

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-16i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams Cont.'d

PIC17C4X

Register	Address	Power-on Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through interrupt	
Bank 2			1	÷	
TMR1	10h	XXXX XXXX	uuuu uuuu	uuuu uuuu	
TMR2	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TMR3L	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TMR3H	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PR1	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PR2	15h	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PR3/CA1L	16h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PR3/CA1H	17h	XXXX XXXX	uuuu uuuu	uuuu uuuu	
Bank 3					
PW1DCL	10h	xx	uu	uu	
PW2DCL	11h	xx	uu	uu	
PW1DCH	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PW2DCH	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CA2L	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CA2H	15h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TCON1	16h	0000 0000	0000 0000	uuuu uuuu	
TCON2	17h	0000 0000	0000 0000	uuuu uuuu	
Unbanked					
PRODL ⁽⁵⁾	18h	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PRODH ⁽⁵⁾	19h	XXXX XXXX	นนนน นนนน	uuuu uuuu	

TABLE 4-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS (Cont.'d)

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

6.7 Program Counter Module

The Program Counter (PC) is a 16-bit register. PCL, the low byte of the PC, is mapped in the data memory. PCL is readable and writable just as is any other register. PCH is the high byte of the PC and is not directly addressable. Since PCH is not mapped in data or program memory, an 8-bit register PCLATH (PC high latch) is used as a holding latch for the high byte of the PC. PCLATH is mapped into data memory. The user can read or write PCH through PCLATH.

The 16-bit wide PC is incremented after each instruction fetch during Q1 unless:

- Modified by GOTO, CALL, LCALL, RETURN, RETLW, or RETFIE instruction
- · Modified by an interrupt response
- Due to destination write to PCL by an instruction

"Skips" are equivalent to a forced NOP cycle at the skipped address.

Figure 6-11 and Figure 6-12 show the operation of the program counter for various situations.

FIGURE 6-11: PROGRAM COUNTER OPERATION

FIGURE 6-12: PROGRAM COUNTER USING THE CALL AND GOTO INSTRUCTIONS

Using Figure 6-11, the operations of the PC and PCLATH for different instructions are as follows:

- a) <u>LCALL instructions</u>: An 8-bit destination address is provided in the instruction (opcode). PCLATH is unchanged. PCLATH → PCH Opcode<7:0> → PCL
- b) Read instructions on PCL: Any instruction that reads PCL. PCL \rightarrow data bus \rightarrow ALU or destination PCH \rightarrow PCLATH
- c) <u>Write instructions on PCL</u>: Any instruction that writes to PCL. 8-bit data \rightarrow data bus \rightarrow PCL PCLATH \rightarrow PCH
- d) <u>Read-Modify-Write instructions on PCL:</u> Any instruction that does a read-write-modify operation on PCL, such as ADDWF PCL. Read: PCL → data bus → ALU Write: 8-bit result → data bus → PCL
 - $\mathsf{PCLATH} \to \mathsf{PCH}$
- e) <u>RETURN instruction:</u> PCH \rightarrow PCLATH Stack<MRU> \rightarrow PC<15:0>

Using Figure 6-12, the operation of the PC and PCLATH for GOTO and CALL instructions is a follows:

CALL, GOTO instructions: A 13-bit destination address is provided in the instruction (opcode). Opcode<12:0> \rightarrow PC <12:0>

 $PC<15:13> \rightarrow PCLATH<7:5>$

Opcode<12:8> \rightarrow PCLATH <4:0>

The read-modify-write only affects the PCL with the result. PCH is loaded with the value in the PCLATH. For example, ADDWF PCL will result in a jump within the current page. If PC = 03F0h, WREG = 30h and PCLATH = 03h before instruction, PC = 0320h after the instruction. To accomplish a true 16-bit computed jump, the user needs to compute the 16-bit destination address, write the high byte to PCLATH and then write the low value to PCL.

The following PC related operations do not change PCLATH:

- a) LCALL, RETLW, and RETFIE instructions.
- b) Interrupt vector is forced onto the PC.
- c) Read-modify-write instructions on PCL (e.g.BSF PCL).

TABLE 9-5: PORTC FUNCTIONS

Name	Bit	Buffer Type	Function
RC0/AD0	bit0	TTL	Input/Output or system bus address/data pin.
RC1/AD1	bit1	TTL	Input/Output or system bus address/data pin.
RC2/AD2	bit2	TTL	Input/Output or system bus address/data pin.
RC3/AD3	bit3	TTL	Input/Output or system bus address/data pin.
RC4/AD4	bit4	TTL	Input/Output or system bus address/data pin.
RC5/AD5	bit5	TTL	Input/Output or system bus address/data pin.
RC6/AD6	bit6	TTL	Input/Output or system bus address/data pin.
RC7/AD7	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-6: REGISTERS/BITS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
11h, Bank 1	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	XXXX XXXX	uuuu uuuu
10h, Bank 1	DDRC	Data dired	Data direction register for PORTC								1111 1111

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

12.1.2 TIMER1 & TIMER2 IN 16-BIT MODE

To select 16-bit mode, the T16 bit must be set. In this mode TMR1 and TMR2 are concatenated to form a 16-bit timer (TMR2:TMR1). The 16-bit timer increments until it matches the 16-bit period register (PR2:PR1). On the following timer clock, the timer value is reset to 0h, and the TMR1IF bit is set.

When selecting the clock source for the16-bit timer, the TMR1CS bit controls the entire 16-bit timer and TMR2CS is a "don't care." When TMR1CS is clear, the timer increments once every instruction cycle (Fosc/4). When TMR1CS is set, the timer increments on every falling edge of the RB4/TCLK12 pin. For the 16-bit timer to increment, both TMR1ON and TMR2ON bits must be set (Table 12-1).

12.1.2.1 EXTERNAL CLOCK INPUT FOR TMR1:TMR2

When TMR1CS is set, the 16-bit TMR2:TMR1 increments on the falling edge of clock input TCLK12. The input on the RB4/TCLK12 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on RB4/TCLK12 to the time TMR2:TMR1 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

TABLE 12-1. TORINING ON TO-DIT TIME

TMR2ON	TMR10N	Result
1	1	16-bit timer (TMR2:TMR1) ON
0	1	Only TMR1 increments
х	0	16-bit timer OFF

FIGURE 12-4: TMR1 AND TMR2 IN 16-BIT TIMER/COUNTER MODE

TABLE 12-2: SUMMARY OF TIMER1 AND TIMER2 REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 re	Timer1 register								uuuu uuuu
11h, Bank 2	TMR2	Timer2 re	Timer2 register								uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD		_	11 11	11 qq
14h, Bank 2	PR1	Timer1 pe	riod registe	r						xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 pe	riod registe	r						xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	_	—	_	_	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	_	_	_	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', q - value depends on condition,

shaded cells are not used by Timer1 or Timer2.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

12.2.3 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 12-9 shows the timing diagram when operating from an external clock.

12.2.4 READING/WRITING TIMER3

Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method to read or write the timer is to stop the timer, perform any read or write operation, and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 free-running, care must be taken. For writing to the 16-bit TMR3, Example 12-2 may be used. For reading the 16-bit TMR3, Example 12-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 12-2: WRITING TO TMR3

BSF CPUSTA, GLINTD ;Disable interrupt MOVFP RAM_L, TMR3L ; MOVFP RAM_H, TMR3H ; BCF CPUSTA, GLINTD ;Done,enable interrupt

EXAMPLE 12-3: READING FROM TMR3

MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMR3L,	WREG	;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
RETURN			;return

FIGURE 12-9: TMR1, TMR2, AND TMR3 OPERATION IN EXTERNAL CLOCK MODE

13.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 13-4. The data comes in the RA4/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at 16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the stop bit, the received data in the RSR is transferred to the RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is cleared by the hardware. It is cleared when RCREG has been read and is empty. RCREG is a double buffered register; (i.e. it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR. On detection of the stop bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software which is done by resetting the receive logic (CREN is set). If the OERR bit is set, transfers from the RSR to RCREG are inhibited, so it is essential to clear the OERR bit if it is set. The framing error bit FERR (RCSTA<2>) is set if a stop bit is not detected.

FIGURE 13-7: RX PIN SAMPLING SCHEME

Note: The FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received Received data; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

13.2.3 SAMPLING

The data on the RA4/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RA4/RX/DT pin. The sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 11-3).

The x16 clock is a free running clock, and the three sample points occur at a frequency of every 16 falling edges.

RX		Bit0	
(RA4/RX/DT pin)	-	Baud CLK for all but start bit	
Jaud CLK	1		
x16 CLK		2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	
		Samples	

TABLE 13-8: R	REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION
---------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register									xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

PIC17C4X

BTF	SS	Bit Test, skip if Set								
Synt	ax:	[<i>label</i>] E	[label] BTFSS f,b							
Ope	rands:	0 ≤ f ≤ 12 0 ≤ b < 7	$0 \le f \le 127$ $0 \le b < 7$							
Ope	ration:	skip if (f<	skip if (f) = 1							
State	us Affected:	None								
Enco	oding:	1001	0bbb	ffff	ffff					
Des	cription:	If bit 'b' in i instruction	If bit 'b' in register 'f' is 1 then the next instruction is skipped.							
		If bit 'b' is f fetched du cution, is c cuted inste instruction	If bit 'b' is 1, then the next instruction fetched during the current instruction execution, is discarded and an NOP is executed instead, making this a two-cycle instruction.							
Wor	ds:	1	1							
Cycl	es:	1(2)								
QC	vcle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read register 'f'	Execu	ute	NOP					
lf sk	ip:									
	Q1	Q2	Q3		Q4					
	Forced NOP	NOP	Execu	ute	NOP					
<u>Exa</u>	<u>mple</u> :	HERE FALSE TRUE	BTFSS : :	FLAG,1						
	Before Instrue PC	ction = ad	ddress (HE	RE)						
	After Instructi If FLAG<1 PC If FLAG<1 PC	on > = 0; = ad > = 1; = ad	ddress (FA ddress (TR	LSE) UE)						

BTG	i	Bit Tog	ggle	e f					
Synt	ax:	[label	[<i>label</i>] BTG f,b						
Ope	rands:	0 ≤ f ≤ 0 ≤ b <	255 7	5					
Ope	ration:	([)	\rightarrow ((f)					
State	us Affected:	None							
Enco	oding:	0011		1bbb	f	Eff	ffff		
Desc	cription:	Bit 'b' in inverted	dat I.	a memory	loca	ation 'f	' is		
Word	ds:	1							
Cycl	es:	1							
QC	cle Activity:								
	Q1	Q2		Q3		(Q4		
	Decode	Read register	'f'	Execut	e	W regi	/rite ster 'f'		
<u>Exar</u>	<u>mple</u> :	BTG	F	PORTC,	4				
	Before Instru PORTC	uction: = 011	1 0)101 [0x7 5	5]				
	After Instruct PORTC	tion: = 011	0 0	0101 [0x6 5	5]				

PIC17C4X

IORWF	Inclusive		vith f	LCALL	Long Cal	I		
Syntax:	[label]	IORWF f,d		Syntax:	[label]	LCALL k		
Operands:	$0 \le f \le 255$	5		Operands:	$0 \le k \le 25$) ≤ k ≤ 255		
	d ∈ [0,1]			Operation:	PC + 1 →	TOS;		
Operation:	(WREG) .	$OR.\left(f\right) ightarrow\left(de\right)$	est)		$k \rightarrow PCL$,	(PCLATH) –	→ PCH	
Status Affected:	Z			Status Affected:	None			
Encoding:	0000	100d ff	ff ffff	Encoding:	1011	0111 kk	kk kkkk	
Description:	Inclusive O 'd' is 0 the r 'd' is 1 the r ter 'f'.	R WREG with result is placed result is placed	register 'f'. If I in WREG. If I back in regis-	Description:	LCALL allo tine call to gram mem First, the re	ws an uncondi anywhere with ory space. eturn address (itional subrou- in the 64k pro- (PC + 1) is	
Words:	1				pushed on	to the stack. A	16-bit desti-	
Cycles:	1				program co	ress is then loa	ver 8-bits of	
Q Cycle Activity:					the destina	ation address is	embedded in	
Q1	Q2	Q3	Q4		the instruc	tion. The uppe rom PC high h	olding latch.	
Decode	Read	Execute	Write to		PCLATH.	g	;	
	register t		destination	Words:	1			
Example:	IORWF R	esult, O		Cycles:	2			
Before Instru	iction			Q Cycle Activity:				
WREG	$= 0x^{13}$ = 0x91			Q1	Q2	Q3	Q4	
After Instruct	ion			Decode	Read literal 'k'	Execute	Write register PCL	
WREG	= 0x13 = 0x93			Forced NOP	NOP	Execute	NOP	
				Example:	MOVLW H MOVPF W LCALL L	IIGH(SUBROUT REG, PCLATH OW(SUBROUT)	CINE) H INE)	

Before Instruction

SUBROUTINE	=	16-bit Address
PC	=	?
After Instruction		

PC =	Address	(SUBROUTINE)
------	---------	--------------

17.3 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created using one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т				
F	Frequency	Т	Time	
Lowerc	case symbols (pp) and their meanings:			
рр				
ad	Address/Data	ost	Oscillator Start-up Timer	
al	ALE	pwrt	Power-up Timer	
сс	Capture1 and Capture2	rb	PORTB	
ck	CLKOUT or clock	rd	RD	
dt	Data in	rw	RD or WR	
in	INT pin	tO	ТОСКІ	
io	I/O port	t123	TCLK12 and TCLK3	
mc	MCLR	wdt	Watchdog Timer	
oe	ŌĒ	wr	WR	
os	OSC1			
Upperc	case symbols and their meanings:			
S				
D	Driven	L	Low	
E	Edge	P	Period	
F	Fall	R	Rise	
н	High	V	Valid	
	Invalid (Hi-impedance)	Z	Hi-impedance	

18.0 PIC17C42 DC AND AC CHARACTERISTICS

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

TABLE 18-1: PIN CAPACITANCE PER PACKAGE TYPE

Din Nama		Typical Capacitance (pF)									
	40-pin DIP	44-pin MQFP	44-pin TQFP								
All pins, except MCLR, VDD, and Vss	10	10	10	10							
MCLR pin	20	20	20	20							

FIGURE 18-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

Applicable Devices	42	R42	42A	43	R43	44

			Standard Operating Conditions (unless otherwise stated)						
DC CHARACTERISTICS			$-40^{\circ}C \le TA \le +40^{\circ}C$						
			Operating voltage VDD range as described in Section 19.1						
Parameter									
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions		
		Internal Program Memory Programming Specs (Note 4)							
D110 D111	Vpp Vddp	Voltage on MCLR/VPP pin Supply voltage during programming	12.75 4.75	_ 5.0	13.25 5.25	V V	Note 5		
D112 D113	Ipp Iddp	Current into MCLR/VPP pin Supply current during programming		25 ‡ _	50 ‡ 30 ‡	mA mA			
D114	TPROG	Programming pulse width	10	100	1000	μs	Terminated via internal/ external interrupt or a reset		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Note: When using the Table Write for internal programming, the device temperature must be less than 40°C.

FIGURE 19-5: TIMER0 CLOCK TIMINGS

TABLE 19-5: TIMER0 CLOCK REQUIREMENTS

Parameter								
No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
42	Tt0P	T0CKI Period	•	Greater of:	-		ns	N = prescale value
				20 ns or <u>Tcy + 40 §</u>				(1, 2, 4,, 256)
				N				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5TCY + 20 §	_	_	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5Tcy + 20 §	_	_	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N		_	ns	N = prescale value (1, 2, 4, 8)
48	TckE2tmrI	Delay from selected External Clock Edge to Timer increment	2Tosc §		6Tosc §		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 19-7: CAPTURE TIMINGS

TABLE 19-7: CAPTURE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
50	TccL	Capture1 and Capture2 input low time	10 *	—	—	ns	
51	TccH	Capture1 and Capture2 input high time	10 *	—	—	ns	
52	TccP	Capture1 and Capture2 input period	<u>2Tcy</u> § N	—	—	ns	N = prescale value (4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 19-8: PWM TIMINGS

TABLE 19-8: PWM REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
53	TccR	PWM1 and PWM2 output rise time	_	10 *	35 *§	ns	
54	TccF	PWM1 and PWM2 output fall time	—	10 *	35 *§	ns	
* The		maters are abaraterized but not tooted					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: microcontroller, protected microcontroller, extended microcontroller, and microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions have been removed.
- 4. 4 new instructions for transferring data between data memory and program memory. This can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replaces function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing the interrupt.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt on change feature works on all eight port pins.
- 16. TMR0 is 16-bit plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Configuration bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit) (PIC17C43 and PIC17C44 only).
- 19. Peripheral modules operate slightly differently.
- 20. Oscillator modes slightly redefined.
- 21. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 22. Addition of a test mode pin.
- 23. In-circuit serial programming is not implemented.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXX to PIC17CXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the interrupt service routine into its four vectors.
- 3. Replace:

4.

MOVF with:	REG1,	W
MOVFP	REG1,	WREG
Replace:		
MOVF	REG1,	W
MOVWF with:	REG2	
MOVPF	REG1,	REG2 ; Addr(REG1)<20h
or		
MOVFP	REG1,	REG2 ; Addr(REG2)<20h

Note: If REG1 and REG2 are both at addresses greater then 20h, two instructions are required. MOVFP REG1, WREG ; MOVPF WREG, REG2 ;

- 5. Ensure that all bit names and register names are updated to new data memory map location.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on reset.

To convert code from the PIC17C42 to all the other PIC17C4X devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1996} Microchip Technology Inc.

PIC16C7X Family of Devices

E.5

				Clock	_	Memory			Peri	pheral	s			Features	
					1										Т
				DOW AV LOS	So l			Talloo	STAL S		Slott		\backslash	01.	
			-0	though t			ANA .		1 2	8.	RES CLAR	\backslash	(SHO)	HULL BOY	
			Touene	AN LA LARD	1	(S)2	ale .		6		uices	»бį	ν.	10-00	
		ir unu	NO2	W 10 LOLON	20.	inte Col	HON I		anuos		SUIS C	et or		Soler Ano. M	
	N.	it.	0 33	ALL LIFE	\mathbb{X}	and ser	\$\$ \	2			101	J.J.	JA JA	200 M	
PIC16C710	20	512	36	TMR0		I	I	4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP	
PIC16C71	20	ź	36	TMR0				4	4	13	3.0-6.0	Yes	I	18-pin DIP, SOIC	
PIC16C711	20	Ę	89	TMR0				4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP	
PIC16C72	20	2K	128	TMR0, TMR1, TMR2	-	SPI/I ² C	1	5	8	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP	
PIC16C73	20	4 K	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART		5	11	22	3.0-6.0	Yes	I	28-pin SDIP, SOIC	
PIC16C73A ⁽¹⁾	20	4 K	192	TMR0, TMR1, TMR2	7	SPI/I ² C, USART		5	11	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC	
PIC16C74	20	4 7	192	TMR0, TMR1, TMR2	7	SPI/I ² C, USART	Yes	ω	12	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP	
PIC16C74A ⁽¹⁾	20	4 7	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	8	12	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP	
All PI	C16/1	7 Fami	ily devi	ices have Power-	Б	Reset, se	lectable	Matcl	L gobh	Fimer,	selectable	code p	protect	and high I/O current	
capat	bility.	Ľ	- 11 11 -							-		1			
AIL FI Note 1: Pleas	ie cont	act yo	nıly aev ur loca	vices use serial particles office for	ava	gramming ilability of	with cit	ock pin device:	З.	ana a;	ata pin къ				

NOTES: