

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-16i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 RESET

The PIC17CXX differentiates between various kinds of reset:

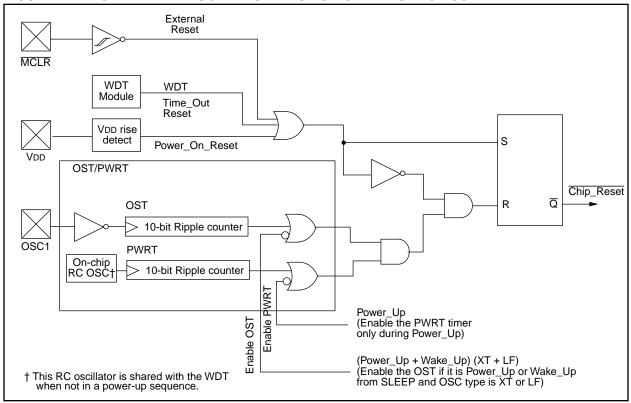
- Power-on Reset (POR)
- MCLR reset during normal operation
- WDT Reset (normal operation)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are forced to a "reset state" on Power-on Reset (POR), on $\overline{\text{MCLR}}$ or WDT Reset and on $\overline{\text{MCLR}}$ reset during SLEEP. They are not affected by a WDT Reset during SLEEP, since this reset is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 4-3. These bits are used in software to determine the nature of reset. See Table 4-4 for a full description of reset states of all registers.

Note: While the device is in a reset state, the internal phase clock is held in the Q1 state. Any processor mode that allows external execution will force the RE0/ALE pin as a low output and the RE1/OE and RE2/WR pins as high outputs.

A simplified block diagram of the on-chip reset circuit is shown in Figure 4-1.

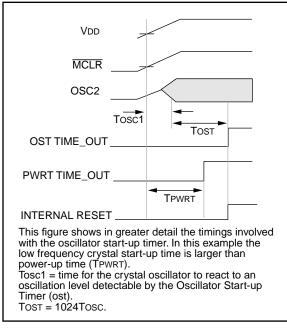
4.1 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT), and Oscillator Start-up</u> <u>Timer (OST)</u>

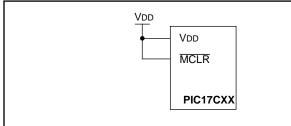

4.1.1 POWER-ON RESET (POR)

The Power-on Reset circuit holds the device in reset until VDD is above the trip point (in the range of 1.4V -2.3V). The PIC17C42 does not produce an internal reset when VDD declines. All other devices will produce an internal reset for both rising and falling VDD. To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD is required. See Electrical Specifications for details.

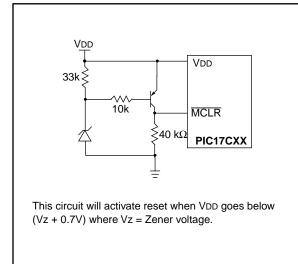
4.1.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 96 ms time-out (nominal) on power-up. This occurs from rising edge of the POR signal and after the first rising edge of $\overline{\text{MCLR}}$ (detected high). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. In most cases the PWRT delay allows the VDD to rise to an acceptable level.


The power-up time delay will vary from chip to chip and to VDD and temperature. See DC parameters for details.


FIGURE 4-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

© 1996 Microchip Technology Inc.


FIGURE 4-5: OSCILLATOR START-UPTIME

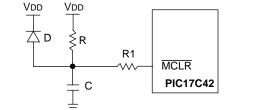

FIGURE 4-6: USING ON-CHIP POR

FIGURE 4-7: BROWN-OUT PROTECTION CIRCUIT 1

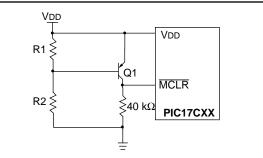


FIGURE 4-8: PIC17C42 EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: An external Power-on Reset circuit is required only if VDD power-up time is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: R < 40 k Ω is recommended to ensure that the voltage drop across R does not exceed 0.2V (max. leakage current spec. on the \overline{MCLR}/VPP pin is 5 μ A). A larger voltage drop will degrade VIH level on the \overline{MCLR}/VPP pin.
 - 3: $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or (Electrical Overstress) EOS.

FIGURE 4-9: BROWN-OUT PROTECTION CIRCUIT 2

This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

5.0 INTERRUPTS

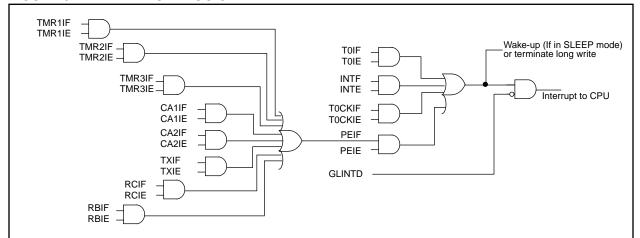
The PIC17C4X devices have 11 sources of interrupt:

- External interrupt from the RA0/INT pin
- Change on RB7:RB0 pins
- TMR0 Overflow
- TMR1 Overflow
- TMR2 Overflow
- TMR3 Overflow
- USART Transmit buffer empty
- USART Receive buffer full
- Capture1
- Capture2
- T0CKI edge occurred

There are four registers used in the control and status of interrupts. These are:

- CPUSTA
- INTSTA
- PIE
- PIR

The CPUSTA register contains the GLINTD bit. This is the Global Interrupt Disable bit. When this bit is set, all interrupts are disabled. This bit is part of the controller core functionality and is described in the Memory Organization section. When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with the interrupt vector address. There are four interrupt vectors. Each vector address is for a specific interrupt source (except the peripheral interrupts which have the same vector address). These sources are:


- External interrupt from the RA0/INT pin
- TMR0 Overflow
- T0CKI edge occurred
- Any peripheral interrupt

When program execution vectors to one of these interrupt vector addresses (except for the peripheral interrupt address), the interrupt flag bit is automatically cleared. Vectoring to the peripheral interrupt vector address does not automatically clear the source of the interrupt. In the peripheral interrupt service routine, the source(s) of the interrupt can be determined by testing the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

All of the individual interrupt flag bits will be set regardless of the status of their corresponding mask bit or the GLINTD bit.

For external interrupt events, there will be an interrupt latency. For two cycle instructions, the latency could be one instruction cycle longer.

The "return from interrupt" instruction, RETFIE, can be used to mark the end of the interrupt service routine. When this instruction is executed, the stack is "POPed", and the GLINTD bit is cleared (to re-enable interrupts).

FIGURE 5-1: INTERRUPT LOGIC

© 1996 Microchip Technology Inc.

6.2.2.1 ALU STATUS REGISTER (ALUSTA)

The ALUSTA register contains the status bits of the Arithmetic and Logic Unit and the mode control bits for the indirect addressing register.

As with all the other registers, the ALUSTA register can be the destination for any instruction. If the ALUSTA register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the ALUSTA register as destination may be different than intended.

For example, CLRF ALUSTA will clear the upper four bits and set the Z bit. This leaves the ALUSTA register as 0000u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions be used to alter the ALUSTA register because these instructions do not affect any status bit. To see how other instructions affect the status bits, see the "Instruction Set Summary."

Note	1: The C and DC bits operate as a borrow out bit in subtraction. See the SUBLW and SUBWF instructions for examples.
Note	2: The overflow bit will be set if the 2's com- plement result exceeds +127 or is less than -128.

Arithmetic and Logic Unit (ALU) is capable of carrying out arithmetic or logical operations on two operands or a single operand. All single operand instructions operate either on the WREG register or a file register. For two operand instructions, one of the operands is the WREG register and the other one is either a file register or an 8-bit immediate constant.

FS3	FS2	FS1	FS0	OV	Z	DC	С	R = Readable bit
bit7	1	1				I	bit0	W = Writable bit -n = Value at POR reset (x = unknown)
bit 7-6:	01 = Pos	FSR1 Mo t auto-dect t auto-incre t value de	rement FS ement FSI	R1 value R1 value				
bit 5-4:	01 = Pos	FSR0 Mo t auto-deci t auto-incre 0 value de	rement FS ement FSI	R0 value R0 value				
bit 3:	which cau 1 = Overfl	s used for uses the si	gn bit (bit7 ed for sign	') to chang				overflow of the 7-bit magnitude,
bit 2:	Z : Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The results of an arithmetic or logic operation is not zero							
bit 1:	For ADDW 1 = A carr $0 = No ca$	•	LW instruc the 4th lo m the 4th	w order bi low order	t of the res bit of the re I.		d	
bit 0:	1 = A carr Note that (RRCF, RL	F and ADD y-out from a subtrac CF) instru- rry-out fro	the most tion is exe ctions, this m the mos	significant cuted by a bit is load t significa	ded with eit nt bit of the	two's com her the hig	plement of	the second operand. For rotate der bit of the source register.

FIGURE 6-7: ALUSTA REGISTER (ADDRESS: 04h, UNBANKED)

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	; FSR0 = 20	h
	BCF	ALUSTA, FS1	; Increment	FSR
	BSF	ALUSTA, FSO	; after acc	ess
	BCF	ALUSTA, C	; C = 0	
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	; Addr(FSR)	= 0
	CPFSEQ	FSR0	; FSRO = EN	ID_RAM+1?
	GOTO	LP	; NO, clear	next
	:		; YES, All	RAM is
	:		; cleared	

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

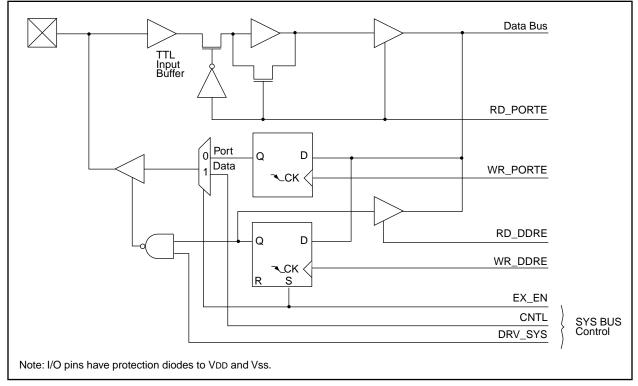
File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

9.4.1 PORTE AND DDRE REGISTER


PORTE is a 3-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to it will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (\overline{OE}), and Write (\overline{WR}). The control signals \overline{OE} and \overline{WR} are active low signals. The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-4 shows the instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-4: INITIALIZING PORTE

MOVLB	1	;	Select Bank 1
CLRF	PORTE	;	Initialize PORTE data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0x03	;	Value used to initialize
		;	data direction
MOVWF	DDRE	;	Set RE<1:0> as inputs
		;	RE<2> as outputs
		;	RE<7:3> are always
		;	read as '0'

FIGURE 9-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

10.0 OVERVIEW OF TIMER RESOURCES

The PIC17C4X has four timer modules. Each module can generate an interrupt to indicate that an event has occurred. These timers are called:

- Timer0 16-bit timer with programmable 8-bit
- prescaler
- Timer1 8-bit timer
- Timer2 8-bit timer
- Timer3 16-bit timer

For enhanced time-base functionality, two input Captures and two Pulse Width Modulation (PWM) outputs are possible. The PWMs use the TMR1 and TMR2 resources and the input Captures use the TMR3 resource.

10.1 <u>Timer0 Overview</u>

The Timer0 module is a simple 16-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock.

The Timer0 module also has a programmable prescaler option. The PS3:PS0 bits (T0STA<4:1>) determine the prescaler value. TMR0 can increment at the following rates: 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256.

When TImer0's clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

10.2 <u>Timer1 Overview</u>

The TImer0 module is an 8-bit timer/counter with an 8bit period register (PR1). When the TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the Timer2 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR1 register is the LSB and TMR2 is the MSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.3 <u>Timer2 Overview</u>

The TMR2 module is an 8-bit timer/counter with an 8bit period register (PR2). When the TMR2 value rolls over from the period match value to 0h, the TMR2IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the TMR1 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR2 register is the MSB and TMR1 is the LSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.4 <u>Timer3 Overview</u>

The TImer3 module is a 16-bit timer/counter with a 16bit period register. When the TMR3H:TMR3L value rolls over to 0h, the TMR3IF bit is set and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB5/TCLK3 pin.

When operating in the dual capture mode, the period registers become the second 16-bit capture register.

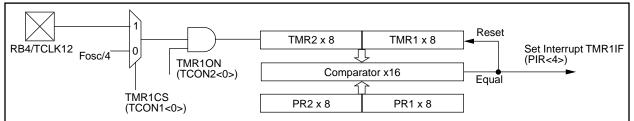
10.5 Role of the Timer/Counters

The timer modules are general purpose, but have dedicated resources associated with them. Tlmer1 and Timer2 are the time-bases for the two Pulse Width Modulation (PWM) outputs, while Timer3 is the timebase for the two input captures.

© 1996 Microchip Technology Inc.

12.1.2 TIMER1 & TIMER2 IN 16-BIT MODE

To select 16-bit mode, the T16 bit must be set. In this mode TMR1 and TMR2 are concatenated to form a 16-bit timer (TMR2:TMR1). The 16-bit timer increments until it matches the 16-bit period register (PR2:PR1). On the following timer clock, the timer value is reset to 0h, and the TMR1IF bit is set.


When selecting the clock source for the16-bit timer, the TMR1CS bit controls the entire 16-bit timer and TMR2CS is a "don't care." When TMR1CS is clear, the timer increments once every instruction cycle (Fosc/4). When TMR1CS is set, the timer increments on every falling edge of the RB4/TCLK12 pin. For the 16-bit timer to increment, both TMR1ON and TMR2ON bits must be set (Table 12-1).

12.1.2.1 EXTERNAL CLOCK INPUT FOR TMR1:TMR2

When TMR1CS is set, the 16-bit TMR2:TMR1 increments on the falling edge of clock input TCLK12. The input on the RB4/TCLK12 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on RB4/TCLK12 to the time TMR2:TMR1 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

TMR2ON	TMR10N	Result
1	1	16-bit timer (TMR2:TMR1) ON
0	1	Only TMR1 increments
x	0	16-bit timer OFF

FIGURE 12-4: TMR1 AND TMR2 IN 16-BIT TIMER/COUNTER MODE

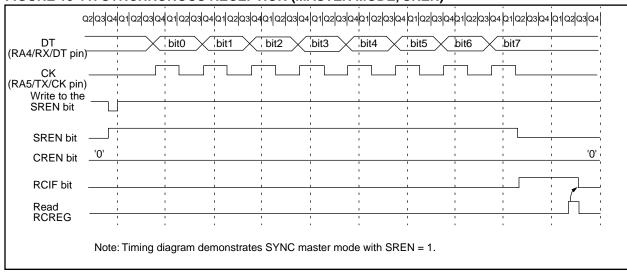
TABLE 12-2: SUMMARY OF TIMER1 AND TIMER2 REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 reg	gister							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	gister							xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	-	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
14h, Bank 2	PR1	Timer1 pe	riod registe	r						xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 pe	riod registe	r						xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	_	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2		—	_	_	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', q - value depends on condition,

shaded cells are not used by Timer1 or Timer2.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.


13.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either the SREN (RCSTA<5>) bit or the CREN (RCSTA<4>) bit. Data is sampled on the RA4/RX/DT pin on the falling edge of the clock. If SREN is set, then only a single word is received. If CREN is set, the reception is continuous until CREN is reset. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is RESET by the hardware. In this case it is reset when RCREG has been read and is empty. RCREG is a double buffered register; i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR. On the clocking of the last bit of the third byte, if RCREG is still full, then the overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software. This is done by clearing the CREN bit. If OERR bit is set, transfers from RSR to RCREG are inhibited, so it is essential to clear OERR bit if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received data: therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. See Section 13.1 for details.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 6. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 7. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading RCREG.
- 9. If any error occurred, clear the error by clearing CREN.

Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

ADDLW	ADD Literal to WREG						
Syntax:	[label] A	DLW	k				
Operands:	$0 \le k \le 25$	55					
Operation:	(WREG) -	+ k \rightarrow (V	VREG)				
Status Affected:	OV, C, DC	C, Z					
Encoding:	1011	0001	kkkk	kkkk			
Description:	The contents of WREG are added to the 8-bit literal 'k' and the result is placed in WREG.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read literal 'k'	Execu		Vrite to WREG			
Example:	ADDLW	0x15					
Before Instruc WREG =							

ADDWF	ADD WRE	EG to f			
Syntax:	[<i>label</i>] A[DDWF 1	f,d		
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5			
Operation:	(WREG) +	- (f) \rightarrow (de	est)		
Status Affected:	OV, C, DC	, Z			
Encoding:	0000	111d	ffff	ffff	
Description:	Add WREG to register 'f'. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Execute	· ·	/rite to stination	
Example:	ADDWF	REG, 0			
Before Instru WREG REG	iction = 0x17 = 0xC2				
After Instruct WREG REG	tion = 0xD9 = 0xC2				

After Instruction WREG = 0x25

INC	F	Inc	cremer	nt f					
Synt	tax:	[<i>l</i> a	abel]	INCF f	,d				
Ope	rands:		$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$						
Ope	ration:	(f)	+ 1 \rightarrow	(dest)					
Stat	us Affected:	O\	/, C, D0	C, Z					
Enco	oding:	(0001	010d	ffff	ffff			
Des	cription:	me WF	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.						
Wor	ds:	1							
Cycl	es:	1							
QC	ycle Activity:								
	Q1		Q2	Q	3	Q4			
	Decode		tead ister 'f'	Exect		Vrite to stination			
<u>Exa</u>	mple:	IN	CF	CNT,	1				
	Before Instru	iction	1						
	CNT	=	0xFF						
	Z C	=	0 ?						
	After Instruct CNT Z C	tion = = =	0x00 1 1						

INCFSZ)						
Syntax:	[label]	INCFSZ f,	d				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1]	5					
Operation:		(f) + 1 \rightarrow (dest) skip if result = 0					
Status Affected:	None						
Encoding:	0001	111d f:	fff ffff				
Description:	mented. If 'd WREG. If 'd back in regi If the result which is alr and an NOF	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded, and an NOP is executed instead making it a two-cycle instruction.					
Words:	1						
Cycles:	1(2)	1(2)					
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Execute	Write to destination				
lf skip:							
Q1	Q2	Q3	Q4				
Forced NOP	NOP	Execute	NOP				
Example:	NZERO	INCFSZ C : :	'NT, 1				
Before Instr							
PC		S (HERE)					
CNT If CNT PC If CNT	After Instruction CNT = CNT + 1 If $CNT = 0$; PC = Address(ZERO)						

RLNCF	Rotate L	eft f (no car	ry)
Syntax:	[label]	RLNCF f,d	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	55	
Operation:	$f < n > \rightarrow d$ $f < 7 > \rightarrow d$,	
Status Affected:	None		
Encoding:	0010	001d ff	ff ffff
Description:	one bit to	nts of register the left. If 'd' is WREG. If 'd' is k in register 'f' register	0 the result is 1 the result is
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Execute	Write to destination
Example:	RLNCF	REG, 1	
Before Instr	uction		
C REG	= 0 = 1110 1	1011	
After Instruc	tion		

RRCF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$
Operation:	$f < n > \rightarrow d < n-1 >;$ $f < 0 > \rightarrow C;$ $C \rightarrow d < 7 >$
Status Affected:	С
Encoding:	0001 100d ffff ffff
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Q Cycle Activity	
Q1	Q2 Q3 Q4
Decode	Read Execute Write to register 'f' destination
Example:	RRCF REG1,0
Before Instr REG1	uction = 1110 0110
C	= 0
After Instruc REG1 WREG C	tion = 1110 0110 = 0111 0011 = 0

TLWT	-	Table Lat	ch Write		TSTFSZ	Test f, sk	ip if 0	
Synta	x:	[label]	TLWT t,f		Syntax:	[label]	TSTFSZ f	
Opera	ands:	0 ≤ f ≤ 25	5		Operands:	0 ≤ f ≤ 25	5	
		t ∈ [0,1]			Operation:	skip if f =	0	
Opera	ation:	If $t = 0$,			Status Affected:	None		
		$f \rightarrow TE$ If t = 1,	SLAIL;		Encoding:	0011	0011 fff	f ffff
		$f \rightarrow TE$	BLATH		Description:	If 'f' = 0, the	e next instructio	n, fetched
Status	s Affected:	None			·	-	current instructi	
Encod	ding:	1010	01tx ff:	ff ffff			d and an NOP i a two-cycle in:	
Descr	ription:	Data from	file register 'f' i	s written into	Words:	1		
			able latch (TBI		Cycles:	1 (2)		
		-	h byte is writte		Q Cycle Activity:			
			byte is written ction is used in		Q1	Q2	Q3	Q4
		with TABL	v⊤ to transfer d	lata from data	Decode	Read	Execute	NOP
		•	program mem	iory.		register 'f'		
Words		1			lf skip: Q1	Q2	Q3	Q4
Cycle		1			Forced NOP	NOP	Execute	NOP
Q Cyc	cle Activity:	00	00	04	Example:	HERE	I I I I I I I I I I I I I I I I I I I	
Г	Q1 Decode	Q2 Read	Q3 Execute	Q4 Write	Example:	NZERO	:	
	Decode	register 'f'	Execute	register		ZERO :		
				TBLATH or TBLATL	Before Instru PC = Add	lction dress(HERE)		
<u>Exam</u>	<u>ple</u> :	TLWT	t, RAM		After Instruct			
В	efore Instru	uction			If CNT PC		00, Idress (ZERO)	
	t	= 0			If CNT		00,	
	RAM TBLAT	= 0xB7 = 0x0000) (TBLATH =	0x00)	PC	= Ac	dress (NZERO)
			(TBLATL =					
A	fter Instruc							
	RAM TBLAT	= 0xB7 = 0x00B7	′ (TBLATH =	0×00)				
	IDEAI	- 00000	(TBLATL =	,				
В	efore Instru	uction						
	t	= 1						
	RAM TBLAT	= 0xB7 = 0x0000) (TBLATH =	0x00)				
			(TBLATL =	,				
A	fter Instruc							
	RAM TBLAT	= 0xB7 = 0xB700) (TBLATH =					
		$= 0 \times B700$						

MPASM allow full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

16.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

16.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

16.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

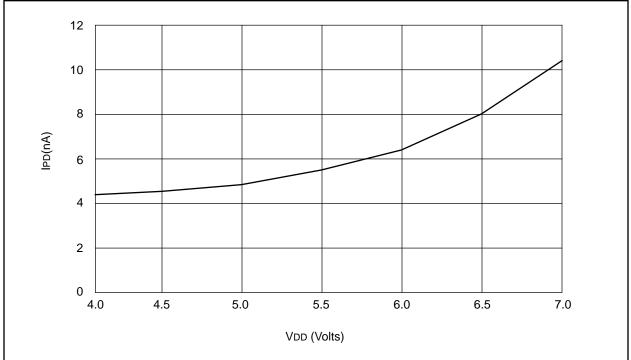
16.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

16.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

16.16 <u>TrueGauge[®] Intelligent Battery</u> <u>Management</u>


The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

16.17 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

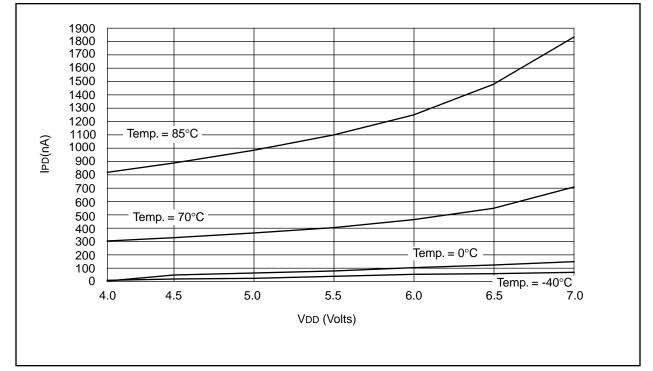
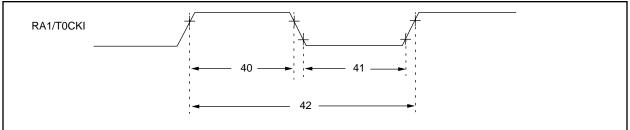
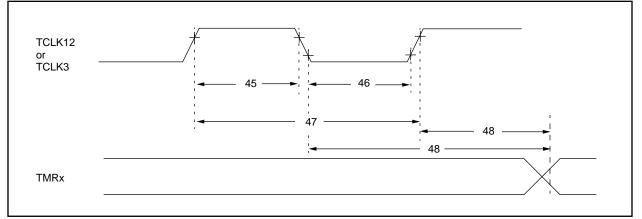



FIGURE 18-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-5: TIMER0 CLOCK TIMINGS

TABLE 19-5: TIMER0 CLOCK REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20 §	-	—	ns	
			With Prescaler	10*	-	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
42	Tt0P	T0CKI Period		Greater of: 20 ns or <u>Tcy + 40 §</u> N	-	_		N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5TCY + 20 §	-	—	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5Tcy + 20 §	_	—	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N		_		N = prescale value (1, 2, 4, 8)
48	TckE2tmrl	Delay from selected External Clock Edge to Timer increment	2Tosc §		6Tosc §		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

21.6 Package Marking Information 40-Lead PDIP/CERDIP Example PIC17C43-25I/P L006 AABBCDE 9441CCA MICROCHIP MICROCHIP \bigcirc 40 Lead CERDIP Windowed Example XXXXXXXXXXXX PIC17C44 XXXXXXXXXXXX /JW XXXXXXXXXXXX L184 AABBCDE 9444CCT 44-Lead PLCC Example \mathcal{M} \mathcal{M} MICROCHIP MICROCHIP PIC17C42 XXXXXXXXXX ○ _{XXXXXXXXX} Ο -16I/L XXXXXXXXXX L013 AABBCDE 9445CCN 44-Lead MQFP Example \mathcal{M} \mathbf{w} XXXXXXXXXX PIC17C44 -25/PT XXXXXXXXXX XXXXXXXXXXX L247 AABBCDE 9450CAT \cap \cap 44-Lead TQFP Example \$ \mathcal{Q} PIC17C44 XXXXXXXXXX -25/TQ XXXXXXXXXX XXXXXXXXXXX L247 AABBCDE 9450CAT \cap \cap Microchip part number information Legend: MM...M XX...X Customer specific information* AA Year code (last 2 digits of calendar year) BΒ Week code (week of January 1 is week '01') С Facility code of the plant at which wafer is manufactured C = Chandler, Arizona, U.S.A., S = Tempe, Arizona, U.S.A. D Mask revision number Е Assembly code of the plant or country of origin in which part was assembled Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information. Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond

code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

E.4 PIC16C6X Family of Devices

					L	Memory	лс			Peripherals	erals			Features
			Tote and	Sike BE	RECTORNAL CONTRACTORNAL CONTRA		Contraction of the second seco	ONIE DINA	THE STREET	Tay to	2		SHOT N	Solution of the solution of th
		VI LE MULL		10	HOOM POLIS	no X	September (0)	SHOP IN	and the second	S. Chilles	est cool and the citolic set	in the second		Solotoe & LINOULAND
PIC16C62	20	2K	Ι	128	TMR0, TMR1, TMR2	-	SPI/I ² C	Ι	7	22	3.0-6.0	Yes	Ι	28-pin SDIP, SOIC, SSOP
PIC16C62A ⁽¹⁾	20	2K	1	128	TMR0, TMR1, TMR2	-	SPI/I ² C	I	2	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16CR62 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	-	SPI/I ² C	Ι	2	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C63	20	4K	Ι	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	I	10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16CR63 ⁽¹⁾	20	I	}	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	I	10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C64	20	2K	Ι	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	ø	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C64A ⁽¹⁾	20	2K		128	TMR0, TMR1, TMR2	٢	SPI/I ² C	Yes	8	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR64 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	œ	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16C65	20	4K	Ι	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	11	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65A ⁽¹⁾	20	4K	I	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	11	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR65 ⁽¹⁾	20		4K	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	11	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
All PI All PI	C16/17 C16C6	r family X fami	y devic ily devi	tes hav ices us	All PIC16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable o All PIC16C6X family devices use serial programming with clock pin RB6 and data pin RB7	set, s nmin	electable g with clo	Watch ck pin	dog Ti RB6 a	mer, s nd dat	electable d a pin RB7	ode pi	rotect,	All PIC16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect, and high I/O current capability. All PIC16C6X family devices use serial programming with clock pin RB6 and data pin RB7.

All PIC16C6X family devices use serial programming with clock pin RB6 and data pin Note 1: Please contact your local sales office for availability of these devices.

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe[®] communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address:

mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

960513

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM, MPLAB and fuzzyLAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

^{© 1996} Microchip Technology Inc.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02