

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-16e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.1.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (1024Tosc) delay after $\overline{\text{MCLR}}$ is detected high or a wake-up from SLEEP event occurs.

The OST time-out is invoked only for XT and LF oscillator modes on a Power-on Reset or a Wake-up from SLEEP.

The OST counts the oscillator pulses on the OSC1/CLKIN pin. The counter only starts incrementing after the amplitude of the signal reaches the oscillator input thresholds. This delay allows the crystal oscillator or resonator to stabilize before the device exits reset. The length of time-out is a function of the crystal/resonator frequency.

4.1.4 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First the internal POR signal goes high when the POR trip point is reached. If MCLR is high, then both the OST and PWRT timers start. In general the PWRT time-out is longer, except with low frequency crystals/resonators. The total time-out also varies based on oscillator configuration. Table 4-1 shows the times that are associated with the oscillator configuration. Figure 4-2 and Figure 4-3 display these time-out sequences.

If the device voltage is not within electrical specification at the end of a time-out, the $\overline{\text{MCLR}}/\text{VPP}$ pin must be held low until the voltage is within the device specification. The use of an external RC delay is sufficient for many of these applications.

TABLE 4-1:TIME-OUT IN VARIOUSSITUATIONS

Oscillator Configuration	Power-up	Wake up from SLEEP	MCLR Reset
XT, LF	Greater of: 96 ms or 1024Tosc	1024Tosc	—
EC, RC	Greater of: 96 ms or 1024Tosc		—

The time-out sequence begins from the first rising edge of $\overline{\text{MCLR}}$.

Table 4-3 shows the reset conditions for some special registers, while Table 4-4 shows the initialization conditions for all the registers. The shaded registers (in Table 4-4) are for all devices except the PIC17C42. In the PIC17C42, the PRODH and PRODL registers are general purpose RAM.

TABLE 4-2:STATUS BITS AND THEIR
SIGNIFICANCE

TO	PD	Event
1	1	Power-on Reset, MCLR Reset during normal operation, or CLRWDT instruction executed
1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
0	1	WDT Reset during normal operation
0	0	WDT Reset during SLEEP

In Figure 4-2, Figure 4-3 and Figure 4-4, TPWRT > TOST, as would be the case in higher frequency crystals. For lower frequency crystals, (i.e., 32 kHz) TOST would be greater.

TABLE 4-3: RESET CONDITION FOR THE PROGRAM COUNTER AND THE CPUSTA REGISTER

Event		PCH:PCL	CPUSTA	OST Active
Power-on Reset		0000h	11 11	Yes
MCLR Reset during normal ope	ration	0000h	11 11	No
MCLR Reset during SLEEP		0000h	11 10	Yes (2)
WDT Reset during normal operation	ation	0000h	11 01	No
WDT Reset during SLEEP (3)		0000h	11 00	Yes (2)
Interrupt wake-up from SLEEP GLINTD is set		PC + 1	11 10	Yes (2)
	GLINTD is clear	PC + 1 ⁽¹⁾	10 10	Yes (2)

Legend: u = unchanged, x = unknown, - = unimplemented read as '0'.

Note 1: On wake-up, this instruction is executed. The instruction at the appropriate interrupt vector is fetched and then executed.

2: The OST is only active when the Oscillator is configured for XT or LF modes.

3: The Program Counter = 0, that is the device branches to the reset vector. This is different from the mid-range devices.

NOTES:

6.2.2.3 TMR0 STATUS/CONTROL REGISTER (T0STA)

This register contains various control bits. Bit7 (INTEDG) is used to control the edge upon which a signal on the RA0/INT pin will set the RB0/INT interrupt flag. The other bits configure the Timer0 prescaler and clock source. (Figure 11-1).

