

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-16-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.0 PIC17C4X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC17C4X Product Selection System section at the end of this data sheet. When placing orders, please use the "PIC17C4X Product Identification System" at the back of this data sheet to specify the correct part number.

For the PIC17C4X family of devices, there are four device "types" as indicated in the device number:

- C, as in PIC17C42. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC17LC42. These devices have EPROM type memory, operate over an extended voltage range, and reduced frequency range.
- 3. **CR**, as in PIC17**CR**42. These devices have ROM type memory and operate over the standard voltage range.
- 4. LCR, as in PIC17LCR42. These devices have ROM type memory, operate over an extended voltage range, and reduced frequency range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PRO MATETM programmer supports programming of the PIC17C4X. Third party programmers also are available; refer to the *Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

ROM devices do not allow serialization information in the program memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

5.9 Context Saving During Interrupts

During an interrupt, only the returned PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt; e.g. WREG, ALUSTA and the BSR registers. This requires implementation in software. Example 5-1 shows the saving and restoring of information for an interrupt service routine. The PUSH and POP routines could either be in each interrupt service routine or could be subroutines that were called. Depending on the application, other registers may also need to be saved, such as PCLATH.

EXAMPLE 5-1: SAVING STATUS AND WREG IN RAM

;										
; The ac	ldresses	that are used to stor	re	the CPUSTA and WREG values						
; must be in the data memory address range of 18h - 1Fh. Up to										
; 8 locations can be saved and restored using										
; the MG	; the MOVFP instruction. This instruction neither affects the status									
; bits,	nor cori	rupts the WREG registe	er.							
;										
;										
PUSH	MOVFP	WREG, TEMP_W	;	Save WREG						
	MOVFP	ALUSTA, TEMP_STATUS	;	Save ALUSTA						
	MOVFP	BSR, TEMP_BSR	;	Save BSR						
ISR	:		;	This is the interrupt service routine						
	:									
POP	MOVFP	TEMP_W, WREG	;	Restore WREG						
	MOVFP	TEMP_STATUS, ALUSTA	; Restore ALUSTA							
	MOVFP	TEMP_BSR, BSR	;	Restore BSR						
	RETFIE		;	Return from Interrupts enabled						

12.2.2 DUAL CAPTURE REGISTER MODE

This mode is selected by setting CA1/PR3. A block diagram is shown in Figure 12-8. In this mode, TMR3 runs without a period register and increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt Flag (TMR3IF) is set on this roll over. The TMR3IF bit must be cleared in software.

Registers PR3H/CA1H and PR3L/CA1L make a 16-bit capture register (Capture1). It captures events on pin RB0/CAP1. Capture mode is configured by the CA1ED1 and CA1ED0 bits. Capture1 Interrupt Flag bit (CA1IF) is set on the capture event. The corresponding interrupt mask bit is CA1IE. The Capture1 Overflow Status bit is CA1OVF.

The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the TMR3 value to the capture register which protects the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The operation of the Capture1 feature is identical to Capture2 (as described in Section 12.2.1).

TABLE 12-5: REGISTERS ASSOCIATED WITH CAPTURE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
12h, Bank 2	TMR3L	TMR3 reg	ister; low by	/te						xxxx xxxx	uuuu uuuu
13h, Bank 2	TMR3H	TMR3 reg	ister; high b	oyte						xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	RBIF TMR3IF TMR2IF TMR1IF CA2IF CA1IF TXIF RCIF					0000 0010	0000 0010		
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	—	—	11 11	11 qq
16h, Bank 2	PR3L/CA1L	Timer3 pe	riod registe	r, low byte/ca	apture1 regis	ter, low byte	e			xxxx xxxx	uuuu uuuu
17h, Bank 2	PR3H/CA1H	Timer3 pe	riod registe	r, high byte/c	apture1 regi	ster, high b	yte			xxxx xxxx	uuuu uuuu
14h, Bank 3	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h, Bank 3	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by Capture.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

FIGURE 12-10: TMR1, TMR2, AND TMR3 OPERATION IN TIMER MODE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 re	gister		xxxx xxxx	uuuu uuuu					
11h, Bank 2	TMR2	Timer2 re	gister							xxxx xxxx	uuuu uuuu
12h, Bank 2	TMR3L	TMR3 reg	ister; low by	⁄te						xxxx xxxx	uuuu uuuu
13h, Bank 2	TMR3H	TMR3 reg	ister; high b	yte						xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	-	STKAV	GLINTD	TO	PD	—	—	11 11	11 qq
14h, Bank 2	PR1	Timer1 pe	riod registe	r		•				xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 pe	riod registe	r						xxxx xxxx	uuuu uuuu
16h, Bank 2	PR3L/CA1L	Timer3 pe	riod/capture	e1 register; l	ow byte					xxxx xxxx	uuuu uuuu
17h, Bank 2	PR3H/CA1H	Timer3 pe	riod/capture	e1 register; l	high byte					xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	_	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	—	—	—	—	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
14h, Bank 3	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h, Bank 3	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by TMR1, TMR2 or TMR3.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

FIGURE 13-5: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 13-6: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 13-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	Serial port	t transmit r	egister	•					xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate generator register							xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

TABLE 13-8: R	REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION
---------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	xxxx xxxx	uuuu uuuu						

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

15.0 INSTRUCTION SET SUMMARY

The PIC17CXX instruction set consists of 58 instructions. Each instruction is a 16-bit word divided into an OPCODE and one or more operands. The opcode specifies the instruction type, while the operand(s) further specify the operation of the instruction. The PIC17CXX instruction set can be grouped into three types:

- byte-oriented
- bit-oriented
- literal and control operations.

These formats are shown in Figure 15-1.

Table 15-1 shows the field descriptions for the opcodes. These descriptions are useful for understanding the opcodes in Table 15-2 and in each specific instruction descriptions.

byte-oriented instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' = '0', the result is placed in the WREG register. If 'd' = '1', the result is placed in the file register specified by the instruction.

bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

literal and control operations, 'k' represents an 8- or 11-bit constant or literal value.

The instruction set is highly orthogonal and is grouped into:

- · byte-oriented operations
- bit-oriented operations
- · literal and control operations

All instructions are executed within one single instruction cycle, unless:

- a conditional test is true
- the program counter is changed as a result of an instruction
- a table read or a table write instruction is executed (in this case, the execution takes two instruction cycles with the second cycle executed as a NOP)

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 25 MHz, the normal instruction execution time is 160 ns. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 320 ns.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (00h to FFh)
р	Peripheral register file address (00h to 1Fh)
i	Table pointer control i = '0' (do not change) i = '1' (increment after instruction execution)
t	Table byte select $t = '0'$ (perform operation on lower byte) t = '1' (perform operation on upper byte literal field, constant data)
WREG	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= '0' or '1') The assembler will generate code with $x = '0'$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select 0 = store result in WREG 1 = store result in file register f Default is d = '1'
u	Unused, encoded as '0'
S	Destination select 0 = store result in file register f and in the WREG 1 = store result in file register f Default is s = '1'
label	Label name
C,DC, Z,OV	ALU status bits Carry, Digit Carry, Zero, Overflow
GLINTD	Global Interrupt Disable bit (CPUSTA<4>)
TBLPTR	Table Pointer (16-bit)
TBLAT	Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL)
TBLATL	Table Latch low byte
TBLATH	Table Latch high byte
TOS	Top of Stack
PC	Program Counter
BSR	Bank Select Register
WDT	Watchdog Timer Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the WREG register or the speci- fied register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
E	In the set of
italics	User defined term (font is courier)

15.2 <u>Q Cycle Activity</u>

Each instruction cycle (Tcy) is comprised of four Q cycles (Q1-Q4). The Q cycles provide the timing/designation for the Decode, Read, Execute, Write etc., of each instruction cycle. The following diagram shows the relationship of the Q cycles to the instruction cycle.

The 4 Q cycles that make up an instruction cycle (Tcy) can be generalized as:

- Q1: Instruction Decode Cycle or forced NOP
- Q2: Instruction Read Cycle or NOP
- Q3: Instruction Execute
- Q4: Instruction Write Cycle or NOP

Each instruction will show the detailed Q cycle operation for the instruction.

FIGURE 15-2: Q CYCLE ACTIVITY

PIC17C4X

BTF	SS	Bit Test,	skip if Se	t						
Synt	ax:	[<i>label</i>] E	BTFSS f,b)						
Ope	rands:	0 ≤ f ≤ 12 0 ≤ b < 7	7							
Ope	ration:	skip if (f<	skip if (f) = 1							
State	us Affected:	None	None							
Enco	oding:	1001	0bbb	ffff	ffff					
Des	cription:	If bit 'b' in i instruction	If bit 'b' in register 'f' is 1 then the next instruction is skipped.							
	If bit 'b' is 1, then the next instruction fetched during the current instruction ex- cution, is discarded and an NOP is exe- cuted instead, making this a two-cycle instruction.									
Wor	ds:	1	1							
Cycl	es:	1(2)								
QC	vcle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read register 'f'	Execu	ute	NOP					
lf sk	ip:									
	Q1	Q2	Q3		Q4					
	Forced NOP	NOP	Execu	ute	NOP					
<u>Exa</u>	<u>mple</u> :	HERE FALSE TRUE	BTFSS : :	FLAG,1						
	Before Instrue PC	ction = ad	ddress (HE	RE)						
After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)										

BTG	i	Bit Tog	ggle	e f						
Synt	ax:	[label] B	TG f,b						
Ope	rands:	0 ≤ f ≤ 0 ≤ b <	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b < 7 \end{array}$							
Ope	ration:	([)	\rightarrow ((f)						
State	us Affected:	None								
Enco	oding:	0011		1bbb	f	Eff	ffff			
Desc	cription:	Bit 'b' in inverted	Bit 'b' in data memory location 'f' is inverted.							
Words:		1								
Cycl	es:	1	1							
QC	cle Activity:									
	Q1	Q2		Q3		Q4				
	Decode	Read register	'f'	Execut	e	W regi	/rite ster 'f'			
<u>Exar</u>	<u>mple</u> :	BTG	F	PORTC,	4					
	Before Instru PORTC	iction: = 011	1 0)101 [0x7 5	5]					
	After Instruct PORTC	tion: = 011	0 0	0101 [0x6 5	5]					

PIC17C4X

CALL		Subroutin	ne Call		CLI	RF	Clear f				
Syntax:		[label] C	CALL k		Syr	itax:	[<i>label</i>] CL	.RF f,s			
Operan	ds:	$0 \le k \le 409$	95		Ope	erands:	$0 \le f \le 25$	5			
Operati	on:	PC+ 1→ T k<12:8> –	$OS, k \rightarrow PC \rightarrow PCLATH<4$	<12:0>, :0>;	Ope	eration:	$00h \rightarrow f,$ $00h \rightarrow de$	$\begin{array}{l} 00h \rightarrow f, s \in [0,1] \\ 00h \rightarrow dest \end{array}$			
		PC<15:13	$> \rightarrow PCLATH$	1<7:5>	Sta	tus Affected:	None				
Status A	Affected:	None		i	Enc	oding:	0010	100s	ffff	ffff	
Encodir	ng:	111k	kkkk kkł	k kkkk	Des	scription:	Clears the	contents	of the sp	ecified rea-	
Descrip	otion:	Subroutine return addre the stack. TI PC bits<12: bits of the F	call within 8K ess (PC+1) is he 13-bit value :0>. Then the u PC are copied	page. First, pushed onto is loaded into upper-eight into PCLATH.		·	ister(s). s = 0: Data memory location 'f' and WREG are cleared. s = 1: Data memory location 'f' is cleared.				
	Call is a two-cycle instruction. See LCALL for calls outside 8K memory space.			Wo	rds:	1					
				Сус	eles:	1					
Words:		1			QC	Cycle Activity:					
Cycles:		2				Q1	Q2	Q	3	Q4	
Q Cvcle	e Activitv:					Decode	Read	Exec	ute	Write	
,	Q1	Q2	Q3	Q4			register i		i a	and other	
[Decode	Read literal 'k'<7:0>	Execute	NOP					:	specified register	
Fo	rced NOP	NOP	Execute	NOP	Exa	imple:	CLRF	FLAC	G_REG		
Exampl Bot	<u>e</u> : fore Instru	HERE	CALL THE	RE		Before Instru FLAG_R	uction EG = 0	x5A			
Bei	PC =	Address (HEF	RE)			After Instruction					
Afte	er Instruct	tion Address (THI	·			FLAG_R	EG = 02	x00			

TOS = Address(HERE + 1)

PIC17C4X

SUBWF	Subtract	WREG fr	om f	
Syntax:	[label]	SUBWF f	,d	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	5		
Operation:	(f) – (W)	\rightarrow (dest)		
Status Affected:	OV, C, D	C, Z		
Encoding:	0000	010d d	Efff	ffff
Description:	Subtract V compleme result is st result is st	VREG from ent method). ored in WRI ored back in	registe If 'd' is EG. If 'd n regist	r 'f' (2's 0 the d' is 1 the er 'f'.
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read	Execute	V	Vrite to stination
		PECI 1	u	Sunation
<u>Example 1</u> .	SUBWE	REGI, I		
REG1 WREG C After Instruction	= 3 = 2 = ? on			
REG1 WREG C Z	= 1 = 2 = 1 ; = 0	result is pos	sitive	
Example 2:				
Before Instruct REG1 WREG C After Instruction	otion = 2 = 2 = ? on			
REG1 WREG C Z	= 0 = 2 = 1 ; = 1	result is zer	0	
Example 3:				
Before Instruc REG1 WREG C	ction = 1 = 2 = ?			
After Instruction REG1 WREG C Z	on = FF = 2 = 0 ; = 0	result is neç	gative	

SUE	BWFB	Sub Bor	tract row	WREG	from	n f v	/ith
Synt	tax:	[lab	<i>el</i>] S	SUBWFI	B f,o	ł	
Ope	rands:	0 ≤ f	⁵ ≤ 25	5			
One	ration.	(f)	(\\\/) -	$-\overline{C} \rightarrow ($	lost)		
Stat		(i) – OV		- C → (i - 7	Jesij		
Enc	odina:	Οv,		,∠	f f f	- f	fff
Des	cription:	Subt (borr ment store store	ract W ow) fr t meth ed in W ed bac	/REG an om regis iod). If 'd' /REG. If k in regis	d the ter 'f' is 0 t 'd' is ' ster 'f'	carr (2's he r 1 the	y flag comple- esult is e result is
Wor	ds:	1					
Cycl	les:	1					
QC	ycle Activity:						
	Q1	Q2	<u>}</u>	Q3			Q4
	Decode	Rea registe	d er 'f'	Execu	ite	V de	Vrite to stination
Exa	<u>mple 1</u> :	SUB	VFB	REG1,	1		
	Before Instru	iction					
	REG1 WREG C	= 0x = 0x = 1	:19 :0D	(0001 (0000	100 110	1) 1)	
	After Instruct	tion					
	REG1 WREG C Z	= 0x $= 0x$ $= 1$ $= 0$:0C :0D	(0000 (0000 ; resul t	101 110 t is po	1) 1) sitiv	е
Exa	mple2:	SUBWE	FB R	EG1,0			
	Before Instru	iction					
	REG1 WREG C	= 0x $= 0x$ $= 0$:1B :1A	(0001 (0001	101 101	1) 0)	
	After Instruct REG1 WREG	tion = 0x = 0x	:1B :00	(0001	101	1)	
	C Z	= 1 = 1		; result	t is ze	ro	
Exa	mple3:	SUBWE	FB R	EG1,1			
	Before Instru REG1 WREG C	iction = 0x = 0x = 1	:03 :0E	(0000 (0000	001: 110	1) 1)	
	After Instruct	tion					
	REG1 WREG C Z	= 0x $= 0x$ $= 0$ $= 0$:F5 :0E	(1111 (0000 ; resul t	010 110 t is ne	0) [2 1) egati	?'s comp] ve

TABLE 17-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC17C42-16	PIC17C42-25
RC	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 6 mA max.	IDD: 6 mA max.
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 4 MHz max.	Freq: 4 MHz max.
XT	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 24 mA max.	IDD: 38 mA max.
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 16 MHz max.	Freq: 25 MHz max.
EC	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 24 mA max.	IDD: 38 mA max.
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 16 MHz max.	Freq: 25 MHz max.
LF	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 150 μA max. at 32 kHz (WDT enabled)	IDD: 150 μA max. at 32 kHz (WDT enabled)
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 2 MHz max.	Freq: 2 MHz max.

