E·XFL

Welcome to E-XFL.COM

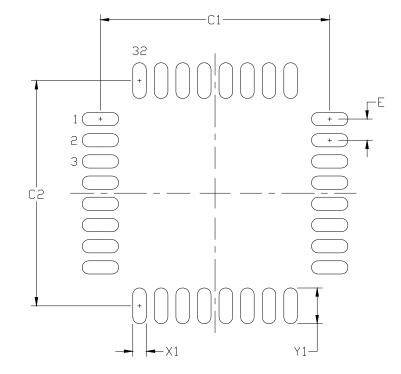
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f34c-gqr


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	System Overview	17
	Absolute Maximum Ratings	
3.		
4.	Pinout and Package Definitions	
 5.	10-Bit ADC (ADC0, C8051F340/1/2/3/4/5/6/7/A/B Only)	
0.	5.1. Analog Multiplexer	
	5.2. Temperature Sensor	
	5.3. Modes of Operation	
	5.3.1. Starting a Conversion	
	5.3.2. Tracking Modes	
	5.3.3. Settling Time Requirements	
	5.4. Programmable Window Detector	
	5.4.1. Window Detector In Single-Ended Mode	
	5.4.2. Window Detector In Differential Mode	
6	Voltage Reference (C8051F340/1/2/3/4/5/6/7/A/B Only)	
о. 7.	Comparators	57
	Comparators Voltage Regulator (REG0)	59
0.		
	8.1. Regulator Mode Selection8.2. VBUS Detection	
•		
9.	CIP-51 Microcontroller	
	9.1. Instruction Set	
	9.1.1. Instruction and CPU Timing	
	9.1.2. MOVX Instruction and Program Memory	
	9.2. Memory Organization.	
	9.2.1. Program Memory	
	9.2.2. Data Memory	
	9.2.3. General Purpose Registers	
	9.2.4. Bit Addressable Locations	
	9.2.5. Stack	
	9.2.6. Special Function Registers	
	9.2.7. Register Descriptions	
	9.3. Interrupt Handler	
	9.3.1. MCU Interrupt Sources and Vectors	
	9.3.2. External Interrupts	
	9.3.3. Interrupt Priorities	
	9.3.4. Interrupt Latency	
	9.3.5. Interrupt Register Descriptions	
	9.4. Power Management Modes	
	9.4.1. Idle Mode	
	9.4.2. Stop Mode	
	Prefetch Engine	
11.	Reset Sources1	
	11.1.Power-On Reset 1	01

Figure 4.6. LQFP-32 Recommended PCB Land Pattern

Table 4.5. LQFP-32 PCB Land Pattern Dimensions

			Dimensions
	Dimension	Min	Max
	C1	8.40	8.50
	C2	8.40	8.50
	E	0.80	BSC
	X1	0.40	0.50
	Y1	1.25	1.35
Notes	:		
Gener	ral:		
1.	All dimensions shown are	in millimeters (mm) unless	otherwise noted.
2.	This Land Pattern Design	is based on the IPC-7351	guidelines.
Solde	r Mask Design:		
3.	All metal pads are to be no	on-solder mask defined (N	SMD). Clearance between
	the solder mask and the m	ietal pad is to be 60 µm mi	nimum, all the way around
	the pad.		
Stenc	il Design:		
4.	A stainless steel, laser-cut	and electro-polished sten	cil with trapezoidal walls
	should be used to assure	•	•
5.	The stencil thickness shou		
	The ratio of stencil apertur	· · ·	pe 1:1 for all pads.
	Assembly:	•	
	A No-Clean, Type-3 solde	r paste is recommended.	
	The recommended card re	•	EC/IPC J-STD-020
51	specification for Small Boo		
		· · · · · · · · · · · · · · · · · · ·	

SFR Definition 5.2. AMX0N: AMUX0 Negative Channel Select

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Value	
-	-	-	AMX0N4	AMX0N3	AMX0N2	AMX0N1	AMX0N0	00000000	
Bit7	Bit7 Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address	
								0xBA	
Bito7 5.	UNUSED. R	ood - 000	h: Mrito – de	n't coro					
	AMX0N4-0:		,						
Dito+ 0.	Note that wh					DC0 operate	es in Sinale	-ended	
	mode. For al								
			5 1	,	•				
	AMX0	N4-0		Negative I			gative Inpu	t	
			(32-	pin Packag	je)		Package)		
	000			P1.0			2.0		
	000			P1.1			2.1		
	000			P1.2			2.2		
	000			P1.3			2.3		
	001			P1.4			2.5		
	001			P1.5			2.6		
	001			P1.6			3.0		
	001			P1.7			3.1		
	010			P2.0			3.4		
	010			P2.1			3.5		
	010			P2.2			3.7		
	010			P2.3			4.0		
	011			P2.4			4.3		
	011			P2.5			4.4		
	011			P2.6			4.5		
	011			P2.7			4.6		
		10000 10001		P3.0			RESERVED		
	100			P0.0			P0.3		
	100			P0.1			P0.4 P1.1		
	100			P0.4 P0.5			1.1		
	10101 -			ESERVED			T.Z ERVED		
	111		K	VREF			REF		
	111			ngle-Ended	Mode) (or SND (Single		de)	
						שוווטו סווועופ	-டப்பு பிலும்		

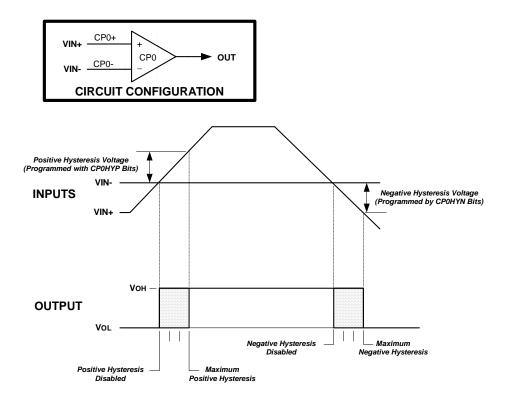


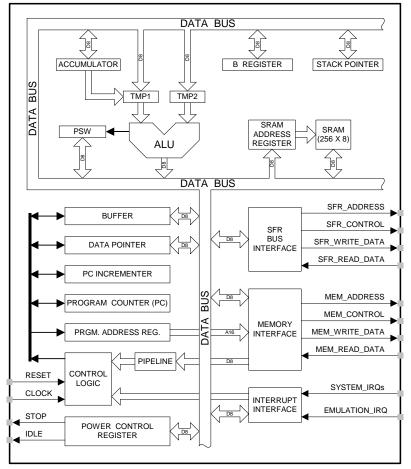
Figure 7.2. Comparator Hysteresis Plot

Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTnCN (shown in SFR Definition 7.1 and SFR Definition 7.4). The amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits. As shown in Figure 7.2, various levels of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see **Section "9.3. Interrupt Handler" on page 88**.) The CPnFIF flag is set to '1' upon a Comparator falling-edge, and the CPnRIF flag is set to '1' upon the Comparator rising-edge. Once set, these bits remain set until cleared by software. The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Comparator is enabled by setting the CPnEN bit to '1', and is disabled by clearing this bit to '0'.

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP1EN	CP1OUT	CP1RIF	CP1FIF	CP1HYP1	CP1HYP0	CP1HYN1	CP1HYN0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x9A
Bit7:	CP1EN: Cor	nparator1 E	nable Bit.					
	0: Comparat	or1 Disable	d.					
	1: Comparat	or1 Enable	d.					
Bit6:	CP1OUT: Co	•		ite Flag.				
	0: Voltage or							
	1: Voltage or							
Bit5:	CP1RIF: Co							
	0: No Compa				since this fla	ag was last	cleared.	
	1: Comparat	-	-					
Bit4:	CP1FIF: Cor							
	0: No Compa				since this fl	ag was las	t cleared.	
	1: Comparat					-		
Bits3-2:	CP1HYP1-0			e Hysteresi	s Control Bit	S.		
	00: Positive							
	01: Positive 10: Positive							
	10. Positive I							
Bits1–0:	CP1HYN1–C			vo Hystoros	is Control B	ite		
Dits I=0.	00: Negative			ive riysteres				
	01: Negative							
	10: Negative							
	11: Negative	•						
		,	_0					
[

SFR Definition 7.4. CPT1CN: Comparator1 Control


9. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51[™] instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are four 16-bit counter/timers (see description in **Section 21**), an enhanced full-duplex UART (see description in **Section 18**), an Enhanced SPI (see description in **Section 20**), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (**Section 9.2.6**), and 25 Port I/O (see description in **Section 15**). The CIP-51 also includes on-chip debug hardware (see description in **Section 23**), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 9.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 0 to 48 MHz Clock Frequency
- 256 Bytes of Internal RAM
- 25 Port I/O

- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

Figure 9.1. CIP-51 Block Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
PT3	PCP1	PCP0	PPCA0	PADC0	PWADC0	PUSB0	PSMB0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address 0xF6		
Bit7:	PT3: Timer 3									
	This bit sets				ot.					
	0: Timer 3 in	•								
	1: Timer 3 in	•	• •							
Bit6:	PCP1: Com	· ·	, i		ontrol.					
	This bit sets									
	0: CP1 inter									
	1: CP1 inter		• • •							
Bit5:	PCP0: Com	· ·	, i		ontrol.					
	This bit sets	the priority	of the CP0	interrupt.						
	0: CP0 interr	upt set to I	ow priority l	evel.						
	1: CP0 inter	upt set to h	high priority	level.						
Bit4:	PPCA0: Pro	grammable	Counter A	ray (PCA0) Interrupt Pr	riority Contr	ol.			
	This bit sets the priority of the PCA0 interrupt.									
	0: PCA0 inte	errupt set to	low priority	level.						
	1: PCA0 inte	errupt set to	high priorit	y level.						
Bit3:	PADC0 ADC	0 Convers	ion Comple	te Interrupt	Priority Con	trol.				
	This bit sets	the priority	of the ADC	0 Conversi	on Complete	e interrupt.				
	0: ADC0 Co	nversion Co	omplete inte	errupt set to	low priority	level.				
	1: ADC0 Co	nversion Co	omplete inte	errupt set to	high priority	/ level.				
Bit2:	PWADC0: A	DC0 Windo	ow Compara	ator Interru	ot Priority Co	ontrol.				
	This bit sets	the priority	of the ADC	0 Window	interrupt.					
	0: ADC0 Wir	ndow interr	upt set to lo	w priority le	evel.					
	1: ADC0 Wir	ndow interr	upt set to hi	gh priority l	evel.					
Bit1:	PUSB0: USE	30 Interrup	t Priority Co	ntrol.						
	This bit sets	the priority	of the USB	0 interrupt.						
	0: USB0 inte	errupt set to	low priority	level.						
	1: USB0 inte	•								
Bit0:	PSMB0: SM	•	• •		ntrol.					
	This bit sets									
	0: SMB0 inte									
	1: SMB0 inte									

SFR Definition 9.10. EIP1: Extended Interrupt Priority 1

9.4. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the peripherals and clocks active. In Stop mode, the CPU is halted, all interrupts, are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. Figure 1.15 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished through system clock and individual peripheral management. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off the oscillators lowers power consumption considerably; however a reset is required to restart the MCU.

The internal oscillator can be placed in Suspend mode (see **Section "14. Oscillators" on page 131**). In Suspend mode, the internal oscillator is stopped until a non-idle USB event is detected, or the VBUS input signal matches the polarity selected by the VBPOL bit in register REGOCN (SFR Definition 8.1).

9.4.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to **Section "11.6. PCA Watchdog Timer Reset" on page 103** for more information on the use and configuration of the WDT.

9.4.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout of 100 µsec.

10. Prefetch Engine

The 48 MHz versions of the C8051F34x family of devices incorporate a 2-byte prefetch engine. Because the access time of the FLASH memory is 40 ns, and the minimum instruction time is roughly 20 ns, the prefetch engine is necessary for full-speed code execution. Instructions are read from FLASH memory two bytes at a time by the prefetch engine, and given to the CIP-51 processor core to execute. When running linear code (code without any jumps or branches), the prefetch engine allows instructions to be executed at full speed. When a code branch occurs, the processor may be stalled for up to two clock cycles while the next set of code bytes is retrieved from FLASH memory. The FLRT bit (FLSCL.4) determines how many clock cycles are used to read each set of two code bytes from FLASH. When operating from a system clock of 25 MHz or less, the FLRT bit should be set to '0' so that the prefetch engine takes only one clock cycle for each read. When operating with a system clock of greater than 25 MHz (up to 48 MHz), the FLRT bit should be set to '1', so that each prefetch code read lasts for two clock cycles.

R	R	R/W	R	R	R	R	R/W	Reset Value
		PFEN					FLBWE	00100000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	3
							SFR Address	0xAF
Bits 7–6:	Unused. Rea	ad = 00b; W	/rite = Don'i	t Care				
Bit 5:	PFEN: Prefe	tch Enable						
	This bit enab	oles the pre	fetch engine	e.				
	0: Prefetch e	engine is dis	abled.					
	1: Prefetch e	engine is en	abled.					
Bits 4–1:	Unused. Rea	ad = 0000b:	Write = Do	on't Care				
Bit 0:	FLBWE: FLA							
	This bit allow	vs block wri	tes to FLAS	SH memory	from softwa	are.		
	0: Each byte							
	1: FLASH by					any.		
	1.1 2/(0110)		ser in group	05 01 100.				

SFR Definition 10.1. PFE0CN: Prefetch Engine Control

SFR Definition 14.4	. OSCXCN: External	Oscillator Control
---------------------	--------------------	---------------------------

		R/W	R/W	R	R/W	R/W	R/W	Reset Value
XTLVLD	XOSCM	D2 XOSCMD1	XOSCMD0	-	XFCN2	XFCN1	XFCN0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
								0xB1
Bit7:		Crystal Occillat	or Valid Ela					
DILT.		Crystal Oscillat Ily when XOSCI		ıy.				
		l Oscillator is ur		t vet stable.				
		l Oscillator is ru						
Bits6–4:	•	02–0: External (-					
	00x: Exte	ernal Oscillator o	circuit off.					
	010: Exte	ernal CMOS Clo	ck Mode.					
		ernal CMOS Clo		th divide by	v 2 stage.			
		Oscillator Mode						
	•	acitor Oscillator						
		stal Oscillator M						
D:+2.		tal Oscillator M			age.			
Bit3: Bits2–0:		ED. Read = 0, ^v D: External Osci			ol Rite			
DIISZ-U.		See table belov	•	iency Contr	OI DIIS.			
		Crystal (XOSC	,		CMD = 10x)		CMD = 10	<)
	000	f ≤ 32 kł		f ≤ 25			tor = 0.87	
	001	32 kHz < f ≤			f ≤ 50 kHz		ctor = 2.6	
	010	84 kHz < f ≤ 2			≤ 100 kHz		ctor = 7.7	
	011	225 kHz < f ≤			f ≤ 200 kHz		ctor = 22	
	100	590 kHz < f ≤			f ≤ 400 kHz		ctor = 65	
	101	1.5 MHz < f ≤			f ≤ 800 kHz		tor = 180	
	110	4 MHz < f ≤ 1			f ≤ 1.6 MHz		ctor = 664	
	111	10 MHz < f ≤	30 MHz	1.6 MHz <	$f \le 3.2 \text{ MHz}$	K Fac	tor = 1590	
CRYSTA	L MODE (Circuit from Fig	ure 14.1, O	ption 1; XO	SCMD = 11	x)		
	•	KFCN value to r		•		,		
RC MOD	•	from Figure 14.	•		,			
		KFCN value to r	•	ency range	:			
		10 ³) / (R x C), w						
		ency of clock in						
	•	citor value in pF						
	K = Pull-	up resistor value	e in κΩ					
	(Circuit fr	om Figure 14.1,	Ontion 2. V	(<u>)</u>	10v)			
		K Factor (KF) fo						
		C x V _{DD}), where		aon neque	ity uconeu.			
	-	ency of clock in						
	•	citor value the >		ηpF				
		ower Supply on						

Table 14.1. Oscillator Electrical Characteristics

V_{DD} = 2.7 to 3.6 V; -40 to +85 °C unless otherwise specified

Parameter	Conditions	Min	Тур	Max	Units
Internal High-Frequency Os	cillator (Using Factory-Calibrated	Settings	5)		
Oscillator Frequency	IFCN = 11b	11.82	12.00	12.18	MHz
Oscillator Supply Current (from V _{DD})	24 °C, V _{DD} = 3.0 V, OSCICN.7 = 1	_	685	—	μA
Internal Low-Frequency Os	cillator (Using Factory-Calibrated S	Settings)		
Oscillator Frequency	OSCLD = 11b	72	80	99	kHz
Oscillator Supply Current (from V _{DD})	24 °C, V _{DD} = 3.0 V, OSCLCN.7 = 1	_	7.0	_	μA
External USB Clock Require	ements				
	Full Speed Mode	47.88	48	48.12	N 41 I
USB Clock Frequency*	Low Speed Mode	5.91	6	6.09	MHz

*Note: Applies only to external oscillator sources.

16. Universal Serial Bus Controller (USB0)

C8051F34x devices include a complete Full/Low Speed USB function for USB peripheral implementations*. The USB Function Controller (USB0) consists of a Serial Interface Engine (SIE), USB Transceiver (including matching resistors and configurable pull-up resistors), 1k FIFO block, and clock recovery mechanism for crystal-less operation. No external components are required. The USB Function Controller and Transceiver is Universal Serial Bus Specification 2.0 compliant.

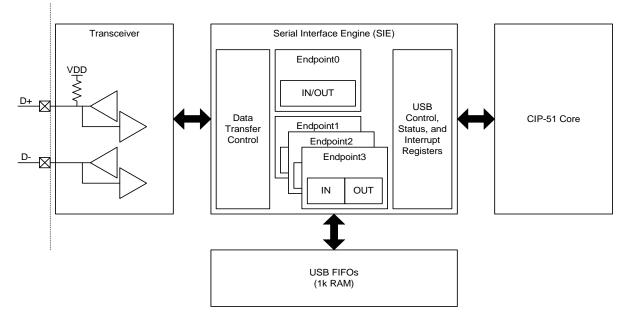


Figure 16.1. USB0 Block Diagram

Important Note: This document assumes a comprehensive understanding of the USB Protocol. Terms and abbreviations used in this document are defined in the USB Specification. We encourage you to review the latest version of the USB Specification before proceeding.

*Note: The C8051F34x cannot be used as a USB Host device.

16.5.2. FIFO Double Buffering

FIFO slots for Endpoints1-3 can be configured for double-buffered mode. In this mode, the maximum packet size is halved and the FIFO may contain two packets at a time. This mode is available for Endpoints1-3. When an endpoint is configured for Split Mode, double buffering may be enabled for the IN Endpoint and/or the OUT endpoint. When Split Mode is not enabled, double-buffering may be enabled for the entire endpoint FIFO. See Table 16.3 for a list of maximum packet sizes for each FIFO configuration.

Endpoint Number	Split Mode Enabled?	Maximum IN Packet Size (Dou- ble Buffer Disabled / Enabled)	Maximum OUT Packet Size (Double Buffer Disabled / Enabled)
0	N/A	64	4
1	N	128	/ 64
1	Y	64 / 32	64 / 32
2	N	256 /	128
2	Y	128 / 64	128 / 64
3	N	512 /	256
3	Y	256 / 128	256 / 128

Table 16.3. FIFO Configurations

16.5.1. FIFO Access

Each endpoint FIFO is accessed through a corresponding FIFOn register. A read of an endpoint FIFOn register unloads one byte from the FIFO; a write of an endpoint FIFOn register loads one byte into the endpoint FIFO. When an endpoint FIFO is configured for Split Mode, a read of the endpoint FIFOn register unloads one byte from the OUT endpoint FIFO; a write of the endpoint FIFOn register loads one byte into the IN endpoint FIFO.

USB Register Definition 16.6. FIFOn: USB0 Endpoint FIFO Access

		FIFODATA 00							
USB Addresses 0x20–0x23 provide access to the 4 pairs of endpoint FIFOs: IN/OUT Endpoint FIFO USB Address 0 0x20 1 0x21 2 0x22	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Addres
IN/OUT Endpoint FIFOUSB Address00x2010x2120x22									0x20 - 0x
0 0x20 1 0x21 2 0x22		USB Addres	sses 0x20–0x2	23 provid	e access to	the 4 pairs	of endpoint	t FIFOs:	
0 0x20 1 0x21 2 0x22			desint EIEO		Adroco				
1 0x21 2 0x22				036					
2 0x22		U							
		1			0x21				
3 0x23			2		0x22				
		-	3		0x23				
					-				
		Reading from	m the FIFO ac	idress ur	noads data	from the O	JI FIFO for	the corre	sponding

USB Register Definition 16.16. CMIE: USB0 Common Interrupt Enable

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 U Bits7-4: Unused. Read = 0000b; Write = don't care. Bit3: SOFE: Start of Frame Interrupt Enable 0: SOF interrupt disabled. 1: SOF interrupt disabled. 1: SOF interrupt enabled. Bit2: RSTINTE: Reset Interrupt Enable 0: Reset interrupt disabled. 1: Reset interrupt disabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume Interrupt enabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt disabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt disabled.	Reset Value							
 Bits7-4: Unused. Read = 0000b; Write = don't care. Bit3: SOFE: Start of Frame Interrupt Enable 0: SOF interrupt disabled. 1: SOF interrupt enabled. Bit2: RSTINTE: Reset Interrupt Enable 0: Reset interrupt disabled. 1: Reset interrupt enabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt disabled. 1: Resume interrupt disabled. 	00000110							
Bit3: SOFE: Start of Frame Interrupt Enable 0: SOF interrupt disabled. 1: SOF interrupt enabled. Bit2: RSTINTE: Reset Interrupt Enable 0: Reset interrupt disabled. 1: Reset interrupt enabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt disabled. 1: Resume interrupt disabled. 1: Resume interrupt disabled. 1: Resume interrupt disabled.	USB Addres							
0: SOF interrupt disabled. 1: SOF interrupt enabled. Bit2: RSTINTE: Reset Interrupt Enable 0: Reset interrupt disabled. 1: Reset interrupt enabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt disabled. 1: Resume interrupt enabled.	0x0B							
0: SOF interrupt disabled. 1: SOF interrupt enabled. Bit2: RSTINTE: Reset Interrupt Enable 0: Reset interrupt disabled. 1: Reset interrupt enabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt disabled. 1: Resume interrupt enabled.								
1: SOF interrupt enabled. Bit2: RSTINTE: Reset Interrupt Enable 0: Reset interrupt disabled. 1: Reset interrupt enabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt enabled.								
Bit2: RSTINTE: Reset Interrupt Enable 0: Reset interrupt disabled. 1: Reset interrupt enabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt enabled.								
0: Reset interrupt disabled. 1: Reset interrupt enabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt enabled.								
1: Reset interrupt enabled. Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt enabled.								
Bit1: RSUINTE: Resume Interrupt Enable 0: Resume interrupt disabled. 1: Resume interrupt enabled.	· · · · · · · · · · · · · · · · · · ·							
0: Resume interrupt disabled. 1: Resume interrupt enabled.	•							
1: Resume interrupt enabled.	RSUINTE: Resume Interrupt Enable							
•	0: Resume interrupt disabled.							
Bit0: SUSINTE: Suspend Interrupt Enable	1: Resume interrupt enabled.							
	SUSINTE: Suspend Interrupt Enable							
0: Suspend interrupt disabled.								
1: Suspend interrupt enabled.								

16.9. The Serial Interface Engine

The Serial Interface Engine (SIE) performs all low level USB protocol tasks, interrupting the processor when data has successfully been transmitted or received. When receiving data, the SIE will interrupt the processor when a complete data packet has been received; appropriate handshaking signals are automatically generated by the SIE. When transmitting data, the SIE will interrupt the processor when a complete data packet has been received; appropriate handshaking signals are automatically generated by the SIE. When transmitting data, the SIE will interrupt the processor when a complete data packet has been transmitted and the appropriate handshake signal has been received.

The SIE will not interrupt the processor when corrupted/erroneous packets are received.

16.10. Endpoint0

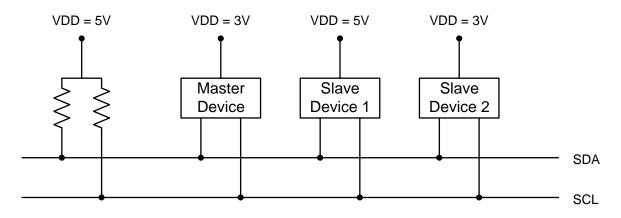
Endpoint0 is managed through the USB register E0CSR (USB Register Definition 16.17). The INDEX register must be loaded with 0x00 to access the E0CSR register.

An Endpoint0 interrupt is generated when:

- 1. A data packet (OUT or SETUP) has been received and loaded into the Endpoint0 FIFO. The OPRDY bit (E0CSR.0) is set to '1' by hardware.
- 2. An IN data packet has successfully been unloaded from the Endpoint0 FIFO and transmitted to the host; INPRDY is reset to '0' by hardware.
- 3. An IN transaction is completed (this interrupt generated during the status stage of the transaction).
- 4. Hardware sets the STSTL bit (E0CSR.2) after a control transaction ended due to a protocol violation.
- 5. Hardware sets the SUEND bit (E0CSR.4) because a control transfer ended before firmware sets the DATAEND bit (E0CSR.3).

USB Register Definition 16.19. EINCSRL: USB0 IN Endpoint Control Low Byte

R	W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
-	CLRDT	STSTL	SDSTL	FLUSH	UNDRUN	FIFONE	INPRDY	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0x11	
Bit7:	Unused. Read = 0; Write = don't care.								
Bit6:	CLRDT: Clear Data Toggle.								
	Write: Software should write '1' to this bit to reset the IN Endpoint data toggle to '0'.								
	Read: This bit always reads '0'.								
Bit5:	STSTL: Sen			07411					
	Hardware sets this bit to '1' when a STALL handshake signal is transmitted. The FIFO is							FIFOIS	
Bit4:		flushed, and the INPRDY bit cleared. This flag must be cleared by software. SDSTL: Send Stall.							
DIL4.	Software sho		' to this bit	to generate	a STALL ha	andshake ii	n response	to an IN	
		token. Software should write '0' to this bit to terminate the STALL signal. This bit has no effect in ISO mode.							
Bit3:	FLUSH: FIF	O Flush.							
	Writing a '1'								
	The FIFO po								
	ets, software			SH for each	packet. Har	dware rese	ets the FLU	SH bit to '0'	
Bit2:	when the FIF								
DILZ.				the IN End	point mode.				
		The function of this bit depends on the IN Endpoint mode: Isochronous: Set when a zero-length packet is sent after an IN token is received while bit							
	INPRDY = '0'. Interrupt/Bulk: This bit is not used in these modes and will always read a '0'. This bit must be cleared by software.								
Bit1:	FIFONE: FIF								
	0: The IN En				noolioto				
Bit0:	1. The IN En INPRDY: In I			one or more	e packets.				
DILU.				after Ioadin	a a data nac	rket into the	N Endooi	nt EIEO	
	Software should write '1' to this bit after loading a data packet into the IN Endpoint FIFO. Hardware clears INPRDY due to any of the following: 1. A data packet is transmitted. 2. Double buffering is enabled (DBIEN = '1') and there is an open FIFO packet slot.								
	3. If the endp			Mode (ISO	= '1') and IS	SOUD = '1'	, INPRDY v	vill read '0'	
	until the next								
	An interrupt			jenerated v	when hardw	are clears	INPRDY a	s a result	
	of a packet being transmitted.								


17.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The I2C-Bus and How to Use It (including specifications), Philips Semiconductor.
- 2. The I2C-Bus Specification -- Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.

17.2. SMBus Configuration

Figure 17.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 V and 5.0 V; different devices on the bus may operate at different voltage levels. The bi-directional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

17.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the Master in a system; any device who transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7-1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see Figure 17.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

19.1. Baud Rate Generator

The UART1 baud rate is generated by a dedicated 16-bit timer which runs from the controller's core clock (SYSCLK), and has prescaler options of 1, 4, 12, or 48. The timer and prescaler options combined allow for a wide selection of baud rates over many SYSCLK frequencies.

The baud rate generator is configured using three registers: SBCON1, SBRLH1, and SBRLL1. The UART1 Baud Rate Generator Control Register (SBCON1, SFR Definition 19.4) enables or disables the baud rate generator, and selects the prescaler value for the timer. The baud rate generator must be enabled for UART1 to function. Registers SBRLH1 and SBRLL1 contain a 16-bit reload value for the dedicated 16-bit timer. The internal timer counts up from the reload value on every clock tick. On timer overflows (0xFFFF to 0x0000), the timer is reloaded. For reliable UART operation, it is recommended that the UART baud rate is not configured for baud rates faster than SYSCLK/16. The baud rate for UART1 is defined in Equation 19.1.

Baud Rate = $\frac{\text{SYSCLK}}{(65536 - (\text{SBRLH1:SBRLL1}))} \times \frac{1}{2} \times \frac{1}{\text{Prescaler}}$

Equation 19.1. UART1 Baud Rate

A quick reference for typical baud rates and system clock frequencies is given in Table 19.1.

	Target Baud Rate (bps)	Actual Baud Rate (bps)	Baud Rate Error	Oscillator Divide Factor	SB1PS[1:0] (Prescaler Bits)	Reload Value in SBRLH1:SBRLL1
	230400	230769	0.16%	52	11	0xFFE6
N	115200	115385	0.16%	104	11	0xFFCC
MHz	57600	57692	0.16%	208	11	0xFF98
12	28800	28846	0.16%	416	11	0xFF30
Ш	14400	14388	0.08%	834	11	0xFE5F
SCLK	9600	9600	0.0%	1250	11	0xFD8F
SC	2400	2400	0.0%	5000	11	0xF63C
S	1200	1200	0.0%	10000	11	0xEC78
	230400	230769	0.16%	104	11	0xFFCC
부	115200	115385	0.16%	208	11	0xFF98
MHz	57600	57692	0.16%	416	11	0xFF30
24	28800	28777	0.08%	834	11	0xFE5F
	14400	14406	0.04%	1666	11	0xFCBF
SYSCLK	9600	9600	0.0%	2500	11	0xFB1E
S S	2400	2400	0.0%	10000	11	0xEC78
S	1200	1200	0.0%	20000	11	0xD8F0
	230400	230769	0.16%	208	11	0xFF98
부	115200	115385	0.16%	416	11	0xFF30
MHz	57600	57554	0.08%	834	11	0xFE5F
48	28800	28812	0.04%	1666	11	0xFCBF
	14400	14397	0.02%	3334	11	0xF97D
SYSCLK	9600	9600	0.0%	5000	11	0xF63C
,SC	2400	2400	0.0%	20000	11	0xD8F0
ŝ	1200	1200	0.0%	40000	11	0xB1E0

Table 19.1. Baud Rate Generator Settings for Standard Baud Rates

20.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

R	R/W	R/W	R/W	R	R	R	R	Reset Value		
SPIBSY		CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	SFR Address: 0xA1									
D:+ 7.		I Duov (roo	ط مماريا							
Bit 7:	SPIBSY: SPI Busy (read only).									
Bit 6:	This bit is set to logic 1 when a SPI transfer is in progress (Master or slave Mode). MSTEN: Master Mode Enable.									
Dit 0.	0: Disable m			n slave mod	e					
	1: Enable ma				0.					
Bit 5:	CKPHA: SPI		•	• • • • • • • • • • •						
	This bit controls the SPI0 clock phase.									
	0: Data cente									
	1: Data cente	ered on sec	cond edge o	of SCK perio	od.*					
Bit 4:	CKPOL: SPI0 Clock Polarity.									
	This bit conti	rols the SP	0 clock pol	arity.						
	0: SCK line low in idle state.									
	1: SCK line h	•								
Bit 3:	SLVSEL: Slave Selected Flag (read only).									
	This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected slave. It									
	is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the instantaneous value at the NSS pin, but rather a de-glitched version of the pin input.									
Bit 2:						ed version (or the pin in	put.		
DIL Z.	NSSIN: NSS Instantaneous Pin Input (read only).									
	This bit mimics the instantaneous value that is present on the NSS port pin at the time that the register is read. This input is not de-glitched.									
Bit 1:	SRMT: Shift					nlv)				
DR T.							t of the shift	register.		
	This bit will be set to logic 1 when all data has been transferred in/out of the shift register, and there is no new information available to read from the transmit buffer or write to the									
	receive buffer. It returns to logic 0 when a data byte is transferred to the shift register from									
	the transmit		-		,		0			
	NOTE: SRM	T = 1 when	in Master I	Mode.						
Bit 0:	RXBMT: Red	ceive Buffer	Empty (Va	lid in Slave	Mode, read	only).				
	This bit will be set to logic 1 when the receive buffer has been read and contains no new									
	information. If there is new information available in the receive buffer that has not been read,									
	this bit will return to logic 0.									
	NOTE: RXB	MT = 1 whe	en in Maste	r Mode.						
	ive mode, data			he center of data bit to						

SFR Definition 20.1. SPI0CFG: SPI0 Configuration

Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one SYSCLK before the end of each data bit, to provide maximum settling time for the slave device. See Table 20.1 for timing parameters.

21.3.3. USB Start-of-Frame Capture

When T3CE = '1', Timer 3 will operate in one of two special capture modes. The capture event can be selected between a USB Start-of-Frame (SOF) capture, and a Low-Frequency Oscillator (LFO) Rising Edge capture, using the T3CSS bit. The USB SOF capture mode can be used to calibrate the system clock or external oscillator against the known USB host SOF clock. The LFO rising-edge capture mode can be used to calibrate the internal Low-Frequency Oscillator against the internal High-Frequency Oscillator or an external clock source. When T3SPLIT = '0', Timer 3 counts up and overflows from 0xFFFF to 0x0000. Each time a capture event is received, the contents of the Timer 3 registers (TMR3H:TMR3L) are latched into the Timer 3 Reload registers (TMR3RLH:TMR3RLL). A Timer 3 interrupt is generated if enabled.

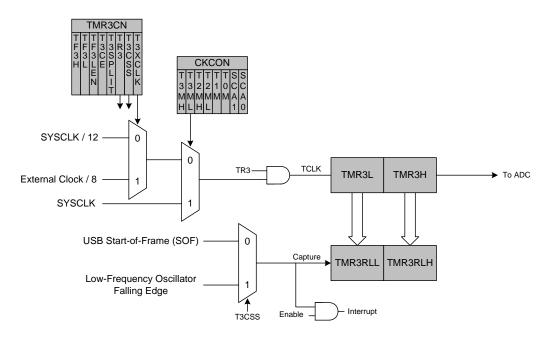


Figure 21.10. Timer 3 Capture Mode (T3SPLIT = '0')

22.2.3. High Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn) Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

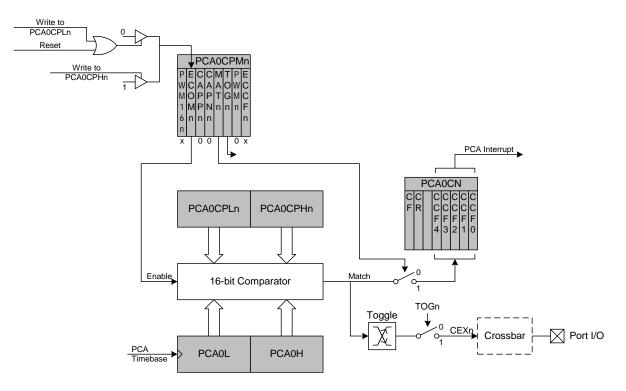


Figure 22.6. PCA High Speed Output Mode Diagram

