E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f34c-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8. Voltage Regulator (REG0)

C8051F34x devices include a voltage regulator (REG0). When enabled, the REG0 output appears on the V_{DD} pin and can be used to power external devices. REG0 can be enabled/disabled by software using bit REGEN in register REG0CN. See Table 8.1 for REG0 electrical characteristics.

Note that the VBUS signal must be connected to the VBUS pin when using the device in a USB network. The VBUS signal should only be connected to the REGIN pin when operating the device as a bus-powered function. REG0 configuration options are shown in Figure 8.1–Figure 8.4.

8.1. Regulator Mode Selection

REG0 offers a low power mode intended for use when the device is in suspend mode. In this low power mode, the REG0 output remains as specified; however the REG0 dynamic performance (response time) is degraded. See Table 8.1 for normal and low power mode supply current specifications. The REG0 mode selection is controlled via the REGMOD bit in register REG0CN.

8.2. VBUS Detection

When the USB Function Controller is used (see section **Section "16. Universal Serial Bus Controller (USB0)" on page 159**), the VBUS signal should be connected to the VBUS pin. The VBSTAT bit (register REGOCN) indicates the current logic level of the VBUS signal. If enabled, a VBUS interrupt will be generated when the VBUS signal matches the polarity selected by the VBPOL bit in register REGOCN. The VBUS interrupt is level-sensitive, and has no associated interrupt pending flag. The VBUS interrupt will be active as long as the VBUS signal matches the polarity selected by VBPOL. See Table 8.1 for VBUS input parameters.

Important Note: When USB is selected as a reset source, a system reset will be generated when the VBUS signal matches the polarity selected by the VBPOL bit. See **Section "11. Reset Sources" on page 100** for details on selecting USB as a reset source

Table 8.1. Voltage Regulator Electrical Specifications

-40 to +85	5 °C unless	otherwise	specified.
------------	-------------	-----------	------------

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Range ¹		2.7		5.25	V
Output Voltage (V _{DD}) ²	Output Current = 1 to 100 mA	3.0	3.3	3.6	V
Output Current ²				100	mA
VBUS Detection Input Low Voltage				1.0	V
VBUS Detection Input High Voltage		3.0			V
Bias Current	Normal Mode (REGMOD = '0') Low Power Mode (REGMOD = '1')		65 35	111 61	μA
Dropout Voltage (V _{DO}) ³			1		mV/mA

Notes:

1. Input range specified for regulation. When an external regulator is used, should be tied to V_{DD} .

- 2. Output current is total regulator output, including any current required by the C8051F34x.
- 3. The minimum input voltage is 2.70 V or VDD + V_{DO} (max load), whichever is greater.

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
REGDIS		VBPOL	REGMOD	Reserved	Reserved	Reserved	Reserved		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0xC9	
Bit7:	REGDIS: Vo 0: Voltage R 1: Voltage R	egulator En	abled.	е.					
Bit6:	VBSTAT: VB	US Signal	Status.						
	0: VBUS sig						x).		
D	1: VBUS sig		•••		hed to USB	network).			
Bit5:	VBPOL: VBU								
	This bit select								
	0: VBUS inte 1: VBUS inte								
Bit4:	REGMOD: V	•		-					
DII4.	This bit sele				/hen REGM	10D is set t	o '1' the vo	ltade redu-	
						100 13 301 1		nage regu	
	lator operates in low power (suspend) mode. 0: USB0 Voltage Regulator in normal mode.								
	1: USB0 Voltage Regulator in low power mode.								
Bits3-0:	Bits3–0: Reserved. Read = 0000b. Must Write = 0000b.								

SFR Definition 8.1. REG0CN: Voltage Regulator Control

Table 9.1. CIP-51 Instruction Set Summary ((Continued)
---	-------------

Mnemonic	Mnemonic Description			
ORL A, #data	OR immediate to A	2	2	
ORL direct, A	OR A to direct byte	2	2	
ORL direct, #data	OR immediate to direct byte	3	3	
XRL A, Rn	Exclusive-OR Register to A	1	1	
XRL A, direct	Exclusive-OR direct byte to A	2	2	
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2	
XRL A, #data	Exclusive-OR immediate to A	2	2	
XRL direct, A	Exclusive-OR A to direct byte	2	2	
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3	
CLR A	Clear A	1	1	
CPL A	Complement A	1	1	
RL A	Rotate A left	1	1	
RLC A	Rotate A left through Carry	1	1	
RR A	Rotate A right	1	1	
RRC A	Rotate A right through Carry	1	1	
SWAP A	Swap nibbles of A	1	1	
-	Data Transfer			
MOV A, Rn	Move Register to A	1	1	
MOV A, direct	Move direct byte to A	2	2	
MOV A, @Ri	Move indirect RAM to A	1	2	
MOV A, #data	Move immediate to A	2	2	
MOV Rn, A	Move A to Register	1	1	
MOV Rn, direct	Move direct byte to Register	2	2	
MOV Rn, #data	Move immediate to Register	2	2	
MOV direct, A	Move A to direct byte	2	2	
MOV direct, Rn	Move Register to direct byte	2	2	
MOV direct, direct	Move direct byte to direct byte	3	3	
MOV direct, @Ri	Move indirect RAM to direct byte	2	2	
MOV direct, @rti	Move immediate to direct byte	3	3	
MOV @Ri, A	Move A to indirect RAM	1	2	
MOV @Ri, A MOV @Ri, direct	Move direct byte to indirect RAM	2	2	
MOV @Ri, #data	Move immediate to indirect RAM	2	2	
MOV @RI, #data MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3	
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3	
MOVC A, @A+DFTR MOVC A, @A+PC	Move code byte relative DFTR to A	1	3	
MOVX A, @Ri	Move external data (8-bit address) to A	1	3	
MOVX @Ri, A	Move A to external data (8-bit address)	1	3	
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3	
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3	
PUSH direct	Push direct byte onto stack	2	2	
POP direct	Pop direct byte from stack	2	2	
XCH A, Rn	Exchange Register with A	1	1	
XCH A, direct	Exchange direct byte with A	2	2	
XCH A, @Ri	Exchange indirect RAM with A	1	2	
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2	

Table 9.3. Special Function Registers

Register	Address	Description	Page
ACC	0xE0	Accumulator	87
ADC0CF	0xBC	ADC0 Configuration	50
ADC0CN	0xE8	ADC0 Control	51
ADC0GTH	0xC4	ADC0 Greater-Than Compare High	52
ADC0GTL	0xC3	ADC0 Greater-Than Compare Low	52
ADC0H	0xBE	ADC0 High	50
ADC0L	0xBD	ADC0 Low	50
ADC0LTH	0xC6	ADC0 Less-Than Compare Word High	53
ADC0LTL	0xC5	ADC0 Less-Than Compare Word Low	53
AMX0N	0xBA	AMUX0 Negative Channel Select	49
AMX0P	0xBB	AMUX0 Positive Channel Select	48
В	0xF0	B Register	88
CKCON	0x8E	Clock Control	241
CLKMUL	0xB9	Clock Multiplier	138
CLKSEL	0xA9	Clock Select	140
CPT0CN	0x9B	Comparator0 Control	62
CPT0MD	0x9D	Comparator0 Mode Selection	64
CPT0MX	0x9F	Comparator0 MUX Selection	63
CPT1CN	0x9A	Comparator1 Control	65
CPT1MD	0x9C	Comparator1 Mode Selection	67
CPT1MX	0x9E	Comparator1 MUX Selection	66
DPH	0x83	Data Pointer High	86
DPL	0x82	Data Pointer Low	86
EIE1	0xE6	Extended Interrupt Enable 1	93
EIE2	0xE7	Extended Interrupt Enable 2	95
EIP1	0xF6	Extended Interrupt Priority 1	94
EIP2	0xF7	Extended Interrupt Priority 2	95
EMI0CN	0xAA	External Memory Interface Control	117
EMI0CF	0x85	External Memory Interface Configuration	118
EMIOTC	0x84	External Memory Interface Timing	123
FLKEY	0xB7	Flash Lock and Key	112
FLSCL	0xB6	Flash Scale	113
IE	0xA8	Interrupt Enable	91
IP	0xB8	Interrupt Priority	92
IT01CF	0xE4	INT0/INT1 Configuration	96
OSCICL	0xB3	Internal Oscillator Calibration	133
OSCICN	0xB2	Internal Oscillator Control	132
OSCLCN	0x86	Internal Low-Frequency Oscillator Control	134
OSCXCN	0xB1	External Oscillator Control	137
P0	0x80	Port 0 Latch	150
POMDIN	0xF1	Port 0 Input Mode Configuration	150
POMDOUT	0xA4	Port 0 Output Mode Configuration	151
POSKIP	0xD4	Port 0 Skip	151
P1	0x90	Port 1 Latch	152

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

11. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pull-ups are enabled during and after the reset. For V_{DD} Monitor and Power-On Resets, the RST pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to **Section "14. Oscillators" on page 131** for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (**Section "22.3. Watchdog Timer Mode" on page 264** details the use of the Watchdog Timer). Program execution begins at location 0x0000.

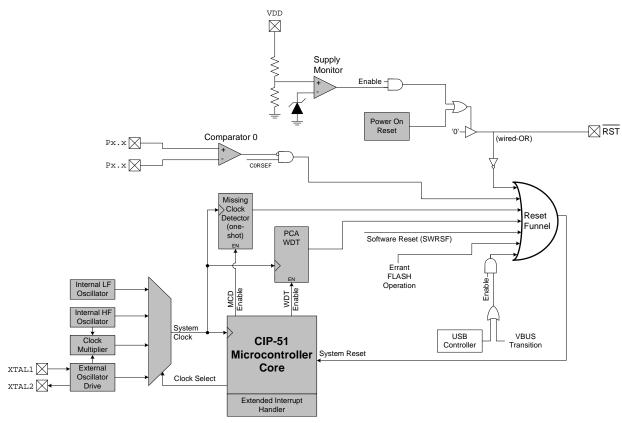


Figure 11.1. Reset Sources

Parameter	Conditions	Min	Тур	Max	Units
Flash Size	C8051F340/2/4/6/A/C/D*	65536*			Bytes
	C8051F341/3/5/7/8/9/B	32768			Bytes
Endurance		20k	100k		Erase/Write
Erase Cycle Time	25 MHz System Clock	10	15	20	ms
Write Cycle Time	25 MHz System Clock	40	55	70	μs

Table 12.1. Flash Electrical Characteristics

*Note: 1024 bytes at location 0xFC00 to 0xFFFF are reserved.

12.2. Non-Volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

12.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to '1' before software can modify the Flash memory; both PSWE and PSEE must be set to '1' before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock n 512-byte Flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where n is the 1's complement number represented by the Security Lock Byte. Note that the page containing the Flash Security Lock Byte is also locked when any other Flash pages are locked. See example below.

Security Lock Byte:	1111101b
1's Complement:	0000010b
Flash pages locked:	3 (2 + Flash Lock Byte Page)
	First two pages of Flash: 0x0000 to 0x03FF
Addresses locked:	Flash Lock Byte Page: (0xFA00 to 0xFBFF for 64k devices; 0x7E00 to 0x7FFF for 32k devices)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	Reserved	PSEE	PSWE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x8F
Bits7–3: Bit2: Bit1:	Unused: Rea Reserved. R PSEE: Progr Setting this b to be erased Flash memo tion address 0: Flash prog 1: Flash prog Setting this b write instruct 0: Writes to F 1: Writes to F memory.	ead = 0b. N ram Store E bit (in combi . If this bit is ry using the ed by the N gram memo gram memo gram Store N bit allows we cion. The Fla Flash program	Aust Write = rase Enabl nation with s logic 1 an MOVX instru- ory erasure ory erasure Vrite Enabl riting a byte ash locatior am memory	= 0b. e PSWE) allo d Flash writ truction will ction. The v disabled. enabled. e of data to f a should be v disabled.	tes are enab erase the e value of the the Flash pro erased befo	oled (PSWE ntire page data byte w ogram men ore writing o	is logic 1) that contair vritten does nory using data.	, a write to as the loca- a not matter.

SFR Definition 12.2. FLKEY: Flash Lock and Key

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xB7
Bits-0:	FLKEY: Flas Write: This register remains lock timing of the must be writt system reset codes have b Read: When read, b 00: Flash is w 01: The first 10: Flash is with 11: Flash write	must be w ed until this writes does en for each if the wron been written bits 1-0 ind write/erase key code h unlocked (v	ritten to before seregister is a not matter, a Flash write and codes are an correctly. acate the cu locked. as been writes/erases	ore Flash w written to w as long as or erase c written or rrent Flash tten (0xA5) s allowed).	vith the follow the codes a operation. Fla if a Flash op lock state.	wing key coo re written in ash will be l	des: 0xA5 order. Th locked un	5, 0xF1. The e key codes til the next

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
EAS1	EAS0	EWR3	EWR2	EWR1	EWR0	EAH1	EAH0	11111111			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	3			
							SFR Address	0x84			
Bits7–6:	EAS1-0: EN	IIF Address	Setup Tim	e Bits.							
	00: Address	setup time	= 0 SYSCL	K cycles.							
	01: Address setup time = 1 SYSCLK cycle.										
	10: Address										
	11: Address										
Bits5–2:	EWR3 <u>–0:</u> EN										
	0000: <u>WR</u> ar										
	0001: <u>WR</u> ar										
	0010: <u>WR</u> ar										
	0011: <u>WR</u> ar	·									
	0100: WR ar										
	0101: WR ar										
	0110: <u>WR</u> ar										
	0111: <u>WR</u> ar 1000: WR ar										
	1000. <u>WR</u> an 1001: WR ar										
	1001: <u>WR</u> an 1010: WR ar										
	1010: <u>WR</u> an										
	1100: WR ar										
	1100: <u>WR</u> an										
	1110: WR ar										
	1111:WR and										
Bits1-0:	EAH1–0: EM				0.001						
2.10. 01	00: Address										
	01: Address										
	10: Address										
	11: Address										
				-							

SFR Definition 13.3. EMI0TC: External Memory Timing Control

13.7.2. Multiplexed Mode

13.7.2.1.16-bit MOVX: EMI0CF[4:2] = '001', '010', or '011'.

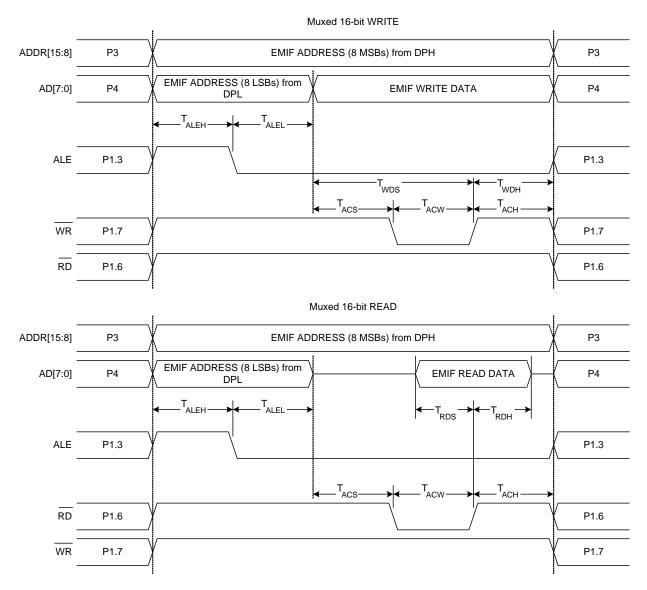


Figure 13.8. Multiplexed 16-bit MOVX Timing

14.4. 4x Clock Multiplier

The 4x Clock Multiplier allows a 12 MHz oscillator to generate the 48 MHz clock required for Full Speed USB communication (see **Section "16.4. USB Clock Configuration" on page 166**). A divided version of the Multiplier output can also be used as the system clock. C8051F340/1/2/3 devices can use the 48 MHz Clock Multiplier output as system clock. See Table 3.1, "Global DC Electrical Characteristics," on page 25 for system clock frequency specifications. See **Section 14.5** for details on system clock and USB clock source selection.

The 4x Clock Multiplier is configured via the CLKMUL register. The procedure for configuring and enabling the 4x Clock Multiplier is as follows:

- 1. Reset the Multiplier by writing 0x00 to register CLKMUL.
- 2. Select the Multiplier input source via the MULSEL bits.
- 3. Enable the Multiplier with the MULEN bit (CLKMUL | = 0x80).
- 4. Delay for $>5 \ \mu s$.
- 5. Initialize the Multiplier with the MULINIT bit (CLKMUL | = 0xC0).
- 6. Poll for MULRDY = '1'.

Important Note: When using an external oscillator as the input to the 4x Clock Multiplier, the external source must be enabled and stable before the Multiplier is initialized. See Section 14.5 for details on selecting an external oscillator source.

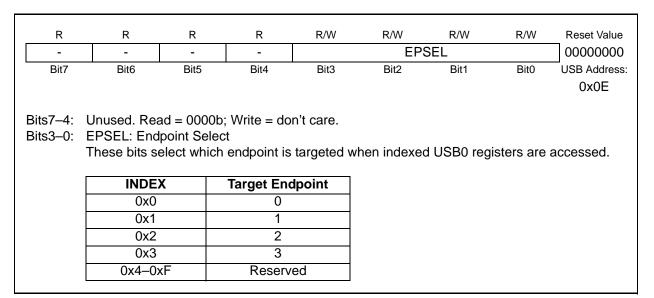
SFR Definition 14.5. CLKMUL: Clock Multiplier Control

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value	
MULEN		MULRDY	-	-	-	MUL		00000000	
Bit7	Bit6	Bit5	- Bit4	- Bit3	- Bit2	Bit1	Bit0	SFR Address	
DIL7	DILO	DIID	DIL4	DIIJ	DILZ	DILI	BIIU		
								0xB9	
Bit7:	MULEN: Clo	ck Multinlie	r Enable						
Ditr.	MULEN: Clock Multiplier Enable 0: Clock Multiplier disabled.								
	1: Clock Mul								
Bit6:	MULINIT: CI	•							
Ditto	This bit shou			ock Multipli	er is enable	ed. Once en	abled, wri	ting a '1' to	
	this bit will in								
	is stabilized.								
Bit5:	MULRDY: C	lock Multipl	ier Readv						
	This read-on			us of the Cl	ock Multipli	er.			
	0: Clock Mul								
	1: Clock Mul	•	•						
Bits4–2:	Unused. Rea			't care.					
	MULSEL: CI								
	These bits se				k Multiplie	r.			
	MU	LSEL	S	elected Clo	ock				
	(00	In	ternal Oscil	ator				
	(01	Ex	ternal Oscil	lator				
		10	Exte	ernal Oscilla	tor / 2				
		11		RESERVE	D				

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
D:47	Dito	D:+C	Dit 4	D:#2	D:+0	Ditt	Dito	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address 0xF5
its7–0: A		Configurat						

SFR Definition 15.21. P4MDIN: Port4 Input Mode

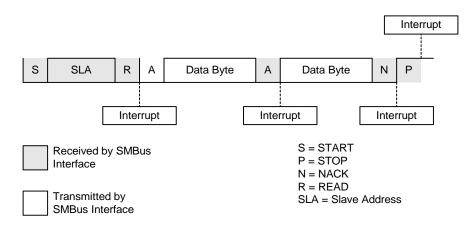
SFR Definition 15.22. P4MDOUT: Port4 Output Mode


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xAE			
Bits7–0:											
Note: P4	Note: P4 is only available on 48-pin devices.										

USB Register Name	USB Register Address	Description	Page Number
Name	Address	Interrupt Registers	
	0.00		470
IN1INT	0x02	Endpoint0 and Endpoints1-3 IN Interrupt Flags	173
OUT1INT	0x04	Endpoints1-3 OUT Interrupt Flags	173
CMINT	0x06	Common USB Interrupt Flags	174
IN1IE	0x07	Endpoint0 and Endpoints1-3 IN Interrupt Enables	175
OUT1IE	0x09	Endpoints1-3 OUT Interrupt Enables	175
CMIE	0x0B	Common USB Interrupt Enables	176
		Common Registers	
FADDR	0x00	Function Address	169
POWER	0x01	Power Management	171
FRAMEL	0x0C	Frame Number Low Byte	172
FRAMEH	0x0D	Frame Number High Byte	172
INDEX	0x0E	Endpoint Index Selection	165
CLKREC	0x0F	Clock Recovery Control	166
FIFOn	0x20-0x23	Endpoints0-3 FIFOs	168
		Indexed Registers	
E0CSR	0x11	Endpoint0 Control / Status	179
EINCSRL	0.00	Endpoint IN Control / Status Low Byte	182
EINCSRH	0x12	Endpoint IN Control / Status High Byte	183
EOUTCSRL	0x14	Endpoint OUT Control / Status Low Byte	185
EOUTCSRH	0x15	Endpoint OUT Control / Status High Byte	186
E0CNT	0x16	Number of Received Bytes in Endpoint0 FIFO	180
EOUTCNTL	01X0	Endpoint OUT Packet Count Low Byte	186
EOUTCNTH	0x17	Endpoint OUT Packet Count High Byte	186

Table 16.2. USB0 Controller Registers

USB Register Definition 16.4. INDEX: USB0 Endpoint Index


SFR Definition 17.2	SMB0CN: SMBus Control
---------------------	-----------------------

R	R	R/W	R/W	R	R	R/W	R/W	Reset Value				
MASTE	R TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable				
	SFR Address: 0xC0											
Bit7:	MASTER: SM											
	This read-only	•			s operating a	s a maste	r.					
	0: SMBus ope											
Bit6:												
Dito.	TXMODE: SMBus Transmit Mode Indicator. This read-only bit indicates when the SMBus is operating as a transmitter.											
	0: SMBus in F				o oporating a	o a tranon						
	1: SMBus in T											
Bit5:	STA: SMBus	Start Flag.										
	Write:											
	0: No Start ge											
	1: When oper											
	is not free, the							,				
	STA is set by next ACK cyc		as an active	e iviaster, a	repeated STA		generated					
	Read:	10.										
	0: No Start or	repeated	Start detec	ted.								
	1: Start or rep											
Bit4:	STO: SMBus	Stop Flag										
	Write:											
	0: No STOP o					•••	<i>6</i> 1					
	1: Setting ST	-										
	cycle. When t and STO are			-			-					
	Read:	sei, a sic		115 (13115)111		by a STAI		<i>л</i> п.				
	0: No Stop co	ndition de	tected.									
	1: Stop condit			ve Mode) o	or pending (if i	in Master	Mode).					
Bit3:	ACKRQ: SME	Bus Ackno	wledge Re	quest			,					
	This read-only		•			eived a by	te and nee	eds the ACK				
DVA	bit to be writte				e value.							
Bit2:	ARBLOST: SI											
	This read-only transmitter. A		•					iting as a				
Bit1:	ACK: SMBus			a slave inui	cales a bus e		uon.					
Ditt.	This bit define		0 0	level and r	ecords incom	ina ACK le	evels. It sh	ould be writ				
	ten each time											
	0: A "not ackr		•		,							
	in Receiver M	lode).										
	1: An "acknow	-	s been rec	eived (if in ⁻	Fransmitter M	ode) OR v	vill be tran	smitted (if in				
Bito	Receiver Mod	,										
Bit0:	SI: SMBus Int	•	-					aloored by				
	This bit is set	by nardwa	are under th	ie condition	is listed in Tal	ole 17.3. S	M MUST DE	cleared by				

17.5.4. Slave Transmitter Mode

Serial data is transmitted on SDA and the clock is received on SCL. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. Upon entering Slave Transmitter Mode, an interrupt is generated and the ACKRQ bit is set. Software responds to the received slave address with an ACK, or ignores the received slave address with a NACK. If the received slave address is ignored, slave interrupts will be inhibited until a START is detected. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface enters Slave Transmitter Mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (Note: an error condition may be generated if SMB0DAT is written following a received NACK while in Slave Transmitter Mode). The interface exits Slave Transmitter Mode after receiving a STOP. Note that the interface will switch to Slave Receiver Mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 17.8 shows a typical Slave Transmitter sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that the 'data byte transferred' interrupts occur **after** the ACK cycle in this mode.

Figure 17.8. Typical Slave Transmitter Sequence

17.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. In the table below, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. Note that the shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed but do not conform to the SMBus specification.

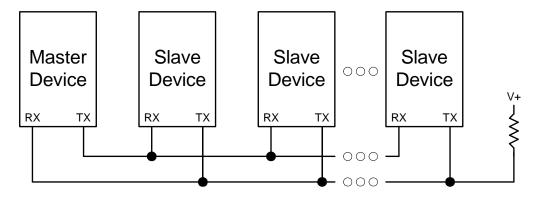


Figure 18.6. UART Multi-Processor Mode Interconnect Diagram

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
SOMODE	-	MCE0	REN0	TB80	RB80	TI0	RI0	0100000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable				
	SFR Address: 0x98											
Bit7:	SOMODE: S	erial Port 0	Operation I	Mode								
Bitr.	S0MODE: Serial Port 0 Operation Mode. This bit selects the UART0 Operation Mode.											
	0: 8-bit UART with Variable Baud Rate.											
	1: 9-bit UAR	T with Varia	ble Baud R	ate.								
Bit6:	UNUSED. R											
Bit5:	MCE0: Multi	iprocessor (Communica	tion Enable	-							
	The function	of this bit is	s dependen	t on the Se	rial Port 0 O	peration M	lode.					
	S0MODE =	0: Checks f	or valid stop	o bit.								
	0: L	ogic level of	stop bit is i	gnored.								
	1: R	I0 will only	be activated	l if stop bit	is logic level	1.						
	S0MODE =	1: Multiproc	essor Com	munication	s Enable.							
	0: L	ogic level of	ninth bit is	ignored.								
	1: R	I0 is set and	d an interru	ot is genera	ated only whe	en the nint	h bit is log	ic 1.				
Bit4:	REN0: Rece											
	This bit enal			receiver.								
	0: UART0 re											
	1: UART0 re											
	TB80: Ninth											
	The logic lev			-				ART Mode. It				
	is not used i			Set or cleare	ed by softwa	re as requi	ired.					
Bit2:	RB80: Ninth											
	RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th											
D'44	data bit in M		-,									
Bit1:	TIO: Transm		0									
	Set by hard											
	8-bit UART I		•	•			,					
	UART0 inter						to the UAP	R I O Interrup				
	service routi			eared manu	ally by softw	are.						
Bit0:	RI0: Receive Set to '1' by	•	•	of data hac	hoon rocoiv		TO (cot at t	the STOP hi				
	sampling tim						•					
	to vector to f											
	ware.		interrupt se					any by soll-				
	ware.											

SFR Definition 18.1. SCON0: Serial Port 0 Control

21.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal INT0 is active as defined by bit IN0PL in register INT01CF (see Section "9.3.2. External Interrupts" on page 88 for details on the external input signals INT0 and INT1).

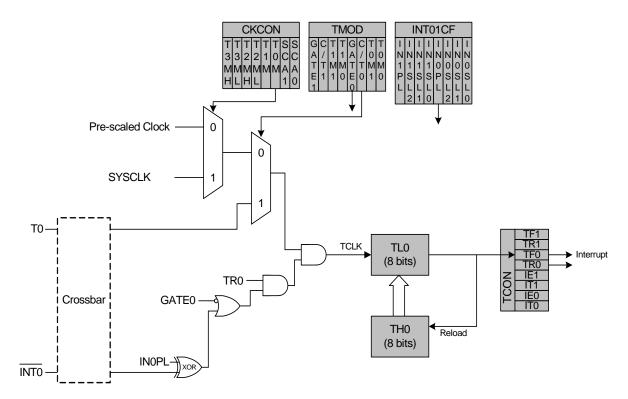


Figure 21.2. T0 Mode 2 Block Diagram

21.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, USB Start-of-Frame (SOF) capture mode, or Low-Frequency Oscillator (LFO) Falling Edge capture mode. The Timer 2 operation mode is defined by the T2SPLIT (TMR2CN.3), T2CE (TMR2CN.4) bits, and T2CSS (TMR2CN.1) bits.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

21.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT = '0' and T2CE = '0', Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 21.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled, an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x000.

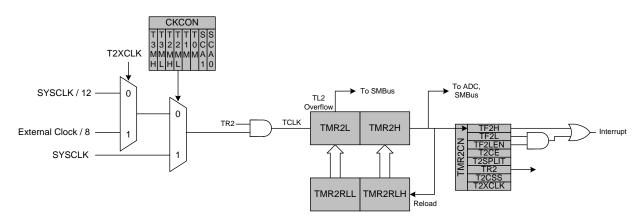


Figure 21.4. Timer 2 16-Bit Mode Block Diagram

22.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

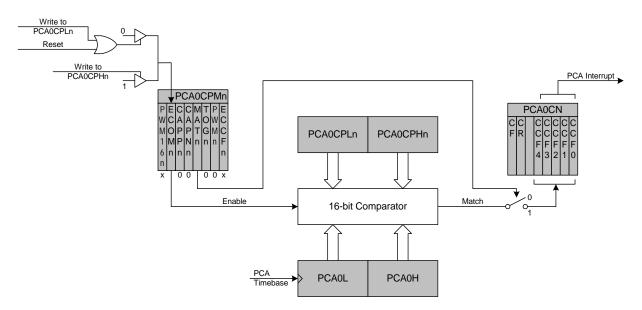


Figure 22.5. PCA Software Timer Mode Diagram

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com