

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

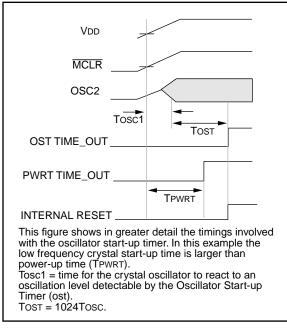
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

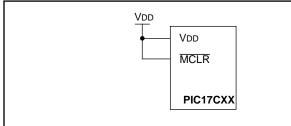
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-16i-l

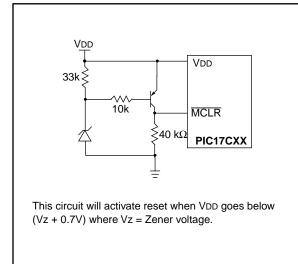
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABLE 3-1:	FINU	UT DES				
Name	DIP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	19	21	37	I	ST	Oscillator input in crystal/resonator or RC oscillator mode. External clock input in external clock mode.
OSC2/CLKOUT	20	22	38	0		Oscillator output. Connects to crystal or resonator in crystal oscillator mode. In RC oscillator or external clock modes OSC2 pin outputs CLKOUT which has one fourth the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP	32	35	7	I/P	ST	Master clear (reset) input/Programming Voltage (VPP) input. This is the active low reset input to the chip.
						PORTA is a bi-directional I/O Port except for RA0 and RA1 which are input only.
RA0/INT	26	28	44	I	ST	RA0/INT can also be selected as an external interrupt input. Interrupt can be configured to be on positive or negative edge.
RA1/T0CKI	25	27	43	I	ST	RA1/T0CKI can also be selected as an external interrupt input, and the interrupt can be configured to be on posi- tive or negative edge. RA1/T0CKI can also be selected to be the clock input to the Timer0 timer/counter.
RA2	24	26	42	I/O	ST	High voltage, high current, open drain input/output port pins.
RA3	23	25	41	I/O	ST	High voltage, high current, open drain input/output port pins.
RA4/RX/DT	22	24	40	I/O	ST	RA4/RX/DT can also be selected as the USART (SCI) Asynchronous Receive or USART (SCI) Synchronous Data.
RA5/TX/CK	21	23	39	I/O	ST	RA5/TX/CK can also be selected as the USART (SCI) Asynchronous Transmit or USART (SCI) Synchronous Clock.
						PORTB is a bi-directional I/O Port with software configurable weak pull-ups.
RB0/CAP1	11	13	29	I/O	ST	RB0/CAP1 can also be the CAP1 input pin.
RB1/CAP2	12	14	30	I/O	ST	RB1/CAP2 can also be the CAP2 input pin.
RB2/PWM1	13	15	31	I/O	ST	RB2/PWM1 can also be the PWM1 output pin.
RB3/PWM2	14	16	32	I/O	ST	RB3/PWM2 can also be the PWM2 output pin.
RB4/TCLK12	15	17	33	I/O	ST	RB4/TCLK12 can also be the external clock input to Timer1 and Timer2.
RB5/TCLK3	16	18	34	I/O	ST	RB5/TCLK3 can also be the external clock input to Timer3.
RB6	17	19	35	I/O	ST	
RB7	18	20	36	I/O	ST	
						PORTC is a bi-directional I/O Port.
RC0/AD0	2	3	19	I/O	TTL	This is also the lower half of the 16-bit wide system bus
RC1/AD1	3	4	20	I/O	TTL	in microprocessor mode or extended microcontroller
RC2/AD2	4	5	21	I/O	TTL	mode. In multiplexed system bus configuration, these pins are address output as well as data input or output.
RC3/AD3	5	6	22	I/O	TTL	
RC4/AD4	6	7	23	I/O	TTL	
RC5/AD5	7	8	24	I/O	TTL	
RC6/AD6	8	9	25	I/O	TTL	
RC7/AD7	9	10	26	I/O	TTL	


TABLE 3-1:PINOUT DESCRIPTIONS

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input.


FIGURE 4-5: OSCILLATOR START-UPTIME

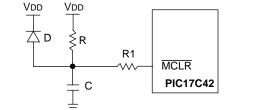

FIGURE 4-6: USING ON-CHIP POR

FIGURE 4-7: BROWN-OUT PROTECTION CIRCUIT 1

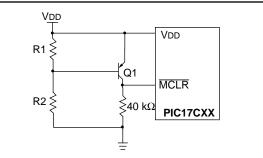


FIGURE 4-8: PIC17C42 EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: An external Power-on Reset circuit is required only if VDD power-up time is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: R < 40 k Ω is recommended to ensure that the voltage drop across R does not exceed 0.2V (max. leakage current spec. on the \overline{MCLR}/VPP pin is 5 μ A). A larger voltage drop will degrade VIH level on the \overline{MCLR}/VPP pin.
 - 3: $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or (Electrical Overstress) EOS.

FIGURE 4-9: BROWN-OUT PROTECTION CIRCUIT 2

This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

6.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC17C4X; program memory and data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into General Purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

6.1 Program Memory Organization

PIC17C4X devices have a 16-bit program counter capable of addressing a 64K x 16 program memory space. The reset vector is at 0000h and the interrupt vectors are at 0008h, 0010h, 0018h, and 0020h (Figure 6-1).

6.1.1 PROGRAM MEMORY OPERATION

The PIC17C4X can operate in one of four possible program memory configurations. The configuration is selected by two configuration bits. The possible modes are:

- Microprocessor
- Microcontroller
- Extended Microcontroller
- Protected Microcontroller

The microcontroller and protected microcontroller modes only allow internal execution. Any access beyond the program memory reads unknown data. The protected microcontroller mode also enables the code protection feature.

The extended microcontroller mode accesses both the internal program memory as well as external program memory. Execution automatically switches between internal and external memory. The 16-bits of address allow a program memory range of 64K-words.

The microprocessor mode only accesses the external program memory. The on-chip program memory is ignored. The 16-bits of address allow a program memory range of 64K-words. Microprocessor mode is the default mode of an unprogrammed device.

The different modes allow different access to the configuration bits, test memory, and boot ROM. Table 6-1 lists which modes can access which areas in memory. Test Memory and Boot Memory are not required for normal operation of the device. Care should be taken to ensure that no unintended branches occur to these areas.

FIGURE 6-1: PROGRAM MEMORY MAP AND STACK

AND STACK					
	PC<15:0>]			
CALL,	RETURN 1 16	1			
RETFI					
	Stack Level 1	1			
	:	1			
	• Stack Level 16	-			
	Stack Level 10]			
T T	Reset Vector] 0000h			
	INT Pin Interrupt Vector	0008h			
	Timer0 Interrupt Vector	0010h			
	T0CKI Pin Interrupt Vector	0018h			
	Peripheral Interrupt Vector	0020h			
		0021h			
		7FFh (PIC17C42,			
<u>></u>		PIC17CR42,			
User Memory Space (1)		PIC17C42A)			
ace		FFFh			
Spe		(PIC17C43			
n ∣		PIC17CR43)			
		1FFFh (PIC17C44)			
		(FIC17C44)			
		l			
<u>+</u>	FOSC0	FDFFh			
> [FOSC0	FE00h FE01h			
Jor	WDTPS0	FE02h			
len	WDTPS1	FE03h			
≥ e	PM0	FE04h			
pac	Reserved	FE05h			
S IB	PM1	FE06h			
figu	Reserved	FE07h			
Configuration Memory Space	Reserved	FE08h			
		FE0Eh			
📕	PM2 ⁽²⁾	FE0Fh			
	Test EPROM	FE10h FF5Fh			
		FF60h			
	Boot ROM				
		FFFFh			
Note 1: U	ser memory space may be inter	nal, external, or			
	oth. The memory configuration of				
	rocessor mode.	,			
	his location is reserved on the F	PIC17C42.			
1					

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
1				
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	Bank 0 PORTA	Bank 1 ⁽¹⁾ DDRC	Bank 2 ⁽¹⁾ TMR1	Bank 3 ⁽¹⁾ PW1DCL
10h 11h				
	PORTA	DDRC	TMR1	PW1DCL
11h	PORTA DDRB	DDRC PORTC	TMR1 TMR2	PW1DCL PW2DCL
11h 12h	PORTA DDRB PORTB	DDRC PORTC DDRD	TMR1 TMR2 TMR3L	PW1DCL PW2DCL PW1DCH
11h 12h 13h	PORTA DDRB PORTB RCSTA	DDRC PORTC DDRD PORTD	TMR1 TMR2 TMR3L TMR3H	PW1DCL PW2DCL PW1DCH PW2DCH
11h 12h 13h 14h	PORTA DDRB PORTB RCSTA RCREG	DDRC PORTC DDRD PORTD DDRE	TMR1 TMR2 TMR3L TMR3H PR1	PW1DCL PW2DCL PW1DCH PW2DCH CA2L
11h 12h 13h 14h 15h	PORTA DDRB PORTB RCSTA RCREG TXSTA	DDRC PORTC DDRD PORTD DDRE PORTE	TMR1 TMR2 TMR3L TMR3H PR1 PR2	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H
11h 12h 13h 14h 15h 16h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1

FIGURE 6-5: PIC17C42 REGISTER FILE MAP

Note 1: SFR file locations 10h - 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.

FIGURE 6-6: PIC17CR42/42A/43/R43/44 REGISTER FILE MAP

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
11h	DDRB	PORTC	TMR2	PW2DCL
12h	PORTB	DDRD	TMR3L	PW1DCH
13h	RCSTA	PORTD	TMR3H	PW2DCH
14h	RCREG	DDRE	PR1	CA2L
15h	TXSTA	PORTE	PR2	CA2H
16h	TXREG	PIR	PR3L/CA1L	TCON1
17h	SPBRG	PIE	PR3H/CA1H	TCON2
18h	PRODL			
19h	PRODH			
1Ah				
1Fh			1	
20h	General	General		
	Purpose	Purpose		
	RAM ⁽²⁾	RAM (2)		
FFh				

- Note 1: SFR file locations 10h 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.
 - 2: General Purpose Registers (GPR) locations 20h - FFh and 120h - 1FFh are banked. All other GPRs ignore the Bank Select Register (BSR) bits.

7.1 <u>Table Writes to Internal Memory</u>

A table write operation to internal memory causes a long write operation. The long write is necessary for programming the internal EPROM. Instruction execution is halted while in a long write cycle. The long write will be terminated by any enabled interrupt. To ensure that the EPROM location has been well programmed, a minimum programming time is required (see specification #D114). Having only one interrupt enabled to terminate the long write ensures that no unintentional interrupts will prematurely terminate the long write.

The sequence of events for programming an internal program memory location should be:

- 1. Disable all interrupt sources, except the source to terminate EPROM program write.
- 2. Raise MCLR/VPP pin to the programming voltage.
- 3. Clear the WDT.
- 4. Do the table write. The interrupt will terminate the long write.
- 5. Verify the memory location (table read).
 - **Note:** Programming requirements must be met. See timing specification in electrical specifications for the desired device. Violating these specifications (including temperature) may result in EPROM locations that are not fully programmed and may lose their state over time.

7.1.1 TERMINATING LONG WRITES

An interrupt source or reset are the only events that terminate a long write operation. Terminating the long write from an interrupt source requires that the interrupt enable and flag bits are set. The GLINTD bit only enables the vectoring to the interrupt address.

If the TOCKI, RA0/INT, or TMR0 interrupt source is used to terminate the long write; the interrupt flag, of the highest priority enabled interrupt, will terminate the long write and automatically be cleared.

- **Note 1:** If an interrupt is pending, the TABLWT is aborted (an NOP is executed). The highest priority pending interrupt, from the TOCKI, RA0/INT, or TMR0 sources that is enabled, has its flag cleared.
- **Note 2:** If the interrupt is not being used for the program write timing, the interrupt should be disabled. This will ensure that the interrupt is not lost, nor will it terminate the long write prematurely.

If a peripheral interrupt source is used to terminate the long write, the interrupt enable and flag bits must be set. The interrupt flag will not be automatically cleared upon the vectoring to the interrupt vector address.

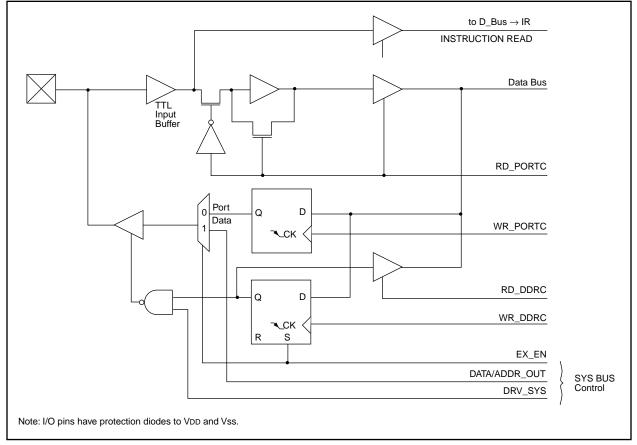
If the GLINTD bit is cleared prior to the long write, when the long write is terminated, the program will branch to the interrupt vector.

If the GLINTD bit is set prior to the long write, when the long write is terminated, the program will not vector to the interrupt address.

Interrupt Source	GLINTD	Enable Bit	Flag Bit	Action
RA0/INT, TMR0, T0CKI	0	1	1	Terminate long table write (to internal program memory), branch to interrupt vector (branch clears flag bit).
	0	1	0	None
	1	0	x	None
	1	1	1	Terminate table write, do not branch to interrupt vector (flag is automatically cleared).
Peripheral	0	1	1	Terminate table write, branch to interrupt vector.
	0	1	0	None
	1	0	x	None
	1	1	1	Terminate table write, do not branch to interrupt vector (flag is set).

TABLE 7-1: INTERRUPT - TABLE WRITE INTERACTION

9.3 PORTC and DDRC Registers


PORTC is an 8-bit bi-directional port. The corresponding data direction register is DDRC. A '1' in DDRC configures the corresponding port pin as an input. A '0' in the DDRC register configures the corresponding port pin as an output. Reading PORTC reads the status of the pins, whereas writing to it will write to the port latch. PORTC is multiplexed with the system bus. When operating as the system bus, PORTC is the low order byte of the address/data bus (AD7:AD0). The timing for the system bus is shown in the Electrical Characteristics section.

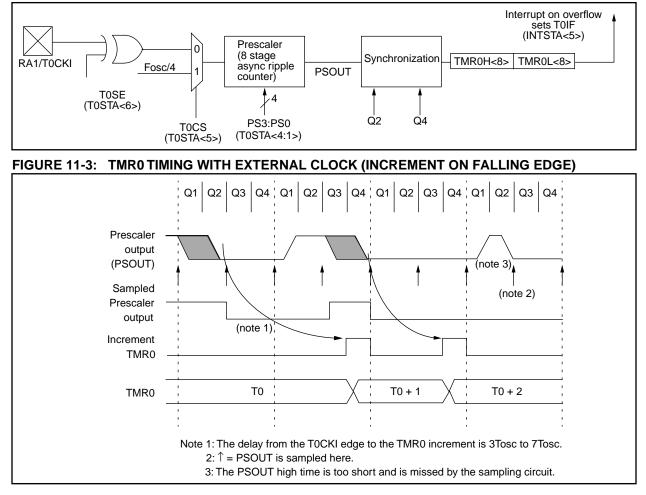
Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-2 shows the instruction sequence to initialize PORTC. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-2: INITIALIZING PORTC

1	;	Select Bank 1
PORTC	;	Initialize PORTC data
	;	latches before setting
	;	the data direction
	;	register
0xCF	;	Value used to initialize
	;	data direction
DDRC	;	Set RC<3:0> as inputs
	;	RC<5:4> as outputs
	;	RC<7:6> as inputs
	PORTC 0xCF	PORTC ; ; ; ; ; 0xCF ; DDRC ; ;

FIGURE 9-6: BLOCK DIAGRAM OF RC<7:0> PORT PINS

11.1 <u>Timer0 Operation</u>


When the TOCS (TOSTA<5>) bit is set, TMR0 increments on the internal clock. When TOCS is clear, TMR0 increments on the external clock (RA1/T0CKI pin). The external clock edge can be configured in software. When the TOSE (TOSTA<6>) bit is set, the timer will increment on the rising edge of the RA1/T0CKI pin. When T0SE is clear, the timer will increment on the falling edge of the RA1/T0CKI pin. The prescaler can be programmed to introduce a prescale of 1:1 to 1:256. The timer increments from 0000h to FFFFh and rolls over to 0000h. On overflow, the TMR0 Interrupt Flag bit (T0IF) is set. The TMR0 interrupt can be masked by clearing the corresponding TMR0 Interrupt Enable bit (T0IE). The TMR0 Interrupt Flag bit (T0IF) is automatically cleared when vectoring to the TMR0 interrupt vector.

11.2 Using Timer0 with External Clock

When the external clock input is used for Timer0, it is synchronized with the internal phase clocks. Figure 11-3 shows the synchronization of the external clock. This synchronization is done after the prescaler. The output of the prescaler (PSOUT) is sampled twice in every instruction cycle to detect a rising or a falling edge. The timing requirements for the external clock are detailed in the electrical specification section for the desired device.

11.2.1 DELAY FROM EXTERNAL CLOCK EDGE

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time TMR0 is actually incremented. Figure 11-3 shows that this delay is between 3Tosc and 7Tosc. Thus, for example, measuring the interval between two edges (e.g. period) will be accurate within \pm 4Tosc (\pm 121 ns @ 33 MHz).

FIGURE 11-2: TIMER0 MODULE BLOCK DIAGRAM

12.2.1 ONE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 12-7. The timer increments until it equals the period register and then resets to 0000h. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

This mode is selected if control bit CA1/PR3 is clear. In this mode, the Capture1 register, consisting of high byte (PR3H/CA1H) and low byte (PR3L/CA1L), is configured as the period control register for TMR3. Capture1 is disabled in this mode, and the corresponding Interrupt bit CA1IF is never set. TMR3 increments until it equals the value in the period register and then resets to 0000h.

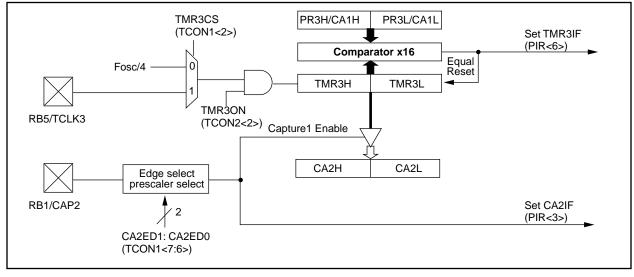
Capture2 is active in this mode. The CA2ED1 and CA2ED0 bits determine the event on which capture will occur. The possible events are:

- · Capture on every falling edge
- Capture on every rising edge
- · Capture every 4th rising edge
- · Capture every 16th rising edge

When a capture takes place, an interrupt flag is latched into the CA2IF bit. This interrupt can be enabled by setting the corresponding mask bit CA2IE. The Peripheral Interrupt Enable bit (PEIE) must be set and the Global Interrupt Disable bit (GLINTD) must be cleared for the interrupt to be acknowledged. The CA2IF interrupt flag bit must be cleared in software.

When the capture prescale select is changed, the prescaler is not reset and an event may be generated. Therefore, the first capture after such a change will be ambiguous. However, it sets the time-base for the next capture. The prescaler is reset upon chip reset. Capture pin RB1/CAP2 is a multiplexed pin. When used as a port pin, Capture2 is not disabled. However, the user can simply disable the Capture2 interrupt by clearing CA2IE. If RB1/CAP2 is used as an output pin, the user can activate a capture by writing to the port pin. This may be useful during development phase to emulate a capture interrupt.

The input on capture pin RB1/CAP2 is synchronized internally to internal phase clocks. This imposes certain restrictions on the input waveform (see the Electrical Specification section for timing).


The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the Timer3 value to the capture register, protecting the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The recommended sequence to read capture registers and capture overflow flag bits is shown in Example 12-1.

EXAMPLE 12-1: SEQUENCE TO READ CAPTURE REGISTERS

MOVLB 3	;Select Bank 3
MOVPF CA2L,LO_BYTE	;Read Capture2 low
	;byte, store in LO_BYTE
MOVPF CA2H, HI_BYTE	;Read Capture2 high
	;byte, store in HI_BYTE
MOVPF TCON2,STAT_VAL	;Read TCON2 into file
	;STAT_VAL

FIGURE 12-7: TIMER3 WITH ONE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM

14.4 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction. This clears the Watchdog Timer and postscaler (if enabled). The \overrightarrow{PD} bit is cleared and the \overrightarrow{TO} bit is set (in the CPUSTA register). In SLEEP mode, the oscillator driver is turned off. The I/O ports maintain their status (driving high, low, or hi-impedance).

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC). A WDT time-out RESET does not drive the $\overline{\text{MCLR}}/\text{VPP}$ pin low.

14.4.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- A POR reset
- External reset input on MCLR/VPP pin
- WDT Reset (if WDT was enabled)
- Interrupt from RA0/INT pin, RB port change, T0CKI interrupt, or some Peripheral Interrupts

The following peripheral interrupts can wake-up from SLEEP:

- · Capture1 interrupt
- Capture2 interrupt
- · USART synchronous slave transmit interrupt
- · USART synchronous slave receive interrupt

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

Any reset event will cause a device reset. Any interrupt event is considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the CPUSTA register can be used to determine the cause of device reset. The

 \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GLINTD bit. If the GLINTD bit is set (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GLINTD bit is clear (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt vector address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GLINTD is set), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from sleep. The TO bit is set, and the PD bit is cleared.

The WDT is cleared when the device wake from SLEEP, regardless of the source of wake-up.

14.4.1.1 WAKE-UP DELAY

When the oscillator type is configured in XT or LF mode, the Oscillator Start-up Timer (OST) is activated on wake-up. The OST will keep the device in reset for 1024Tosc. This needs to be taken into account when considering the interrupt response time when coming out of SLEEP.

FIGURE 14-9: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4
OSC1						$\frown \frown \frown$	
CLKOUT(4)		/		Tost(2)	\/ \/		
INT					I I		
(RA0/INT pin)	ı ı		: (1		<u>1 </u>
INTF flag			<u>`</u>		I		Interrupt Latency (2)
GLINTD bit	1 11		· ·		I		·
	i i		Processor		1		1 I
INSTRUCTION	FLOW		in SLEEP		1 1		I I I I
PC	C PC	PC+1		+2	× 0004	h	× <u>0005h</u>
Instruction (fetched	Inst (PC) = SLEEP	Inst (PC+1)			Inst (PC	+2)	
Instruction {	Inst (PC-1)	SLEEP			Inst (PC	+1)	Dummy Cycle
2: Tost = 102 3: When GLI	scillator mode assume 4Tosc (drawing not to s NTD = 0 processor jum s not available in these	scale). This delay will ps to interrupt routing	e after wake	-up. If GLIN	ITD = 1, exec	ution will	continue in line.

PIC17C4X

CALL	Subroutir	ne Call		CLF	RF	Clear f				
Syntax:	[label] C	CALL k		Syn	tax:	[<i>label</i>] CL	[<i>label</i>] CLRF f,s			
Operands:	$0 \le k \le 40$	$0 \leq k \leq 4095$			rands:	$0 \le f \le 25$	$0 \leq f \leq 255$			
Operation:	k<12:8> –	PC+ 1 \rightarrow TOS, k \rightarrow PC<12:0>, k<12:8> \rightarrow PCLATH<4:0>; PC<15:13> \rightarrow PCLATH<7:5>			ration:	$00h \rightarrow f, s$ $00h \rightarrow de$				
Status Affected:	None		1<1.02	Stat	us Affected:	None				
				Enc	oding:	0010	100s	ffff	ffff	
Encoding: Description:	return addr the stack. T PC bits<12 bits of the F	:0>. Then the uPC are copied	page. First, pushed onto is loaded into upper-eight into PCLATH.		cription:	Clears the contents of the specified reg ister(s). s = 0: Data memory location 'f' and WREG are cleared. s = 1: Data memory location 'f' is cleared.			'f' and	
		wo-cycle instru			Words:		1			
	See LCALL space.	for calls outsic	de 8K memory	Cyc	les:	1				
Words:	1			QC	ycle Activity:					
Cycles:	2				Q1	Q2	Q		Q4	
Q Cycle Activity:					Decode	Read register 'f'	Exect		Write egister 'f'	
Q1	Q2	Q3	Q4			iegister i			and other	
Decode	Read literal 'k'<7:0>	Execute	NOP						specified register	
Forced NOP	NOP	Execute	NOP	Exa	<u>mple</u> :	CLRF	FLAG	G_REG		
Example: Before Instr PC = After Instruct	Address(HERE)				Before Instru FLAG_R After Instruc FLAG_R	EG = 0x tion	5A 00			
PC =	Address (THI	ERE)								

TOS = Address(HERE + 1)

PIC17C4X

IORWF	Inclusive		with f	LCALL	Long Cal	I	
Syntax:	[label]	ORWF f,d		Syntax:	[label]	LCALL k	
Operands:	0 ≤ f ≤ 255	5		Operands:	$0 \le k \le 25$	5	
	d ∈ [0,1]			Operation:	PC + 1 \rightarrow	TOS;	
Operation:	(WREG) .	$OR.\left(f ight) ightarrow\left(de ight)$	est)		$k \rightarrow PCL$,	(PCLATH) -	→ PCH
Status Affected:	Z			Status Affected:	None		
Encoding:	0000	100d ff	ff ffff	Encoding:	1011	0111 kk	kk kkkk
Description:	'd' is 0 the r	R WREG with esult is placed esult is placed	0	Description:	tine call to a gram memor First, the re	anywhere with ory space. eturn address	· /
Words:	1				•	to the stack. A ress is then lo	
Cycles:	1				program co	ounter. The lo	wer 8-bits of
Q Cycle Activity:							s embedded in er 8-bits of PC
Q1	Q2	Q3	Q4			om PC high h	
Decode	Read register 'f'	Execute	Write to destination		PCLATH.		
Evemple:			uccundulori	Words:	1		
Example:		ESULT, O		Cycles:	2		
Before Instru RESULT				Q Cycle Activity:			
WREG	= 0x13 = 0x91			Q1	Q2	Q3	Q4
After Instruct RESULT				Decode	Read literal 'k'	Execute	Write register PCL
WREG	= 0x13 = 0x93			Forced NOP	NOP	Execute	NOP
				Example:	MOVPF W	IGH(SUBROU REG, PCLAT OW(SUBROUT	Н

Before Instruction

Boloro modución						
SUBROUTINE PC	= =	16-bit Address ?				
After Instruction						

PC = Address	(SUBROUTINE)
--------------	--------------

PIC17C4X

MOVLR	Move Literal to high nibble in BSR						
Syntax:	[<i>label</i>] MOVLR k						
Operands:	$0 \le k \le 15$						
Operation:	$k \rightarrow (BSR < 7:4>)$						
Status Affected:	None						
Encoding:	1011 101x kkkk uuuu						
Description:	The 4-bit literal 'k' is loaded into the most significant 4-bits of the Bank Select Register (BSR). Only the high 4-bits of the Bank Select Register are affected. The lower half of the BSR is unchanged. The assembler will encode the "u" fields as 0.						
Words:	1						
Cycles: 1							
Q Cycle Activity:							
Q1	Q2 Q3 Q4						
Decode	Decode Read literal Execute Write 'k:u' literal 'k' to BSR<7:4>						
Example: MOVLR 5							
Before Instru BSR regis After Instructi BSR regis	ion						
Note: This i	instruction is not available in th C42 device.	e					

MOVLW Move Literal to WREG							
Syntax:	[label]	MOVLW	/ k				
Operands:	$0 \le k \le 25$	$0 \le k \le 255$					
Operation:	$k \rightarrow (WR)$	EG)					
Status Affected:	None	None					
Encoding:	1011	0000	kkkł	k kkkk			
Description:	The eight b WREG.	oit literal 'l	k' is loa	ded into			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read literal 'k'	Execu	ute	Write to WREG			
Example:	MOVLW	0x5A					
After Instruct	ion						

WREG = 0x5A

XORLW	Exclusive OR Literal with	XORWF	Exclusive OR WREG with f
	WREG	Syntax:	[label] XORWF f,d
Syntax:	[<i>label</i>] XORLW k	Operands:	$0 \le f \le 255$
Operands:	$0 \le k \le 255$		d ∈ [0,1]
Operation:	(WREG) .XOR. $k \rightarrow (WREG)$	Operation:	(WREG) .XOR. (f) \rightarrow (dest)
Status Affected:	Z	Status Affected:	Z
Encoding:	1011 0100 kkkk kkkk	Encoding:	0000 110d ffff ffff
Description:	The contents of WREG are XOR'ed with the 8-bit literal 'k'. The result is placed in WREG.	Description:	Exclusive OR the contents of WREG with register 'f'. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in the register 'f'.
Words:	1	Words:	1
Cycles:	1	Cycles:	1
Q Cycle Activity:		Q Cycle Activity:	
Q1	Q2 Q3 Q4	Q Oycle Activity. Q1	Q2 Q3 Q4
Decode	ReadExecuteWrite toliteral 'k'WREG	Decode	Read Execute Write to destination
Example:	XORLW 0xAF	L	
Before Instruc	ction	Example:	XORWF REG, 1
After Instructi	= 0xB5 on = 0x1A	Before Instru REG WREG	ction = 0xAF = 0xB5
		After Instructi REG WREG	ion = 0x1A = 0xB5

Applicable Devices 42 R42 42A 43 R43 44

17.1 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

DC CHARA	CTERIS	STICS	Standard Operating	-	-		ns (unless otherwise stated)
						-40°C	
		1	1			0°C	\leq TA \leq +70°C for commercial
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.5	_	5.5	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060*	_	_	mV/ms	See section on Power-on Reset for details
D010	IDD	Supply Current	_	3	6	mA	Fosc = 4 MHz (Note 4)
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz
D012			-	11	24 *	mA	Fosc = 16 MHz
D013			-	19	38	mA	Fosc = 25 MHz
D014			-	95	150	μA	Fosc = 32 kHz WDT enabled (EC osc configuration)
D020	IPD	Power-down Current	_	10	40	μA	VDD = 5.5V, WDT enabled
D021		(Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads need to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \cdot R)$. For capacitive loads, The current can be estimated (for an individual I/O pin) as (CL $\cdot VDD$) $\cdot f$

CL = Total capacitive load on the I/O pin; f = average frequency on the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 42 R42 42A 43 R43 44

19.3 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial) PIC17LCR42/42A/43/R43/44-08 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial Operating voltage VDD range as described in Section 19.1							
Parameter	1			ollage vi	D lange a		
No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \le VDD \le 5.5V$
			Vss	_	0.2Vdd	V	$2.5V \le VDD \le 4.5V$
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V	
D032		MCLR, OSC1 (in EC and RC mode)	Vss	-	0.2Vdd	V	Note1
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	_	V	
		Input High Voltage					
	VIH	I/O ports					
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
			1 + 0.2VDD	-	Vdd	V	$2.5V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	V	
D042		MCLR	0.8Vdd	_	Vdd	V	Note1
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	_	V	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15Vdd *	-	-	V	
		Input Leakage Current (Notes 2, 3)					
D060	lı∟	I/O ports (except RA2, RA3)	_	_	±1	μA	Vss ≤ VPIN ≤ VDD, I/O Pin at hi-impedance PORTB weak pull-ups disabled
D061		MCLR	_	_	±2	μA	VPIN = Vss or VPIN = VDD
D062		RA2, RA3			±2	μΑ	$Vss \le Vra2$, $Vra3 \le 12V$
D063		OSC1, TEST (EC, RC modes)	-	_	±1	μΑ	$Vss \le VPIN \le VDD$
D063B		OSC1, TEST (XT, LF modes)	-	-	VPIN	μA	RF ≥ 1 MΩ, see Figure 14.2
D064		MCLR	-	-	10	μA	VMCLR = VPP = 12V (when not programming)
D070	IPURB	PORTB weak pull-up current	60	200	400	μA	VPIN = VSS, $\overline{\text{RBPU}} = 0$ 4.5V \leq VDD \leq 6.0V

These parameters are characterized but not tested.

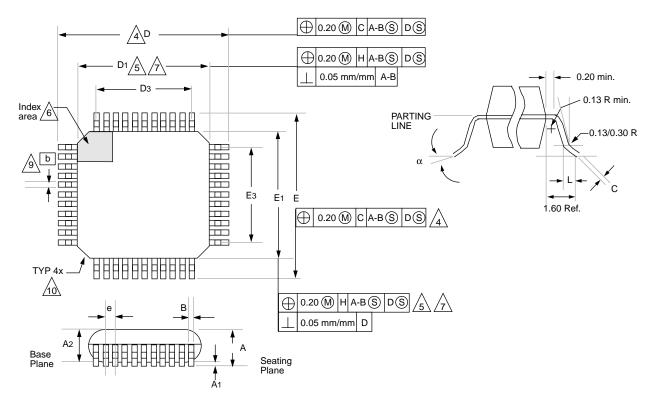
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as coming out of the pin.

3: Negative current is defined as coming out of the pin.


4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

NOTES:

Package Group: Plastic MQFP								
		Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Мах	Notes		
α	0°	7 °		0°	7 °			
А	2.000	2.350		0.078	0.093			
A1	0.050	0.250		0.002	0.010			
A2	1.950	2.100		0.768	0.083			
b	0.300	0.450	Typical	0.011	0.018	Typical		
С	0.150	0.180		0.006	0.007			
D	12.950	13.450		0.510	0.530			
D1	9.900	10.100		0.390	0.398			
D3	8.000	8.000	Reference	0.315	0.315	Reference		
E	12.950	13.450		0.510	0.530			
E1	9.900	10.100		0.390	0.398			
E3	8.000	8.000	Reference	0.315	0.315	Reference		
е	0.800	0.800		0.031	0.032			
L	0.730	1.030		0.028	0.041			
Ν	44	44		44	44			
CP	0.102	_		0.004	_			

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: microcontroller, protected microcontroller, extended microcontroller, and microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions have been removed.
- 4. 4 new instructions for transferring data between data memory and program memory. This can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replaces function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing the interrupt.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt on change feature works on all eight port pins.
- 16. TMR0 is 16-bit plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Configuration bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit) (PIC17C43 and PIC17C44 only).
- 19. Peripheral modules operate slightly differently.
- 20. Oscillator modes slightly redefined.
- 21. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 22. Addition of a test mode pin.
- 23. In-circuit serial programming is not implemented.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXX to PIC17CXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the interrupt service routine into its four vectors.
- 3. Replace:

4.

<pre>MOVF REG1, W with: MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or MOVFP REG1, REG2 ; Addr(REG2)<20h</pre>			
MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	with:		
MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	MOVFP	REG1,	WREG
MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	Replace:		
with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVWF	REG2	
or	with:		
	MOVPF	REG1,	REG2 ; Addr(REG1)<20h
MOVFP REG1, REG2 ; Addr(REG2)<20h	or		
	MOVFP	REG1,	REG2 ; Addr(REG2)<20h

Note: If REG1 and REG2 are both at addresses greater then 20h, two instructions are required. MOVFP REG1, WREG ; MOVPF WREG, REG2 ;

- 5. Ensure that all bit names and register names are updated to new data memory map location.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on reset.

To convert code from the PIC17C42 to all the other PIC17C4X devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1996} Microchip Technology Inc.

				Clock	Memory	ory		Peripł	Peripherals	\vdash	Features
				FLOULOUX (FLOULOUX)		\backslash		\backslash	6		
			10 10 10 T	And the solo			\backslash	10783	Se S		-7016).
		Uenberg		A HOU	S and		je e		2001	SUS	Aces -
	Tell	HON BROC NOCOLINATION	40,	ow isuit noted	ROULOS OW IBUIL	RUI BILI	Reli .		enor suit	AL A	asternor to state asternor
PIC16C554	20	512	80	TMR0			ю	13	2.5-6.0		18-pin DIP, SOIC; 20-pin SSOP
PIC16C556	20	¥	80	TMR0	1	I	e	13	2.5-6.0	Ι	18-pin DIP, SOIC; 20-pin SSOP
PIC16C558	20	2K	128	TMR0	I	I	e	13	2.5-6.0	I	18-pin DIP, SOIC; 20-pin SSOP
PIC16C620	20	512	80	TMR0	2	Yes	4	13	2.5-6.0	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C621	20	ź	80	TMR0	2	Yes	4	13	2.5-6.0	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C622	20	2K	128	TMR0	2	Yes	4	13	2.5-6.0	Yes	18-pin DIP, SOIC; 20-pin SSOP
All PIC16/17 Fan	/17 Far	nily devic	es have	Power-on	Reset,	selecta	able W	atchdo	g Timer, s	electa	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O

current capability. All PIC16C6XXX Family devices use serial programming with clock pin RB6 and data pin RB7.

DS30412C-page 215

APPENDIX F: ERRATA FOR PIC17C42 SILICON

The PIC17C42 devices that you have received have the following anomalies. At present there is no intention for future revisions to the present PIC17C42 silicon. If these cause issues for the application, it is recommended that you select the PIC17C42A device.

Note: New designs should use the PIC17C42A.

 When the Oscillator Start-Up Timer (OST) is enabled (in LF or XT oscillator modes), any interrupt that wakes the processor may cause a WDT reset. This occurs when the WDT is greater than or equal to 50% time-out period when the SLEEP instruction is executed. This will not occur in either the EC or RC oscillator modes.

Work-arounds

- Always ensure that the CLRWDT instruction is executed before the WDT increments past 50% of the WDT period. This will keep the "false" WDT reset from occurring.
- b) When using the WDT as a normal timer (WDT disabled), ensure that the WDT is less than or equal to 50% time-out period when the SLEEP instruction is executed. This can be done by monitoring the TO bit for changing state from set to clear. Example 1 shows putting the PIC17C42 to sleep.

EXAMPLE F-1: PIC17C42 TO SLEEP

BTFSS	CPUSTA,	TO	;	TO = 0?
CLRWDT			;	YES, WDT = 0
BTFSC	CPUSTA,	то	;	WDT rollover?
GOTO	LOOP		;	NO, Wait
SLEEP			;	YES, goto Sleep
	CLRWDT BTFSC GOTO	CLRWDT BTFSC CPUSTA, GOTO LOOP	CLRWDT BTFSC CPUSTA, TO GOTO LOOP	BTFSC CPUSTA, TO ; GOTO LOOP ;

2. When the clock source of Timer1 or Timer2 is selected to external clock, the overflow interrupt flag will be set twice, once when the timer equals the period, and again when the timer value is reset to 0h. If the latency to clear TMRxIF is greater than the time to the next clock pulse, no problems will be noticed. If the latency is less than the time to the next timer clock pulse, the interrupt will be serviced twice.

Work-arounds

- a) Ensure that the timer has rolled over to 0h before clearing the flag bit.
- b) Clear the timer in software. Clearing the timer in software causes the period to be one count less than expected.

Design considerations

The device must not be operated outside of the specified voltage range. An external reset circuit must be used to ensure the device is in reset when a brown-out occurs or the VDD rise time is too long. Failure to ensure that the device is in reset when device voltage is out of specification may cause the device to lock-up and ignore the $\overline{\text{MCLR}}$ pin.