17.3 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created using one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т				
F	Frequency	Т	Time	
Lowerc	case symbols (pp) and their meanings:			
рр				
ad	Address/Data	ost	Oscillator Start-up Timer	
al	ALE	pwrt	Power-up Timer	
сс	Capture1 and Capture2	rb	PORTB	
ck	CLKOUT or clock	rd	RD	
dt	Data in	rw	RD or WR	
in	INT pin	tO	ТОСКІ	
io	I/O port	t123	TCLK12 and TCLK3	
mc	MCLR	wdt	Watchdog Timer	
oe	ŌĒ	wr	WR	
os	OSC1			
Upperc	case symbols and their meanings:			
S				
D	Driven	L	Low	
E	Edge	P	Period	
F	Fall	R	Rise	
н	High	V	Valid	
	Invalid (Hi-impedance)	Z	Hi-impedance	

18.0 PIC17C42 DC AND AC CHARACTERISTICS

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

TABLE 18-1: PIN CAPACITANCE PER PACKAGE TYPE

Din Nama		Typical Capa	acitance (pF)	
	40-pin DIP	44-pin PLCC	44-pin MQFP	44-pin TQFP
All pins, except MCLR, VDD, and Vss	10	10	10	10
MCLR pin	20	20	20	20

FIGURE 18-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

FIGURE 18-13: WDT TIMER TIME-OUT PERIOD vs. VDD

FIGURE 18-14: IOH vs. VOH, VDD = 3V

19.1 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial)

	FRISTI	~s	Standard Operating	l Opera g tempe	ating C erature	ondition	is (unless otherwise stated)
						-40°C	\leq TA \leq +85°C for industrial and
						0°C	\leq TA \leq +70°C for commercial
Parameter							
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.5	—	6.0	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	_	—	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	_	_	mV/ms	See section on Power-on Reset for details
D010	IDD	Supply Current	_	3	6	mA	Fosc = 4 MHz (Note 4)
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz
D012			-	11	24 *	mA	Fosc = 16 MHz
D013			-	19	38	mA	Fosc = 25 MHz
D015			-	25	50	mA	Fosc = 33 MHz
D014			-	95	150	μA	Fosc = 32 kHz,
							WDT enabled (EC osc configuration)
D020	IPD	Power-down	_	10	40	μA	VDD = 5.5V, WDT enabled
D021		Current (Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \bullet R)$. For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

FIGURE 19-5: TIMER0 CLOCK TIMINGS

TABLE 19-5: TIMER0 CLOCK REQUIREMENTS

Parameter								
No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
42	Tt0P	T0CKI Period	•	Greater of:	-		ns	N = prescale value
				20 ns or <u>Tcy + 40 §</u>				(1, 2, 4,, 256)
				N				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5TCY + 20 §	—	_	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5Tcy + 20 §	—	_	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N	—	_	ns	N = prescale value (1, 2, 4, 8)
48	TckE2tmrI	Delay from selected External Clock Edge to Timer increment	2Tosc §		6Tosc §		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

PIC16C7X Family of Devices

E.5

				Clock	_	Memory			Peri	pheral	s			Features	
					1										Т
				DOW AV LOS	So l			Talloo	STAL S		Slott		\backslash	01.	
			-0	though t			ANA .		1 2	8.	RES CLAR	\backslash	(SHO)	HULL BOY	
			Touene	AN LA LARD	1	(S)2	ale .		6		uices	»бį	D.	10-00	
		ir unu	NO2	W 10 LOLON	20.	inte Col	HON I		anuos		SUIS C	et or		Soler Thomas a	
	N.	it.	0 33	ALL LIFE	\mathbb{X}	and ser	\$\$ \	2			101	Juj	JA JA	200 M	
PIC16C710	20	512	36	TMR0		I	I	4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP	
PIC16C71	20	ź	36	TMR0				4	4	13	3.0-6.0	Yes	I	18-pin DIP, SOIC	
PIC16C711	20	Ę	89	TMR0				4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP	
PIC16C72	20	2K	128	TMR0, TMR1, TMR2	-	SPI/I ² C	1	5	8	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP	
PIC16C73	20	4 K	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART		5	11	22	3.0-6.0	Yes	I	28-pin SDIP, SOIC	
PIC16C73A ⁽¹⁾	20	4 K	192	TMR0, TMR1, TMR2	7	SPI/I ² C, USART		5	11	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC	
PIC16C74	20	4 7	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	ω	12	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP	
PIC16C74A ⁽¹⁾	20	4 7	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	8	12	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP	
All PI	C16/1	7 Fami	ily devi	ices have Power-	Б	Reset, se	lectable	Matcl	L gobh	Fimer,	selectable	code p	protect	and high I/O current	
capat	bility.	Ľ	- 11 11 -							-		1			
AIL FI Note 1: Pleas	ie cont	act yo	nıly aev ur loca	vices use serial particles office for	ava	gramming ilability of	with cit	ock pin device:	З.	ana a;	ata pin къ				

NOTES: