat-		
D:46	ically cleared	by hardwa	re.	t Frabla					
DIIO.	This hit enab	lei Z LOW D les/disable	s Timer 2 I	ow Byte inte	arrunte If T	F2I FN is si	et and Timer 2 inter-		
	rupts are ena	abled, an in	terrupt will	be generate	d when the	low byte of	Timer 2 overflows.		
	0: Timer 2 Lo	ow Byte inte	, rrupts disa	bled.		,			
	1: Timer 2 Lo	ow Byte inte	errupts enab	oled.					
Bit4:	T2CE: Timer	2 Capture	Enable						
	0: Capture fu	inction disa	bled. Nod Tho ti	morio in oo	oturo modo	with the e	antura avant calestad		
	by bit T2CSS	S Each time	a canture	event is rec	plure mode	contents of	the Timer 2 registers		
	(TMR2H and	TMR2L) a	re latched i	nto the Time	er 2 reload	reaisters (T	MR2RLH and		
	TMR2RLH),	and a Time	r 2 interrup	t is generate	ed (if enable	ed).			
Bit3:	T2SPLIT: Tir	ner 2 Split N	lode Enabl	le.					
	When this bi	t is set, Tim	er 2 operat	es as two 8	-bit timers v	with auto-rel	load.		
	0: Timer 2 op 1: Timer 2 or	perates in 1	b-bit auto-r	eload mode	Aore				
Bit2:	TR2: Timer 2	Run Contr	ol.		1013.				
	This bit enab	les/disable	s Timer 2. I	n 8-bit mode	e, this bit er	nables/disal	oles TMR2H only;		
	TMR2L is alv	ways enable	ed in this m	ode.					
	0: Timer 2 di	sabled.							
D:14.	1: Timer 2 er	habled.		alaat					
BITT:	This bit select	er Z Captur	e Source S	elect. ture event w	han hit T2	CE is set to	'1'		
	0: Capture s	ource is US	B SOF eve	nt.			1.		
	1: Capture s	ource is fall	ing edge of	Low-Frequ	ency Oscill	ator.			
Bit0:	T2XCLK: Tin	ner 2 Exterr	nal Clock S	elect.	•				
	This bit selec	cts the exte	rnal clock s	ource for Ti	mer 2. If Tir	mer 2 is in 8	B-bit mode, this bit		
	selects the e		llator clock	source for l	ooth timer t	bytes. Howe	ever, the Timer 2 Clock		
	external cloc	k and the s	∠ivi∟ iti teg vstem cloci	for either t	imer		Select between the		
	0: Timer 2 ex	ternal clock	selection	is the svster	n clock divi	ided by 12.			
	1: Timer 2 external clock selection is the external clock divided by 8. Note that the external								
	oscillator sou	urce divided	by 8 is syr	hchronized v	with the sys	tem clock.			

SFR Definition 21.8. TMR2CN: Timer 2 Control

22.3. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 4. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH4) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE and/or WDLCK bits set to '1' in the PCA0MD register, Module 4 operates as a watchdog timer (WDT). The Module 4 high byte is compared to the PCA counter high byte; the Module 4 low byte holds the offset to be used when WDT updates are performed. **The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled.**

22.3.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCA0L and PCA0H are not allowed.
- PCA clock source bits (CPS2-CPS0) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 4 is forced into Watchdog Timer mode.
- Writes to the Module 4 mode register (PCA0CPM4) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCA0CPH4 and PCA0H while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH4. Upon a PCA0CPH4 write, PCA0H plus the offset held in PCA0CPL4 is loaded into PCA0CPH4 (See Figure 22.10).

Figure 22.10. PCA Module 4 with Watchdog Timer Enabled

Note that the 8-bit offset held in PCA0CPH4 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCA0L overflows before a reset. Up to 256 PCA clocks may pass before the first PCA0L overflow occurs, depending on the value of the PCA0L when the update is performed. The total offset is then given (in PCA clocks) by Equation 22.4, where PCA0L is the value of the PCA0L register at the time of the update.

