

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-16i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC17C4X can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC17C4X uses a modified Harvard architecture. This architecture has the program and data accessed from separate memories. So the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC17C4X opcodes are 16-bits wide, enabling single word instructions. The full 16-bit wide program memory bus fetches a 16-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions execute in a single cycle (121 ns @ 33 MHz), except for program branches and two special instructions that transfer data between program and data memory.

The PIC17C4X can address up to 64K x 16 of program memory space.

The **PIC17C42** and **PIC17C42A** integrate 2K x 16 of EPROM program memory on-chip, while the **PIC17CR42** has 2K x 16 of ROM program memory on-chip.

The **PIC17C43** integrates 4K x 16 of EPROM program memory, while the **PIC17CR43** has 4K x 16 of ROM program memory.

The **PIC17C44** integrates 8K x 16 EPROM program memory.

Program execution can be internal only (microcontroller or protected microcontroller mode), external only (microprocessor mode) or both (extended microcontroller mode). Extended microcontroller mode does not allow code protection.

The PIC17CXX can directly or indirectly address its register files or data memory. All special function registers, including the Program Counter (PC) and Working Register (WREG), are mapped in the data memory. The PIC17CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC17CXX simple yet efficient. In addition, the learning curve is reduced significantly.

One of the PIC17CXX family architectural enhancements from the PIC16CXX family allows two file registers to be used in some two operand instructions. This allows data to be moved directly between two registers without going through the WREG register. This increases performance and decreases program memory usage. The PIC17CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature.

The WREG register is an 8-bit working register used for ALU operations.

All PIC17C4X devices (except the PIC17C42) have an 8 x 8 hardware multiplier. This multiplier generates a 16-bit result in a single cycle.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Although the ALU does not perform signed arithmetic, the Overflow bit (OV) can be used to implement signed math. Signed arithmetic is comprised of a magnitude and a sign bit. The overflow bit indicates if the magnitude overflows and causes the sign bit to change state. Signed math can have greater than 7-bit values (magnitude), if more than one byte is used. The use of the overflow bit only operates on bit6 (MSb of magnitude) and bit7 (sign bit) of the value in the ALU. That is, the overflow bit is not useful if trying to implement signed math where the magnitude, for example, is 11-bits. If the signed math values are greater than 7-bits (15-, 24or 31-bit), the algorithm must ensure that the low order bytes ignore the overflow status bit.

Care should be taken when adding and subtracting signed numbers to ensure that the correct operation is executed. Example 3-1 shows an item that must be taken into account when doing signed arithmetic on an ALU which operates as an unsigned machine.

EXAMPLE 3-1: SIGNED MATH

Hex Value	Signed Value Math	Unsigned Value Math
FFh	-127	255
<u>+ 01h</u>	<u>+ 1</u>	<u>+ 1</u>
= ?	= -126 (FEh)	= 0 (00h);
		Carry bit = 1

Signed math requires the result in REG to be FEh (-126). This would be accomplished by subtracting one as opposed to adding one.

Simplified block diagrams are shown in Figure 3-1 and Figure 3-2. The descriptions of the device pins are listed in Table 3-1.

© 1996 Microchip Technology Inc.

			-		-	
Name	DIP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
						PORTD is a bi-directional I/O Port.
RD0/AD8	40	43	15	I/O	TTL	This is also the upper byte of the 16-bit system bus in
RD1/AD9	39	42	14	I/O	TTL	microprocessor mode or extended microprocessor mode
RD2/AD10	38	41	13	I/O	TTL	or extended microcontroller mode. In multiplexed system
RD3/AD11	37	40	12	I/O	TTL	as data input or output
RD4/AD12	36	39	11	I/O	TTL	
RD5/AD13	35	38	10	I/O	TTL	
RD6/AD14	34	37	9	I/O	TTL	
RD7/AD15	33	36	8	I/O	TTL	
RE0/ALE	30	32	4	I/O	TTL	PORTE is a bi-directional I/O Port. In microprocessor mode or extended microcontroller mode, it is the Address Latch Enable (ALE) output. Address should be latched on the falling edge of ALE output.
RE1/OE	29	31	3	I/O	TTL	In microprocessor or extended microcontroller mode, it is the Output Enable (\overline{OE}) control output (active low).
RE2/WR	28	30	2	I/O	TTL	In microprocessor or extended microcontroller mode, it is the Write Enable (WR) control output (active low).
TEST	27	29	1	I	ST	Test mode selection control input. Always tie to Vss for nor- mal operation.
Vss	10, 31	11, 12, 33, 34	5, 6, 27, 28	Р		Ground reference for logic and I/O pins.
Vdd	1	1, 44	16, 17	Р		Positive supply for logic and I/O pins.

١S
l

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input.

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g.GOTO) then two cycles are required to complete the instruction (Example 3-2).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Register	Address	Power-on Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through interrupt
Bank 2			1	÷
TMR1	10h	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR2	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3L	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3H	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PR1	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PR2	15h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PR3/CA1L	16h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PR3/CA1H	17h	XXXX XXXX	uuuu uuuu	uuuu uuuu
Bank 3				
PW1DCL	10h	xx	uu	uu
PW2DCL	11h	xx	uu	uu
PW1DCH	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PW2DCH	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CA2L	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CA2H	15h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TCON1	16h	0000 0000	0000 0000	uuuu uuuu
TCON2	17h	0000 0000	0000 0000	uuuu uuuu
Unbanked				
PRODL ⁽⁵⁾	18h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PRODH ⁽⁵⁾	19h	XXXX XXXX	นนนน นนนน	uuuu uuuu

TABLE 4-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS (Cont.'d)

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

5.0 INTERRUPTS

The PIC17C4X devices have 11 sources of interrupt:

- External interrupt from the RA0/INT pin
- Change on RB7:RB0 pins
- TMR0 Overflow
- TMR1 Overflow
- TMR2 Overflow
- TMR3 Overflow
- USART Transmit buffer empty
- USART Receive buffer full
- Capture1
- Capture2
- T0CKI edge occurred

There are four registers used in the control and status of interrupts. These are:

- CPUSTA
- INTSTA
- PIE
- PIR

The CPUSTA register contains the GLINTD bit. This is the Global Interrupt Disable bit. When this bit is set, all interrupts are disabled. This bit is part of the controller core functionality and is described in the Memory Organization section. When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with the interrupt vector address. There are four interrupt vectors. Each vector address is for a specific interrupt source (except the peripheral interrupts which have the same vector address). These sources are:

- External interrupt from the RA0/INT pin
- TMR0 Overflow
- T0CKI edge occurred
- Any peripheral interrupt

When program execution vectors to one of these interrupt vector addresses (except for the peripheral interrupt address), the interrupt flag bit is automatically cleared. Vectoring to the peripheral interrupt vector address does not automatically clear the source of the interrupt. In the peripheral interrupt service routine, the source(s) of the interrupt can be determined by testing the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

All of the individual interrupt flag bits will be set regardless of the status of their corresponding mask bit or the GLINTD bit.

For external interrupt events, there will be an interrupt latency. For two cycle instructions, the latency could be one instruction cycle longer.

The "return from interrupt" instruction, RETFIE, can be used to mark the end of the interrupt service routine. When this instruction is executed, the stack is "POPed", and the GLINTD bit is cleared (to re-enable interrupts).

FIGURE 5-1: INTERRUPT LOGIC

© 1996 Microchip Technology Inc.

6.1.2 EXTERNAL MEMORY INTERFACE

When either microprocessor or extended microcontroller mode is selected, PORTC, PORTD and PORTE are configured as the system bus. PORTC and PORTD are the multiplexed address/data bus and PORTE is for the control signals. External components are needed to demultiplex the address and data. This can be done as shown in Figure 6-4. The waveforms of address and data are shown in Figure 6-3. For complete timings, please refer to the electrical specification section.

FIGURE 6-3: EXTERNAL PROGRAM MEMORY ACCESS WAVEFORMS

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1							
AD	X								
<15:0>	Address out Data in	Address out Data out							
ALE									
OE,	'1'								
WR									
	Read cycle	Write cycle							

The system bus requires that there is no bus conflict (minimal leakage), so the output value (address) will be capacitively held at the desired value.

As the speed of the processor increases, external EPROM memory with faster access time must be used. Table 6-2 lists external memory speed requirements for a given PIC17C4X device frequency.

In extended microcontroller mode, when the device is executing out of internal memory, the control signals will continue to be active. That is, they indicate the action that is occurring in the internal memory. The external memory access is ignored.

This following selection is for use with Microchip EPROMs. For interfacing to other manufacturers memory, please refer to the electrical specifications of the desired PIC17C4X device, as well as the desired memory device to ensure compatibility.

TABLE 6-2:	EPROM MEMORY ACCESS
	TIME ORDERING SUFFIX

PIC17C4X Instruction		EPROM Suffix					
Oscillator Frequency	c17C4X Instruction scillator Cycle equency Time (TcY)		PIC17C43 PIC17C44				
8 MHz	500 ns	-25	-25				
16 MHz	250 ns	-12	-15				
20 MHz	200 ns	-90	-10				
25 MHz	160 ns	N.A.	-70				
33 MHz	121 ns	N.A.	(1)				

Note 1: The access times for this requires the use of fast SRAMS.

Note: The external memory interface is not supported for the LC devices.

FIGURE 6-4: TYPICAL EXTERNAL PROGRAM MEMORY CONNECTION DIAGRAM

© 1996 Microchip Technology Inc.

TABLE 6-3:	SPECIAL FUNCTION REGISTERS
------------	----------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)
Unbanke	ed										
00h	INDF0	Uses con	tents of FS								
01h	FSR0	Indirect d	ata memory	/ address po	inter 0					xxxx xxxx	uuuu uuuu
02h	PCL	Low orde	r 8-bits of P	С						0000 0000	0000 0000
03h ⁽¹⁾	PCLATH	Holding re	egister for u	pper 8-bits o	of PC					0000 0000	uuuu uuuu
04h	ALUSTA	FS3	FS2	С	1111 xxxx	1111 uuuu					
05h	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	—	0000 000-	0000 000-
06h ⁽²⁾	CPUSTA	—	—	STKAV	GLINTD	TO	PD	_	—	11 11	11 qq
07h	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
08h	INDF1	Uses con	tents of FS	R1 to addres	s data mem	ory (not a p	hysical regis	ster)	1		
09h	FSR1	Indirect d	ata memory	/ address po	inter 1					xxxx xxxx	uuuu uuuu
0Ah	WREG	Working r	egister							XXXX XXXX	uuuu uuuu
0Bh	TMR0L	TMR0 reg	gister; low b	yte						xxxx xxxx	uuuu uuuu
0Ch	TMR0H	TMR0 reg	gister; high	byte						xxxx xxxx	uuuu uuuu
0Dh	TBLPTRL	Low byte	of program	memory tab	le pointer					(4)	(4)
0Eh	TBLPTRH	High byte	of program	memory tal	ole pointer					(4)	(4)
0Fh	BSR	Bank sele	ect register							0000 0000	0000 0000
Bank 0										-	
10h	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
11h	DDRB	Data dire	ction registe	er for PORTE	3					1111 1111	1111 1111
12h	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu
13h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h	RCREG	Serial por	t receive re	gister						xxxx xxxx	uuuu uuuu
15h	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
16h	TXREG	Serial por	t transmit r	egister						xxxx xxxx	uuuu uuuu
17h	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu
Bank 1											
10h	DDRC	Data dire	ction registe	er for PORT	2					1111 1111	1111 1111
11h	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu
12h	DDRD	Data dire	ction registe	er for PORT)					1111 1111	1111 1111
13h	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu
14h	DDRE	Data dire	ction registe	er for PORTE	-				-	111	111
15h	PORTE	_	—	—	—	—	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu
16h	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000

x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition. Shaded cells are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated Legend: Note 1:

from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. 2:

3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

4:

The following values are for both TBLPTRL and TBLPTRH: All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu)

5: The PRODL and PRODH registers are not implemented on the PIC17C42.

6.2.2.3 TMR0 STATUS/CONTROL REGISTER (T0STA)

This register contains various control bits. Bit7 (INTEDG) is used to control the edge upon which a signal on the RA0/INT pin will set the RB0/INT interrupt flag. The other bits configure the Timer0 prescaler and clock source. (Figure 11-1).

FIGURE 6-9: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W - 0 INTED0 bit7) R/W - 0 R/ G TOSE T	<u>/W - 0 R/W - 0</u> TOCS PS3	R/W - 0 PS2	<u>R/W - 0</u> PS1	R/W - 0 PS0	U - 0 — bit0	R = Readable bit W = Writable bit U = Unimplemented, reads as '0'				
bit 7:	INTEDG: RA0/ This bit selects 1 = Rising edge 0 = Falling edge	INT Pin Interrupt E the edge upon wh of RA0/INT pin g e of RA0/INT pin g	dge Selec nich the int enerates ir enerates i	t bit errupt is d nterrupt nterrupt	etected.		-n = Value at POR reset				
bit 6:	TOSE : Timer0 (This bit selects <u>When TOCS =</u> 1 = Rising edge 0 = Falling edg <u>When TOCS =</u> Don't care	TOSE : Timer0 Clock Input Edge Select bit This bit selects the edge upon which TMR0 will increment. <u>When T0CS = 0</u> 1 = Rising edge of RA1/T0CKI pin increments TMR0 and/or generates a T0CKIF interrupt 0 = Falling edge of RA1/T0CKI pin increments TMR0 and/or generates a T0CKIF interrupt <u>When T0CS = 1</u> Don't care									
bit 5:	TOCS : Timer0 This bit selects 1 = Internal ins 0 = TOCKI pin	TOCS : Timer0 Clock Source Select bit This bit selects the clock source for Timer0. 1 = Internal instruction clock cycle (TcY) 0 = T0CKI pin									
bit 4-1:	PS3:PS0: Time These bits sele	er0 Prescale Selected the prescale va	tion bits lue for Tim	er0.							
	PS3:PS0	Prescale Value	•								
	0000 0001 0010 010 0100 0101 0110 0111 1xxx	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256									
bit 0:	Unimplemente	ed: Read as '0'									

13.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either the SREN (RCSTA<5>) bit or the CREN (RCSTA<4>) bit. Data is sampled on the RA4/RX/DT pin on the falling edge of the clock. If SREN is set, then only a single word is received. If CREN is set, the reception is continuous until CREN is reset. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is RESET by the hardware. In this case it is reset when RCREG has been read and is empty. RCREG is a double buffered register; i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR. On the clocking of the last bit of the third byte, if RCREG is still full, then the overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software. This is done by clearing the CREN bit. If OERR bit is set, transfers from RSR to RCREG are inhibited, so it is essential to clear OERR bit if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received data: therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. See Section 13.1 for details.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 6. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 7. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading RCREG.
- 9. If any error occurred, clear the error by clearing CREN.

Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

CALL		Subroutin	ne Call		CLI	RF	Clear f				
Syntax:		[label] C	CALL k		Syr	itax:	[<i>label</i>] CL	.RF f,s			
Operan	ds:	$0 \le k \le 409$	95		Ope	erands:	$0 \le f \le 25$	$0 \le f \le 255$			
Operati	on:	PC+ 1→ T k<12:8> –	$OS, k \rightarrow PC \rightarrow PCLATH<4$	<12:0>, :0>;	Ope	eration:	$00h \rightarrow f,$ $00h \rightarrow de$	$\begin{array}{l} 00h \rightarrow f, s \in [0,1] \\ 00h \rightarrow dest \end{array}$			
		PC<15:13	$> \rightarrow PCLATH$	1<7:5>	Sta	tus Affected:	None	None			
Status A	Affected:	None		i	Enc	oding:	0010	100s	ffff	ffff	
Encodir	ng:	111k	kkkk kkł	k kkkk	Des	scription:	Clears the	contents	of the sp	ecified rea-	
Descrip	otion:	Subroutine return addre the stack. TI PC bits<12: bits of the F	call within 8K ess (PC+1) is he 13-bit value :0>. Then the u PC are copied	page. First, pushed onto is loaded into upper-eight into PCLATH.		·	ister(s). s = 0: Data WREG are s = 1: Data cleared.	a memory e cleared. a memory	location	'f' and 'f' is	
		Call is a tw	wo-cycle instru	ction.	Wo	rds:	1				
		See LCALL for calls outside 8K memory space.			Сус	eles:	1				
Words:		1			QC	Cycle Activity:					
Cycles:		2				Q1	Q2	Q	3	Q4	
Q Cvcle	e Activitv:					Decode	Read	Exec	ute	Write	
,	Q1	Q2	Q3	Q4			register i		i a	and other	
[Decode	Read literal 'k'<7:0>	Execute	NOP					:	specified register	
Fo	rced NOP	NOP	Execute	NOP	Exa	imple:	CLRF	FLAC	G_REG		
Example: HERE CALL THERE						Before Instruction FLAG_REG = 0x5A					
PC = Address(HERE)						After Instruction					
Afte	er Instruct	tion Address (THI	·			FLAG_R	EG = 02	x00			

TOS = Address(HERE + 1)

RRN	ICF	Rotate Right f (no carry)					
Synt	ax:	[label]	RRNCF	f,d			
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1]	55				
Ope	ration:	$f < n > \rightarrow c$ $f < 0 > \rightarrow c$	$f < n > \rightarrow d < n-1 >;$ $f < 0 > \rightarrow d < 7 >$				
Statu	us Affected:	None					
Enco	oding:	0010	000d	ffff	ffff		
Desc	cription:	The conte one bit to placed in placed ba	The contents of register 'f' are rotated one bit to the right. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.				
			► re	gister t			
Word	ds:	1					
Cycl	es:	1					
Q Cycle Activity							
_ Q O J	,						
Q 0)	Q1	Q2	Q3	3	Q4		
	Q1 Decode	Q2 Read register 'f'	Q3 Exect) ute V des	Q4 Vrite to stination		
Exar	Q1 Decode nple 1:	Q2 Read register 'f'	Q3 Exect REG, 1	3 ute V des	Q4 Vrite to stination		
Exar	Q1 Decode mple 1: Before Instru WREG REG	Q2 Read register 'f' RRNCF Inction = ? = 1101	Q3 Exect REG, 1 0111	3 ute V des	Q4 Vrite to stination		
Exar	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110	Q3 Exect REG, 1 0111	3 ute V des	Q4 Vrite to stination		
Exar Exar	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110 RRNCF	Q3 Exect REG, 1 0111 1011 REG, 0	3 ute V des	Q4 Vrite to stination		
Exar	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG Before Instru WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110 RRNCF action = ? = 1101	Q3 Exect REG, 1 0111 REG, 0 0111	3 ute V des	Q4 Vrite to stination		

SETF	S	et f					
Syntax:	[/	abel]	SETF	f,s			
Operands:		$\begin{array}{l} 0 \leq f \leq 255 \\ s \in \left[0,1\right] \end{array}$					
Operation:	FI FI	$Fh \rightarrow f;$ $Fh \rightarrow d$					
Status Affected:	Ν	one					
Encoding:		0010	101s	ffff	ffff		
Description:	lf 'f' or to	If 's' is 0, both the data memory location 'f' and WREG are set to FFh. If 's' is 1 only the data memory location 'f' is set to FFh.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1		Q2	Q	3	Q4		
Decode	re	Read gister 'f'	Exect	ute re a s	Write egister 'f' nd other pecified register		
Example1:	SI	STF	REG, 0				
Before Instru REG WREG	uctio = =	n 0xDA 0x05					
After Instruct REG WREG	tion = =	0xFF 0xFF					
Example2:	SE	TF	REG, 1				
Before Instru REG WREG	uctio = =	n 0xDA 0x05					
After Instruct REG WREG	tion = =	0xFF 0x05					

TABLWT	Table Wr	ite		
<u>Example1</u> :	TABLWT	0, 1,	REG	
Before Instruct	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xFFF	F
After Instruction	on (table v	vrite co	mpletic	n)
REG		=	0x53	
TBLATH		=	0x53	
TBLATL		=	0x55	
TBLPTR		=	0xA35	7
MEMORY(TBLPTR -	1) =	0x535	5
Example 2:	TABLWT	1, 0,	REG	
Before Instruct	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xFFF	F
After Instructio	on (table v	vrite co	mpletic	on)
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x53	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xAA5	3
Brogram				Dette
Memory	15		0	Data Memorv
	4			,

16 bits	TBLAT 8 bits

TLRD	Table Latch Read						
Syntax:	[label]	TLRD t,f					
Operands:	0 ≤ f ≤ 25 t ∈ [0,1]	5					
Operation:	lf t = 0, TBLAT lf t = 1,	If $t = 0$, TBLATL $\rightarrow f$;					
	TBLAT	$H \rightarrow f$					
Status Affected:	None						
Encoding:	1010	00tx	ffff	ffff			
Description:	tion: Read data from 16-bit table latch (TBLAT) into file register 'f'. Table La is unaffected.						
	If t = 1; hig	h byte is re	ad				
	If $t = 0$; low	byte is rea	d in con	iunction			
	with TABLE	RD to transf ory to data	er data f memor	from pro- y.			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read	Execute	e	Write			
	register TBLATH or TBLATL		re	gister 't'			
Example:	TLRD	t, RAM					
Before Instru	iction						
t	= 0						
RAM TBLAT	= ? = 0x00AF	= (TBLATI (TBLATI	H = 0x00 L = 0xAl	0) =)			
After Instruct	ion						
RAM TBLAT	= 0xAF = 0x00AF	- (TBLATI (TBLATI	H = 0x0 L = 0xAl	0) =)			
Before Instru	iction						
t RAM	= 1 - 2						
TBLAT	= 9 = 0x00AF	(TBLATH = 0x00) (TBLATL = 0xAF)		D)			
		(TBLATI	L = 0 X A I	-)			
After Instruct	ion	(TBLATI	L = 0xAI	-)			
After Instruct RAM TBLAT	tion = 0x00 = 0x00AF	(TBLATI - (TBLATI (TBLATI	L = 0xAI H = 0x00 L = 0xAI	-) D) =)			
After Instruct RAM TBLAT	tion = 0x00 = 0x00AF	(TBLATI TBLATI (TBLATI	L = 0xAl H = 0x00 L = 0xAl	-) 0) -) Data			
After Instruct RAM TBLAT	tion = 0×00 = $0 \times 00 \text{AF}$	(TBLATI - (TBLATI (TBLATI	H = 0x00 $L = 0xA1$ W	-) D) Data lemory			
After Instruct RAM TBLAT	tion = $0x00$ = $0x00AF$	(TBLATI = (TBLATI (TBLATI 0 BLPTR	H = 0x00 $L = 0xA1$ M	-) D) Data lemory 			
After Instruct RAM TBLAT	tion = 0×00 = $0 \times 00 \text{AF}$	(TBLATI - (TBLATI (TBLATI 	H = 0x01 L = 0xAl	-) -) Data lemory 			

Applicable Devices 42 R42 42A 43 R43 44

17.4 <u>Timing Diagrams and Specifications</u>

TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	—	16	MHz	EC osc mode - PIC17C42-16
		(Note 1)	DC	—	25	MHz	- PIC17C42-25
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	1	—	16	MHz	XT osc mode - PIC17C42-16
			1	—	25	MHz	- PIC17C42-25
			DC	—	2	MHz	LF osc mode
1	Tosc	External CLKIN Period	62.5	—	—	ns	EC osc mode - PIC17C42-16
		(Note 1)	40	—	—	ns	- PIC17C42-25
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	62.5	—	1,000	ns	XT osc mode - PIC17C42-16
			40	—	1,000	ns	- PIC17C42-25
			500	—	—	ns	LF osc mode
2	Тсү	Instruction Cycle Time (Note 1)	160	4/Fosc	DC	ns	
3	TosL,	Clock in (OSC1) High or Low Time	10 ‡	—	—	ns	EC oscillator
	TosH						
4	TosR,	Clock in (OSC1) Rise or Fall Time	—	—	5‡	ns	EC oscillator
	IOSE						

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Instruction cycle period (Tcγ) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-12: MEMORY INTERFACE READ TIMING

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 30	_	_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	5*	_	_	ns	
160	TadZ2oeL	AD<15:0> high impedance to $\overline{OE}\downarrow$	0*	_	—	ns	
161	ToeH2adD	OE↑ to AD<15:0> driven	0.25Tcy - 15	—	_	ns	
162	TadV2oeH	Data in valid before OE↑ (data setup time)	35	—	—	ns	
163	ToeH2adl	OE to data in invalid (data hold time)	0	_	_	ns	
164	TalH	ALE pulse width	—	0.25Tcy §	—	ns	
165	ToeL	OE pulse width	0.5Tcy - 35 §	_	_	ns	
166	TalH2alH	ALE↑ to ALE↑ (cycle time)	—	TCY §	—	ns	
167	Tacc	Address access time	—	_	0.75 Tcy-40	ns	
168	Тое	Output enable access time (OE low to Data Valid)	_		0.5 TCY - 60	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification guaranteed by design.

NOTES:

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3:	CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↓ to CLKOUT	÷	_	15‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↓ to CLKOUT	\uparrow	—	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time		—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time		—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT ↑ to Port out valid	PIC17CR42/42A/43/ R43/44	—	_	0.5TCY + 20 ‡	ns	Note 1
			PIC17LCR42/42A/43/ R43/44	_	—	0.5TCY + 50 ‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT↑	PIC17CR42/42A/43/ R43/44	0.25Tcy + 25 ‡	_		ns	Note 1
			PIC17LCR42/42A/43/ R43/44	0.25Tcy + 50 ‡	—	—	ns	Note 1
16	TckH2iol	Port in hold after CL	KOUT↑	0 ‡	—	_	ns	Note 1
17	TosH2ioV	OSC1↓ (Q1 cycle) t	o Port out valid	—	—	100 ‡	ns	
18	TosH2iol	OSC1↓ (Q2 cycle) to Port input invalid (I/O in hold time)		0 ‡	-	—	ns	
19	TioV2osH	Port input valid to OSC1↓ (I/O in setup time)		30 ‡	_	—	ns	
20	TioR	Port output rise time		—	10 ‡	35 ‡	ns	
21	TioF	Port output fall time	Port output fall time		10 ‡	35 ‡	ns	
22	TinHL	INT pin high or low	time	25 *	—		ns	
23	TrbHL	RB7:RB0 change IN	IT high or low time	25 *	_		ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-17: IOL vs. VOL, VDD = 5V

FIGURE 20-18: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS (TTL) VS. VDD

NOTES:

21.2 <u>40-Lead Plastic Dual In-line (600 mil)</u>

Package Group: Plastic Dual In-Line (PLA)						
Millimeters					Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
A	_	5.080		_	0.200	
A1	0.381	_		0.015	_	
A2	3.175	4.064		0.125	0.160	
В	0.355	0.559		0.014	0.022	
B1	1.270	1.778	Typical	0.050	0.070	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.181	52.197		2.015	2.055	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	13.462	13.970		0.530	0.550	
e1	2.489	2.591	Typical	0.098	0.102	Typical
eA	15.240	15.240	Reference	0.600	0.600	Reference
eB	15.240	17.272		0.600	0.680	
L	2.921	3.683		0.115	0.145	
N	40	40		40	40	
S	1.270	-		0.050	-	
S1	0.508	_		0.020	_	

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSS and MCLR pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package		
PIC12C508, PIC12C509	8-pin		
PIC16C54, PIC16C54A, PIC16CR54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C61, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622, PIC16C710, PIC16C71, PIC16C711, PIC16F83, PIC16CR83, PIC16C84, PIC16F84A, PIC16CR84	18-pin 20-pin		
PIC16C55, PIC16C57, PIC16CR57B	28-pin		
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73, PIC16C73A	28-pin		
PIC16C64, PIC16CR64, PIC16C64A, PIC16C65, PIC16C65A, PIC16C74, PIC16C74A	40-pin		
PIC17C42, PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin		
PIC16C923, PIC16C924	64/68-pin		

TABLE E-1: PIN COMPATIBLE DEVICES