FIGURE 6-9: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	U - 0	
INTEDG bit7	TOSE	TOCS	PS3	PS2	PS1	PS0	bit0	R = Readable bit W = Writable bit U = Unimplemented, reads as '0' -n = Value at POR reset
bit 7:	INTEDG: RA0/INT Pin Interrupt Edge Select bit This bit selects the edge upon which the interrupt is detected. 1 = Rising edge of RA0/INT pin generates interrupt 0 = Falling edge of RA0/INT pin generates interrupt							
bit 6:		ects the ed S = 0 edge of RA edge of RA	ge upon w 1/T0CKI pi	hich TMRC	nts TMR0 a	and/or gene		CKIF interrupt CKIF interrupt
bit 5:	TOCS : Time This bit sele 1 = Internal 0 = TOCKI	ects the clo instruction	ock source	for Timer0				
bit 4-1:	PS3:PS0: 7 These bits				ner0.			
	PS3:PS0	Pre	scale Valu	е				
	0000 001 0010 010 0100 0101 0110 0111 1xxx		1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256					
bit 0:	Unimplem	ented : Rea	id as '0'					

9.0 I/O PORTS

The PIC17C4X devices have five I/O ports, PORTA through PORTE. PORTB through PORTE have a corresponding Data Direction Register (DDR), which is used to configure the port pins as inputs or outputs. These five ports are made up of 33 I/O pins. Some of these ports pins are multiplexed with alternate functions.

PORTC, PORTD, and PORTE are multiplexed with the system bus. These pins are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, these pins are general purpose I/O.

PORTA and PORTB are multiplexed with the peripheral features of the device. These peripheral features are:

- Timer modules
- Capture module
- PWM module
- USART/SCI module
- External Interrupt pin

When some of these peripheral modules are turned on, the port pin will automatically configure to the alternate function. The modules that do this are:

- PWM module
- USART/SCI module

When a pin is automatically configured as an output by a peripheral module, the pins data direction (DDR) bit is unknown. After disabling the peripheral module, the user should re-initialize the DDR bit to the desired configuration.

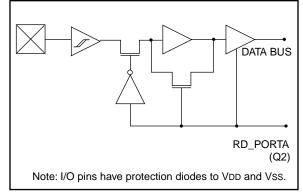
The other peripheral modules (which require an input) must have their data direction bit configured appropriately.

Note: A pin that is a peripheral input, can be configured as an output (DDRx<y> is cleared). The peripheral events will be determined by the action output on the port pin.

9.1 PORTA Register

PORTA is a 6-bit wide latch. PORTA does not have a corresponding Data Direction Register (DDR).

Reading PORTA reads the status of the pins.


The RA1 pin is multiplexed with TMR0 clock input, and RA4 and RA5 are multiplexed with the USART functions. The control of RA4 and RA5 as outputs is automatically configured by the USART module.

9.1.1 USING RA2, RA3 AS OUTPUTS

The RA2 and RA3 pins are open drain outputs. To use the RA2 or the RA3 pin(s) as output(s), simply write to the PORTA register the desired value. A '0' will cause the pin to drive low, while a '1' will cause the pin to float (hi-impedance). An external pull-up resistor should be used to pull the pin high. Writes to PORTA will not affect the other pins.

Note:	When using the RA2 or RA3 pin(s) as out- put(s), read-modify-write instructions (such as BCF, BSF, BTG) on PORTA are not rec- ommended. Such operations read the port pins, do the desired operation, and then write this value to the data latch. This may inadvertently cause the RA2 or RA3 pins to switch from input to output (or vice-versa). It is recommended to use a shadow regis- ter for PORTA. Do the bit operations on this shadow register and then move it to PORTA.

FIGURE 9-1: RA0 AND RA1 BLOCK DIAGRAM

FIGURE 13-2: RCSTA REGISTER (ADDRESS: 13h, BANK 0)

SPEN	N.W0 R/W - 0 R/W - 0 U - 0 R - 0 R - 0 R - x RX9 SREN CREN — FERR OERR RX9D R = Readable bit
bit7	bit 0 W = Writable bit -n = Value at POR reset (x = unknown)
bit 7:	SPEN : Serial Port Enable bit 1 = Configures RA5/RX/DT and RA4/TX/CK pins as serial port pins 0 = Serial port disabled
bit 6:	RX9 : 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception
bit 5:	SREN: Single Receive Enable bit This bit enables the reception of a single byte. After receiving the byte, this bit is automatically cleared. Synchronous mode: 1 = Enable reception 0 = Disable reception Note: This bit is ignored in synchronous slave reception. Asynchronous mode: Don't care
bit 4:	CREN: Continuous Receive Enable bit This bit enables the continuous reception of serial data. <u>Asynchronous mode:</u> 1 = Enable reception 0 = Disables reception <u>Synchronous mode:</u> 1 = Enables continuous reception until CREN is cleared (CREN overrides SREN) 0 = Disables continuous reception
bit 3:	Unimplemented: Read as '0'
bit 2:	FERR: Framing Error bit 1 = Framing error (Updated by reading RCREG) 0 = No framing error
bit 1:	OERR: Overrun Error bit 1 = Overrun (Cleared by clearing CREN) 0 = No overrun error
bit 0:	RX9D : 9th bit of receive data (can be the software calculated parity bit)

13.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. Table 13-1 shows the formula for computation of the baud rate for different USART modes. These only apply when the USART is in synchronous master mode (internal clock) and asynchronous mode.

Given the desired baud rate and Fosc, the nearest integer value between 0 and 255 can be calculated using the formula below. The error in baud rate can then be determined.

TABLE 13-1: BAUD RATE FORMULA

SYNC	Mode	Baud Rate
0	Asynchronous	Fosc/(64(X+1))
1	Synchronous	Fosc/(4(X+1))

X = value in SPBRG (0 to 255)

Example 13-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 SYNC = 0

EXAMPLE 13-1: CALCULATING BAUD RATE ERROR

Desired Baud rate=Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

X = 25.042 = 25

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = <u>(Calculated Baud Rate Desired Baud Rate)</u> Desired Baud Rate
 - = (9615 9600) / 9600
 - = 0.16%

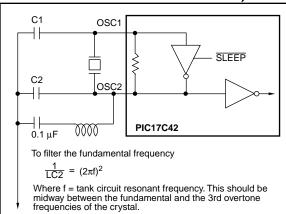

Writing a new value to the SPBRG, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 13-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register									xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used by the Baud Rate Generator. $Note 1: Other (non power-up) resets include: external reset through <math>\overline{MCLR}$ and Watchdog Timer Reset.

FIGURE 14-3: CRYSTAL OPERATION, OVERTONE CRYSTALS (XT OSC CONFIGURATION)

TABLE 14-2: CAPACITOR SELECTION FOR CERAMIC RESONATORS

Oscillator Type	Resonator Frequency	Capacitor Range C1 = C2
LF	455 kHz 2.0 MHz	15 - 68 pF 10 - 33 pF
ХТ	4.0 MHz 8.0 MHz 16.0 MHz	22 - 68 pF 33 - 100 pF 33 - 100 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used:

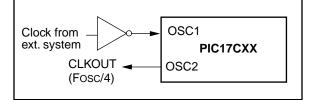
455 kHz	Panasonic EFO-A455K04B	± 0.3%			
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%			
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%			
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%			
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%			
Resona	Resonators used did not have built-in capacitors.				

TABLE 14-3:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

Osc Type	Freq	C1	C2
LF	32 kHz ⁽¹⁾	100-150 pF	100-150 pF
	1 MHz	10-33 pF	10-33 pF
	2 MHz	10-33 pF	10-33 pF
XT	2 MHz	47-100 pF	47-100 pF
	4 MHz	15-68 pF	15-68 pF
	8 MHz ⁽²⁾	15-47 pF	15-47 pF
	16 MHz	TBD	TBD
	25 MHz	15-47 pF	15-47 pF
	32 MHz ⁽³⁾	₀ (3)	₍₃₎

Higher capacitance increases the stability of the oscillator but also increases the start-up time and the oscillator current. These values are for design guidance only. Rs may be required in XT mode to avoid overdriving the crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values for external components.

- Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.
 - 2: Rs of 330Ω is required for a capacitor combination of 15/15 pF.
 - 3: Only the capacitance of the board was present.


Crystals Used:

32.768 kHz	Epson C-001R32.768K-A	± 20 PPM
1.0 MHz	ECS-10-13-1	\pm 50 PPM
2.0 MHz	ECS-20-20-1	\pm 50 PPM
4.0 MHz	ECS-40-20-1	± 50 PPM
8.0 MHz	ECS ECS-80-S-4	± 50 PPM
	ECS-80-18-1	
16.0 MHz	ECS-160-20-1	TBD
25 MHz	CTS CTS25M	\pm 50 PPM
32 MHz	CRYSTEK HF-2	\pm 50 PPM

14.2.3 EXTERNAL CLOCK OSCILLATOR

In the EC oscillator mode, the OSC1 input can be driven by CMOS drivers. In this mode, the OSC1/CLKIN pin is hi-impedance and the OSC2/CLK-OUT pin is the CLKOUT output (4 Tosc).

FIGURE 14-4: EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION)

Mnemonic,		Description		cles 16-bit Opcode				Status	Notes
Operands				MSb			LSb	Affected	
TABLWT	t,i,f	Table Write	2	1010	11ti	ffff	ffff	None	5
TLRD	t,f	Table Latch Read	1	1010	00tx	ffff	ffff	None	
TLWT	t,f	Table Latch Write	1	1010	01tx	ffff	ffff	None	
TSTFSZ	f	Test f, skip if 0	1 (2)	0011	0011	ffff	ffff	None	6,8
XORWF	f,d	Exclusive OR WREG with f	1	0000	110d	ffff	ffff	Z	
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS	1						
BCF	f,b	Bit Clear f	1	1000	1bbb	ffff	ffff	None	
BSF	f,b	Bit Set f	1	1000	0bbb	ffff	ffff	None	
BTFSC	f,b	Bit test, skip if clear	1 (2)	1001	1bbb	ffff	ffff	None	6,8
BTFSS	f,b	Bit test, skip if set	1 (2)	1001	0bbb	ffff	ffff	None	6,8
BTG	f,b	Bit Toggle f	1	0011	1bbb	ffff	ffff	None	
LITERAL AN	ID CO	NTROL OPERATIONS							
ADDLW	k	ADD literal to WREG	1	1011	0001	kkkk	kkkk	OV,C,DC,Z	
ANDLW	k	AND literal with WREG	1	1011	0101	kkkk	kkkk	Z	
CALL	k	Subroutine Call	2	111k	kkkk	kkkk	kkkk	None	7
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO,PD	
GOTO	k	Unconditional Branch	2	110k	kkkk	kkkk	kkkk	None	7
IORLW	k	Inclusive OR literal with WREG	1	1011	0011	kkkk	kkkk	Z	
LCALL	k	Long Call	2	1011	0111	kkkk	kkkk	None	4,7
MOVLB	k	Move literal to low nibble in BSR	1	1011	1000	uuuu	kkkk	None	
MOVLR	k	Move literal to high nibble in BSR	1	1011	101x	kkkk	uuuu	None	9
MOVLW	k	Move literal to WREG	1	1011	0000	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	1011	1100	kkkk	kkkk	None	9
RETFIE	_	Return from interrupt (and enable interrupts)	2	0000	0000	0000	0101	GLINTD	7
RETLW	k	Return literal to WREG	2	1011	0110	kkkk	kkkk	None	7
RETURN	_	Return from subroutine	2	0000	0000	0000	0010	None	7
SLEEP	_	Enter SLEEP Mode	1	0000	0000	0000	0011	TO, PD	
SUBLW	k	Subtract WREG from literal	1	1011	0010	kkkk	kkkk	OV,C,DC,Z	
XORLW	k	Exclusive OR literal with WREG	1	1011	0100	kkkk	kkkk	Z	

TABLE 15-2: PIC17CXX INSTRUCTION SET (Cont.'d)

Legend: Refer to Table 15-1 for opcode field descriptions.

Note 1: 2's Complement method.

- 2: Unsigned arithmetic.
- 3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.
- 4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL)
- Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.
- 6: Two-cycle instruction when condition is true, else single cycle instruction.
- 7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
- 8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead an NOP is executed.
- 9: These instructions are not available on the PIC17C42.

ADDLW	ADD Literal to WREG				
Syntax:	[label] A	DLW	k		
Operands:	$0 \le k \le 25$	55			
Operation:	(WREG) -	+ k \rightarrow (V	VREG)		
Status Affected:	OV, C, DC	C, Z			
Encoding:	1011	0001	kkkk	kkkk	
Description:	The contents of WREG are added to the 8-bit literal 'k' and the result is placed in WREG.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	3	Q4	
Decode	Read literal 'k'	Execu		Vrite to WREG	
Example:	ADDLW	0x15			
Before Instruction WREG = 0x10					

ADDWF	ADD WRE	EG to f				
Syntax:	[<i>label</i>] A[DDWF 1	f,d			
Operands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$				
Operation:	(WREG) +	- (f) \rightarrow (de	est)			
Status Affected:	OV, C, DC	, Z				
Encoding:	0000	111d	ffff	ffff		
Description:	Add WREG result is sto result is sto	red in WRE	EG. If 'd'	is 1 the		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Execute	· ·	/rite to stination		
Example:	ADDWF	REG, 0				
Before Instru WREG REG	iction = 0x17 = 0xC2					
After Instruct WREG REG	tion = 0xD9 = 0xC2					

After Instruction WREG = 0x25

CPFSEQ	Compare skip if f =	f with WREC WREG	Э,	CPF	SGT	Compare skip if f >	f with WRE WREG	G,
Syntax:	[label]	CPFSEQ f		Syn	tax:	[label]	CPFSGT f	
Operands:	$0 \le f \le 255$	5		Ope	rands:	$0 \le f \le 255$	5	
Operation:	(f) – (WRE) skip if (f) = (unsigned o			Ope	ration:	(f) – (WRE0 skip if (f) > (unsigned o		
Status Affected:	None			Stat	us Affected:	None		
Encoding:	0011	0001 fff	f ffff	Enc	oding:	0011	0010 ff:	ff ffff
Description:	Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If 'f' = WREG then the fetched instruc- tion is discarded and an NOP is exe- cuted instead making this a two-cycle instruction.		Des	cription:	location 'f' t by performi If the conte WREG the discarded a instead ma	o the contents ng an unsigne nts of 'f' > the n the fetched in and an NOP is	nstruction is	
Words:	1			14/0 -	de .	tion. 1		
Cycles:	1 (2)			Wor		-		
Q Cycle Activity:				Cyc		1 (2)		
Q1	Q2	Q3	Q4	QC	ycle Activity: Q1	Q2	Q3	Q4
Decode	Read register 'f'	Execute	NOP		Decode	Read	Execute	NOP
If skip:				lf sk	in:	register 'f'		
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
Forced NOP	NOP	Execute	NOP		Forced NOP	NOP	Execute	NOP
<u>Example</u> :	NEQUAL	CPFSEQ REG : :		<u>Exa</u>	mple:	HERE NGREATER GREATER	CPFSGT RE : :	G
Before Instru PC Addre					Before Instru	-	·	
WREG REG	ess = HE = ? = ?	RE			PC WREG		dress (HERE)	
After Instruct If REG PC If REG PC	= W = Ac ≠ W	REG; Idress (EQUAL REG; Idress (NEQUA			After Instruc If REG PC If REG PC	> Wi = Ad ≤ Wi	REG; Idress (GREAT REG; Idress (NGREZ	

DECF	Decreme	nt f		DECFSZ	Decrement f,	skip if 0	
Syntax:	[label]	DECF f,d		Syntax:	[label] DEC	FSZ f,d	
Operands:	0 ≤ f ≤ 258 d ∈ [0,1]	5		Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$		
Operation:	(f) – 1 \rightarrow (dest)		Operation:	(f) – 1 \rightarrow (dest		
Status Affected:	OV, C, DC	;, Z			skip if result =	0	
Encoding:	0000	011d ff	ff ffff	Status Affected	l: None		
Description:	Decrement	register 'f'. If '	d' is 0 the	Encoding:	0001 011	Ld fff	f ffff
		ored in WREG		Description:	The contents of mented. If 'd' is	0 the resu	It is placed in
Words:	1				WREG. If 'd' is 1 back in register		t is placed
Cycles:	1				If the result is 0,		instruction.
Q Cycle Activity:					which is already	/ fetched,	is discarded,
Q1	Q2	Q3	Q4		and an NOP is e ing it a two-cycle		
Decode	Read register 'f'	Execute	Write to destination	Words:	1		
Example:	DECF	CNT, 1		Cycles:	1(2)		
Before Instru		- ,		Q Cycle Activit	y:		
CNT	= 0x01			Q1	Q2	Q3	Q4
Z	= 0			Decode		xecute	Write to
After Instruc	tion				register 'f'		destination
CNT	= 0x00			Example:			CNT, 1
Z	= 1				GC CONTINUE	OTO	LOOP
				Defers inc			
				Before Ins	liucion		

PC	=	Address (HERE)
After Instruct	tion	
CNT	=	CNT - 1
If CNT	=	0;
PC	=	Address (CONTINUE)
If CNT	≠	0;
PC	=	Address (HERE+1)

IORWF	Inclusive		with f	LCALL	Long Cal	I	
Syntax:	[label]	ORWF f,d		Syntax:	[label]	LCALL k	
Operands:	$0 \le f \le 255$	5		Operands:	$0 \le k \le 25$	5	
	d ∈ [0,1]			Operation:	PC + 1 \rightarrow	TOS;	
Operation:	(WREG) .	$OR.\left(f ight) ightarrow\left(de ight)$	est)		$k \rightarrow PCL$,	(PCLATH) -	\rightarrow PCH
Status Affected:	Z			Status Affecte	d: None		
Encoding:	0000	100d ff:	ff ffff	Encoding:	1011	0111 kk	kk kkkk
Description:	'd' is 0 the r	R WREG with esult is placed esult is placed	0	Description:	tine call to gram mem First, the re	anywhere with ory space. eturn address	· · ·
Words:	1				•	to the stack. A ress is then lo	
Cycles:	1					ounter. The lo	
Q Cycle Activity:							s embedded in
Q1	Q2	Q3	Q4			om PC high h	er 8-bits of PC olding latch,
Decode	Read register 'f'	Execute	Write to destination		PCLATH.	Ū	0
	0		uestination	Words:	1		
Example:		ESULT, O		Cycles:	2		
Before Instru RESULT				Q Cycle Activi	ty:		
WREG	= 0x13 = 0x91			Q1	Q2	Q3	Q4
After Instruct RESULT				Decode	Read literal 'k'	Execute	Write register PCL
WREG	= 0x13 = 0x93			Forced NC	DP NOP	Execute	NOP
				Example:	MOVPF W	IGH(SUBROU REG, PCLAT OW(SUBROUT	Н

Before Instruction

SUBROUTINE	=	16-bit Address
PC	=	?
After Instruction		

PC = Address (S	UBROUTINE)
-----------------	------------

TABLWT	Table Wr	ite		
Example1:	TABLWT	0, 1,	REG	
Before Instruc	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA356	
MEMORY	(TBLPTR)	=	0xFFFI	F
After Instruction	on (table v	vrite co	mpletio	n)
REG		=	0x53	
TBLATH		=	0x53	
TBLATL		=	0x55	
TBLPTR		=	0xA357	7
MEMORY	(TBLPTR -	1) =	0x5355	5
Example 2:	TABLWT	1, 0,	REG	
Before Instruc	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA356	6
MEMORY	(TBLPTR)	=	0xFFFI	F
After Instruction	on (table v	vrite co	mpletio	n)
REG	,	=	0x53	,
TBLATH		=	0xAA	
TBLATL		=	0x53	
TBLPTR		=	0xA356	6
MEMORY	(TBLPTR)	=	0xAA5	3
	1		г	
Program Memory	15		0	Data Momory
Wiethory				Memory
	(🖳	TBLPTR		

	TBLPTR
· · · · · · · · · · · · · · · · · · ·	
16 bits	TBLAT 8 bits

TLR	D	Table Late	ch Read						
Syntax:		[<i>label</i>] T	LRD t,f						
Operands:		0 ≤ f ≤ 255 t ∈ [0,1]	$0 \le f \le 255$ t $\in [0,1]$						
Ope	ration:	lf t = 0, TBLAT							
		lf t = 1, TBLAT	,						
State	us Affected:	None	None						
Enco	oding:	1010	1010 00tx ffff ffff						
Deso	cription:	(TBLAT) into is unaffecte If t = 1; high	Read data from 16-bit table latch (TBLAT) into file register 'f'. Table Latch is unaffected. If $t = 1$; high byte is read If $t = 0$; low byte is read						
		with TABLR	This instruction is used in conjunction with TABLRD to transfer data from pro- gram memory to data memory.						
Word	ds:	1							
Cycl	es:	1							
QC	cle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read register TBLATH or TBLATL	Execute	Write register 'f'					
<u>Exar</u>	<u>mple</u> :	TLRD t	, RAM						
	Before Instru	iction							
	t RAM	= 0 = ?							
	TBLAT	•							
	After Instruct	tion							
	RAM = 0xAF TBLAT = 0x00AF (TBLATH = 0x00) (TBLATL = 0xAF)								
	Before Instru	iction							
	t RAM	= 1 = ?							
	TBLAT	= ? = 0x00AF	(TBLATH = (TBLATL =	,					
After Instruction									
	RAM TBLAT	= 0x00 = 0x00AF	(TBLATH = (TBLATL =	,					
	Program Memory	15	0	Data Memory					
• - •			. (÷					
	16 bits		BLAT	8 bits					

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

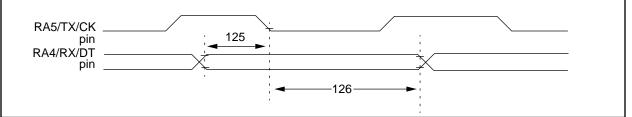
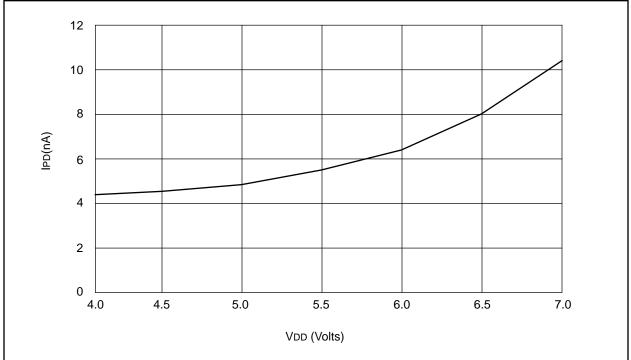


TABLE 17-9: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	_	_	65	ns	
121	TckRF	Clock out rise time and fall time (Master Mode)	_	10	35	ns	
122	TdtRF	Data out rise time and fall time		10	35	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING


TABLE 17-10: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

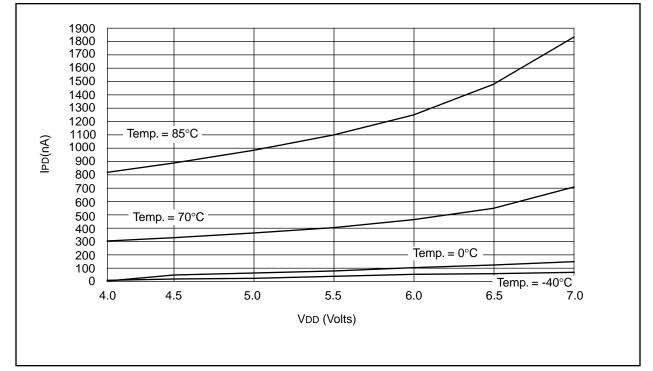
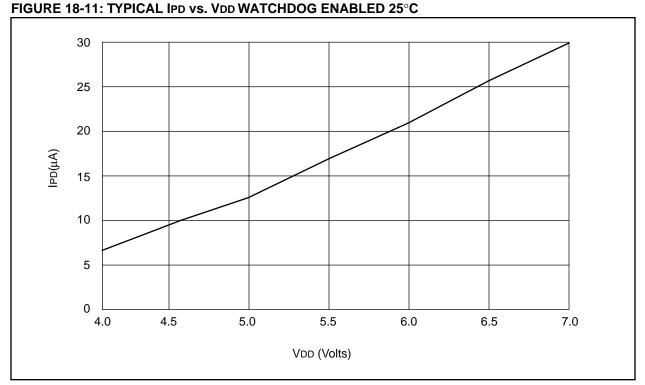



FIGURE 18-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

Applicable Devices 42 R42 42A 43 R43 44

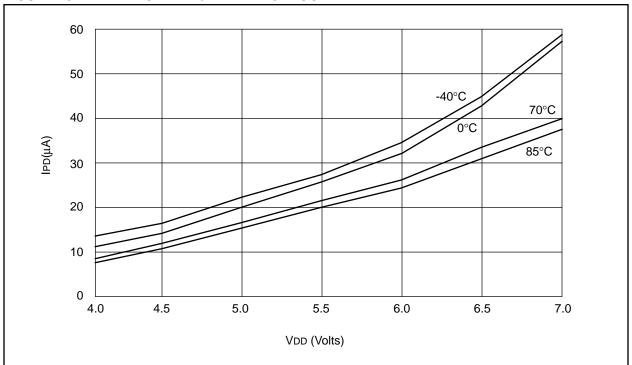


FIGURE 18-12: MAXIMUM IPD vs. VDD WATCHDOG ENABLED

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-13: WDT TIMER TIME-OUT PERIOD vs. VDD

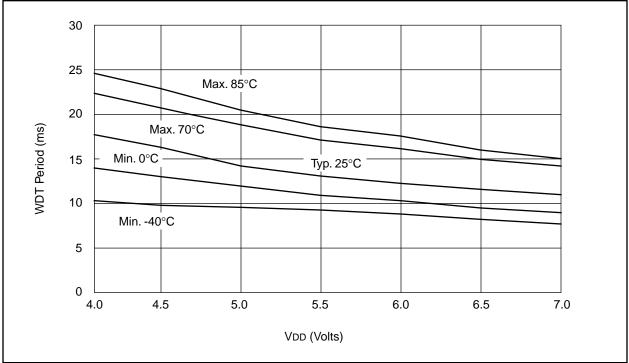
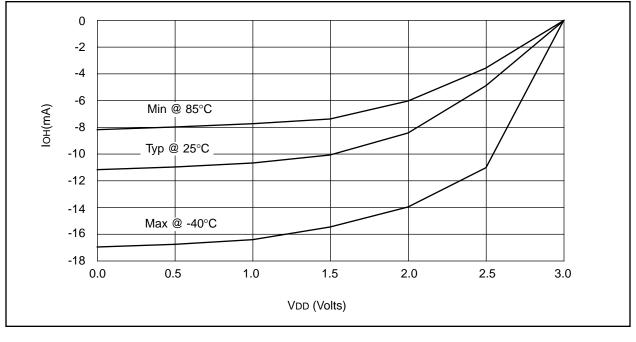
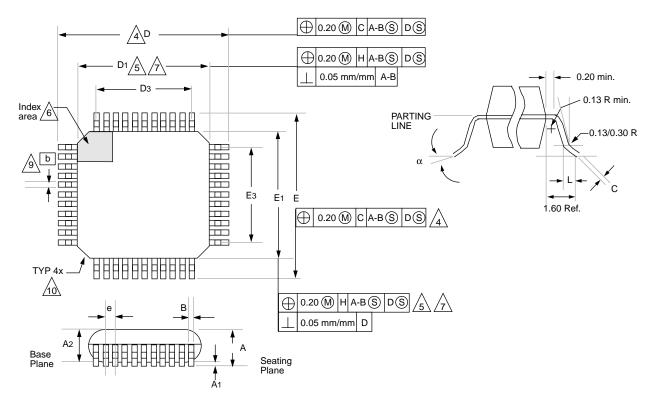




FIGURE 18-14: IOH vs. VOH, VDD = 3V

Package Group: Plastic MQFP							
		Millimeters		Inches			
Symbol	Min	Max	Notes	Min	Мах	Notes	
α	0°	7 °		0°	7 °		
А	2.000	2.350		0.078	0.093		
A1	0.050	0.250		0.002	0.010		
A2	1.950	2.100		0.768	0.083		
b	0.300	0.450	Typical	0.011	0.018	Typical	
С	0.150	0.180		0.006	0.007		
D	12.950	13.450		0.510	0.530		
D1	9.900	10.100		0.390	0.398		
D3	8.000	8.000	Reference	0.315	0.315	Reference	
E	12.950	13.450		0.510	0.530		
E1	9.900	10.100		0.390	0.398		
E3	8.000	8.000	Reference	0.315	0.315	Reference	
е	0.800	0.800		0.031	0.032		
L	0.730	1.030		0.028	0.041		
Ν	44	44		44	44		
CP	0.102	_		0.004	_		

NOTES: