

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-25-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Address	Power-on Reset	MCLR Reset WDT Reset	Wake-up from SLEEF through interrupt
Bank 2		-		·
TMR1	10h	XXXX XXXX	นนนน นนนน	uuuu uuuu
TMR2	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3L	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3H	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PR1	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PR2	15h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PR3/CA1L	16h	XXXX XXXX	นนนน นนนน	uuuu uuuu
PR3/CA1H	17h	XXXX XXXX	սսսս սսսս	սսսս սսսս
Bank 3				
PW1DCL	10h	xx	uu	uu
PW2DCL	11h	xx	uu	uu
PW1DCH	12h	XXXX XXXX	นนนน นนนน	uuuu uuuu
PW2DCH	13h	XXXX XXXX	นนนน นนนน	uuuu uuuu
CA2L	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CA2H	15h	XXXX XXXX	นนนน นนนน	uuuu uuuu
TCON1	16h	0000 0000	0000 0000	uuuu uuuu
TCON2	17h	0000 0000	0000 0000	uuuu uuuu
Unbanked				
PRODL (5)	18h	XXXX XXXX	นนนน นนนน	นนนน นนนน
PRODH (5)	19h	xxxx xxxx	uuuu uuuu	uuuu uuuu

TABLE 4-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS (Cont.'d)

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

5.3 <u>Peripheral Interrupt Request Register</u> (PIR)

This register contains the individual flag bits for the peripheral interrupts.

Note: These bits will be set by the specified condition, even if the corresponding interrupt enable bit is cleared (interrupt disabled), or the GLINTD bit is set (all interrupts disabled). Before enabling an interrupt, the user may wish to clear the interrupt flag to ensure that the program does not immediately branch to the peripheral interrupt service routine.

FIGURE 5-4: PIR REGISTER (ADDRESS: 16h, BANK 1)

	0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 R-0								
RBIF									
bit7	bit0 W = Writable bit -n = Value at POR reset								
bit 7:	RBIF : PORTB Interrupt on Change Flag bit 1 = One of the PORTB inputs changed (Software must end the mismatch condition) 0 = None of the PORTB inputs have changed								
bit 6:	TMR3IF: Timer3 Interrupt Flag bit If Capture1 is enabled (CA1/PR3 = 1) 1 = Timer3 overflowed 0 = Timer3 did not overflow								
	If Capture1 is disabled (CA1/ $\overline{PR3}$ = 0) 1 = Timer3 value has rolled over to 0000h from equalling the period register (PR3H:PR3L) value 0 = Timer3 value has not rolled over to 0000h from equalling the period register (PR3H:PR3L) value								
bit 5:	TMR2IF : Timer2 Interrupt Flag bit 1 = Timer2 value has rolled over to 0000h from equalling the period register (PR2) value 0 = Timer2 value has not rolled over to 0000h from equalling the period register (PR2) value								
bit 4:	TMR1IF : Timer1 Interrupt Flag bit If Timer1 is in 8-bit mode (T16 = 0) 1 = Timer1 value has rolled over to 0000h from equalling the period register (PR) value 0 = Timer1 value has not rolled over to 0000h from equalling the period register (PR2) value								
	If Timer1 is in 16-bit mode (T16 = 1) 1 = TMR1:TMR2 value has rolled over to 0000h from equalling the period register (PR1:PR2) value 0 = TMR1:TMR2 value has not rolled over to 0000h from equalling the period register (PR1:PR2) value								
bit 3:	CA2IF : Capture2 Interrupt Flag bit 1 = Capture event occurred on RB1/CAP2 pin 0 = Capture event did not occur on RB1/CAP2 pin								
bit 2:	CA1IF : Capture1 Interrupt Flag bit 1 = Capture event occurred on RB0/CAP1 pin 0 = Capture event did not occur on RB0/CAP1 pin								
bit 1:	TXIF : USART Transmit Interrupt Flag bit 1 = Transmit buffer is empty 0 = Transmit buffer is full								
bit 0:	RCIF: USART Receive Interrupt Flag bit 1 = Receive buffer is full 0 = Receive buffer is empty								

TABLE 6-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM
Microprocessor	No Access	No Access
Microcontroller	Access	Access
Extended Microcontroller	Access	No Access
Protected Microcontroller	Access	Access

The PIC17C4X can operate in modes where the program memory is off-chip. They are the microprocessor and extended microcontroller modes. The microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

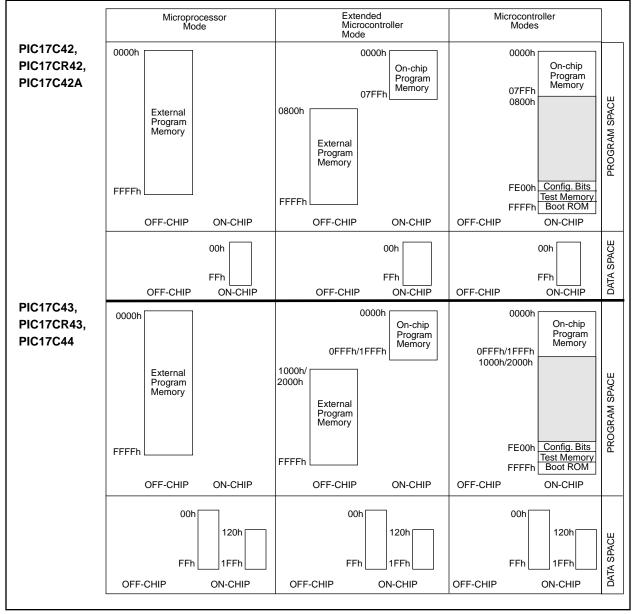
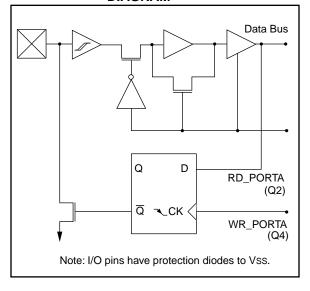
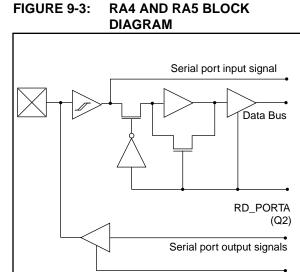




FIGURE 9-2: RA2 AND RA3 BLOCK DIAGRAM

 \overline{OE} = SPEN,SYNC,TXEN, \overline{CREN} , \overline{SREN} for RA4 \overline{OE} = SPEN (\overline{SYNC} +SYNC, \overline{CSRC}) for RA5

Note: I/O pins have protection diodes to VDD and VSS.

TABLE 9-1:	PO	RTA FUNCTI	ONS

.

_ _ _ _

Name	Bit0	Buffer Type	Function
RA0/INT	bit0	ST	Input or external interrupt input.
RA1/T0CKI	bit1	ST	Input or clock input to the TMR0 timer/counter, and/or an external interrupt input.
RA2	bit2	ST	Input/Output. Output is open drain type.
RA3	bit3	ST	Input/Output. Output is open drain type.
RA4/RX/DT	bit4	ST	Input or USART Asynchronous Receive or USART Synchronous Data.
RA5/TX/CK	bit5	ST	Input or USART Asynchronous Transmit or USART Synchronous Clock.
RBPU	bit7		Control bit for PORTB weak pull-ups.

Legend: ST = Schmitt Trigger input.

TABLE 9-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
10h, Bank 0	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0	_	0000 000-	0000 000-
13h, Bank 0	RCSTA	SPEN	RC9	SREN	CREN	—	FERR	OERR	RC9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	0000lu

Legend: x = unknown, u = unchanged, - = unimplemented reads as '0'. Shaded cells are not used by PORTA. Note 1: Other (non power-up) resets include: external reset through \overline{MCLR} and the Watchdog Timer Reset.

9.5 I/O Programming Considerations

9.5.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. For example, the BCF and BSF instructions read the register into the CPU, execute the bit operation, and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g. bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading a port reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (BCF, BSF, BTG, etc.) on a port, the value of the port pins is read, the desired operation is performed with this value, and the value is then written to the port latch.

Example 9-5 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 9-5: READ MODIFY WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORT settings: PORTB<7:4> Inputs PORTB<3:0> Outputs ; ; PORTB<7:6> have pull-ups and are ; not connected to other circuitry ; PORT latch PORT pins ; ; _____ _____ ; PORTB, 7 BCF 01pp pppp 11pp pppp BCF PORTB, 6 10pp pppp 11pp pppp ; BCF DDRB, 7 10pp pppp 11pp pppp BCF DDRB, 6 10pp pppp 10pp pppp ; ; Note that the user may have expected the ; pin values to be 00pp pppp. The 2nd BCF ; caused RB7 to be latched as the pin value ; (High).

Note: A pin actively outputting a Low or High should not be driven from external devices in order to change the level on this pin (i.e. "wired-or", "wired-and"). The resulting high output currents may damage the device.

9.5.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 9-9). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before executing the instruction that reads the values on that I/O port. Otherwise, the previous state of that pin may be read into the CPU rather than the "new" state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 9-9: SUCCESSIVE I/O OPERATION

Instruction fetched	Q1 Q2 Q3 Q4 PC MOVWF PORTB write to PORTB	PC + 1	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 <u>PC+2</u> <u>PC+3</u> NOP NOP	Note: This example shows a write to PORTB followed by a read from PORTB. Note that: data setup time = (0.25 Tcy - TPD) where TcY = instruction cycle. TPD = propagation delay
RB7:RB0			X	Therefore, at higher clock frequencies, a write followed by a
			Port pin sampled here	read may be problematic.
Instruction executed		MOVWF PORTB write to PORTB	MOVF PORTB,W NOP	
			· · · · ·	

11.3 Read/Write Consideration for TMR0

Although TMR0 is a 16-bit timer/counter, only 8-bits at a time can be read or written during a single instruction cycle. Care must be taken during any read or write.

11.3.1 READING 16-BIT VALUE

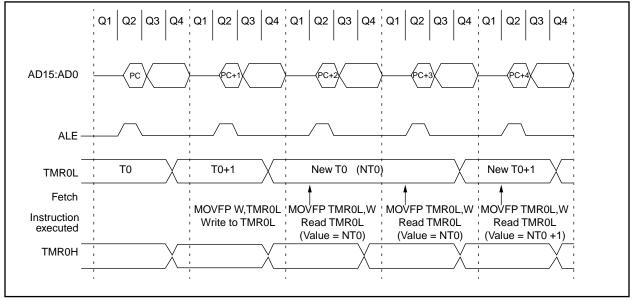
The problem in reading the entire 16-bit value is that after reading the low (or high) byte, its value may change from FFh to 00h.

Example 11-1 shows a 16-bit read. To ensure a proper read, interrupts must be disabled during this routine.

EXAMPLE 11-1: 16-BIT READ

MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMR0L		;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
RETURN			;return

11.3.2 WRITING A 16-BIT VALUE TO TMR0


Since writing to either TMR0L or TMR0H will effectively inhibit increment of that half of the TMR0 in the next cycle (following write), but not inhibit increment of the other half, the user must write to TMR0L first and TMR0H next in two consecutive instructions, as shown in Example 11-2. The interrupt must be disabled. Any write to either TMR0L or TMR0H clears the prescaler.

EXAMPLE 11-2: 16-BIT WRITE

BSF CPUSTA, GLINTD ; Disable interrupt MOVFP RAM_L, TMROL ; MOVFP RAM_H, TMROH ; BCF CPUSTA, GLINTD ; Done, enable interrupt

11.4 Prescaler Assignments

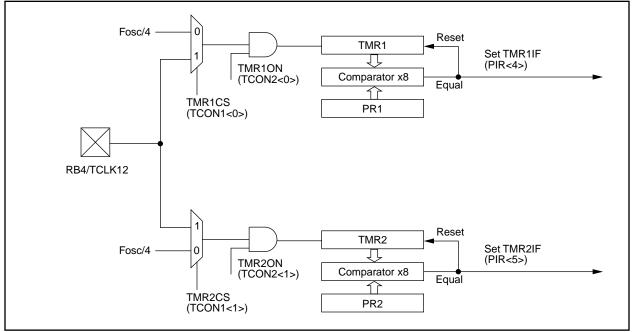
Timer0 has an 8-bit prescaler. The prescaler assignment is fully under software control; i.e., it can be changed "on the fly" during program execution. When changing the prescaler assignment, clearing the prescaler is recommended before changing assignment. The value of the prescaler is "unknown," and assigning a value that is less then the present value makes it difficult to take this unknown time into account.

FIGURE 11-4: TMR0 TIMING: WRITE HIGH OR LOW BYTE

12.1 <u>Timer1 and Timer2</u>

12.1.1 TIMER1, TIMER2 IN 8-BIT MODE

Both Timer1 and Timer2 will operate in 8-bit mode when the T16 bit is clear. These two timers can be independently configured to increment from the internal instruction cycle clock or from an external clock source on the RB4/TCLK12 pin. The timer clock source is configured by the TMRxCS bit (x = 1 for Timer1 or = 2 for Timer2). When TMRxCS is clear, the clock source is internal and increments once every instruction cycle (Fosc/4). When TMRxCS is set, the clock source is the RB4/TCLK12 pin, and the timer will increment on every falling edge of the RB4/TCLK12 pin.


The timer increments from 00h until it equals the Period register (PRx). It then resets to 00h at the next increment cycle. The timer interrupt flag is set when the timer is reset. TMR1 and TMR2 have individual interrupt flag bits. The TMR1 interrupt flag bit is latched into TMR1IF, and the TMR2 interrupt flag bit is latched into TMR2IF.

Each timer also has a corresponding interrupt enable bit (TMRxIE). The timer interrupt can be enabled by setting this bit and disabled by clearing this bit. For peripheral interrupts to be enabled, the Peripheral Interrupt Enable bit must be enabled (PEIE is set) and global interrupts must be enabled (GLINTD is cleared).

The timers can be turned on and off under software control. When the Timerx On control bit (TMRxON) is set, the timer increments from the clock source. When TMRxON is cleared, the timer is turned off and cannot cause the timer interrupt flag to be set.

12.1.1.1 EXTERNAL CLOCK INPUT FOR TIMER1 OR TIMER2

When TMRxCS is set, the clock source is the RB4/TCLK12 pin, and the timer will increment on every falling edge on the RB4/TCLK12 pin. The TCLK12 input is synchronized with internal phase clocks. This causes a delay from the time a falling edge appears on TCLK12 to the time TMR1 or TMR2 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

FIGURE 12-3: TIMER1 AND TIMER2 IN TWO 8-BIT TIMER/COUNTER MODE

13.3 USART Synchronous Master Mode

In Master Synchronous mode, the data is transmitted in a half-duplex manner; i.e. transmission and reception do not occur at the same time: when transmitting data, the reception is inhibited and vice versa. The synchronous mode is entered by setting the SYNC (TXSTA<4>) bit. In addition, the SPEN (RCSTA<7>) bit is set in order to configure the RA5 and RA4 I/O ports to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting the CSRC (TXSTA<7>) bit.

13.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer TXREG. TXREG is loaded with data in software. The TSR is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), TXREG is empty and the TXIF (PIR<1>) bit is set. This interrupt can be enabled/disabled by setting/clearing the TXIE bit (PIE<1>). TXIF will be set regardless of the state of bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of TXREG, TRMT (TXSTA<1>) shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the RA5/TX/CK pin. Data out is stable around the falling edge of the synchronous clock (Figure 13-10). The transmission can also be started by first loading TXREG and then setting TXEN. This is advantageous when slow baud rates are selected, since BRG is kept in RESET when the TXEN, CREN, and SREN bits are clear. Setting the TXEN bit will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to the TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The RA4/RX/DT and RA5/TX/CK pins will revert to hi-impedance. If either CREN or SREN are set during a transmission, the transmission is aborted and the

RA4/RX/DT pin reverts to a hi-impedance state (for a reception). The RA5/TX/CK pin will remain an output if the CSRC bit is set (internal clock). The transmitter logic is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear the TXEN bit. If the SREN bit is set (to interrupt an ongoing transmission and receive a single word), then after the single word is received, SREN will be cleared and the serial port will revert back to transmitting, since the TXEN bit is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty). If the TSR was empty and TXREG was written before writing the "new" TX9D, the "present" value of TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Baud Rate Generator Section for details).
- 2. Enable the synchronous master serial port by setting the SYNC, SPEN, and CSRC bits.
- 3. Ensure that the CREN and SREN bits are clear (these bits override transmission when set).
- 4. If interrupts are desired, then set the TXIE bit (the GLINTD bit must be clear and the PEIE bit must be set).
- 5. If 9-bit transmission is desired, then set the TX9 bit.
- 6. Start transmission by loading data to the TXREG register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 8. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the reverse order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

14.3 Watchdog Timer (WDT)

The Watchdog Timer's function is to recover from software malfunction. The WDT uses an internal free running on-chip RC oscillator for its clock source. This does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLK-OUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation and SLEEP mode, a WDT time-out generates a device RESET. The WDT can be permanently disabled by programming the configuration bits WDTPS1:WDTPS0 as '00' (Section 14.1).

Under normal operation, the WDT must be cleared on a regular interval. This time is less the minimum WDT overflow time. Not clearing the WDT in this time frame will cause the WDT to overflow and reset the device.

14.3.1 WDT PERIOD

The WDT has a nominal time-out period of 12 ms, (with postscaler = 1). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a postscaler with a division ratio of up to 1:256 can be assigned to the WDT. Thus, typical time-out periods up to 3.0 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out thus generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the CPUSTA register will be cleared upon a WDT time-out.

14.3.2 CLEARING THE WDT AND POSTSCALER

The WDT and postscaler are cleared when:

- The device is in the reset state
- A SLEEP instruction is executed
- A CLRWDT instruction is executed
- Wake-up from SLEEP by an interrupt

The WDT counter/postscaler will start counting on the first edge after the device exits the reset state.

14.3.3 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT postscaler) it may take several seconds before a WDT time-out occurs.

The WDT and postscaler is the Power-up Timer during the Power-on Reset sequence.

14.3.4 WDT AS NORMAL TIMER

When the WDT is selected as a normal timer, the clock source is the device clock. Neither the WDT nor the postscaler are directly readable or writable. The overflow time is 65536 Tosc cycles. On overflow, the $\overline{\text{TO}}$ bit is cleared (device is not reset). The CLRWDT instruction can be used to set the $\overline{\text{TO}}$ bit. This allows the WDT to be a simple overflow timer. When in sleep, the WDT does not increment.

ADDLW	ADD Literal to WREG							
Syntax:	[label] A	DLW	k					
Operands:	$0 \le k \le 25$	$0 \le k \le 255$						
Operation:	(WREG) + k \rightarrow (WREG)							
Status Affected:	OV, C, DC	C, Z						
Encoding:	1011	0001	kkkk	kkkk				
Description:	Pescription: The contents of WREG are added to the 8-bit literal 'k' and the result is placed in WREG.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Read literal 'k'	Execu		Vrite to WREG				
Example:	ADDLW	0x15						
Before Instruction WREG = 0x10								

ADDWF	ADD WRE	EG to f						
Syntax:	[<i>label</i>] A[[label]ADDWF f,d						
Operands:	$0 \le f \le 255$ $d \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$						
Operation:	(WREG) +	- (f) \rightarrow (de	est)					
Status Affected:	OV, C, DC	, Z						
Encoding:	0000	111d	ffff	ffff				
Description:	Add WREG result is sto result is sto	red in WRE	EG. If 'd'	is 1 the				
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Execute	· ·	/rite to stination				
Example:	ADDWF	REG, 0						
Before Instru WREG REG	iction = 0x17 = 0xC2							
After Instruct WREG REG	tion = 0xD9 = 0xC2							

After Instruction WREG = 0x25

CPFSEQ	Compare f with WREG, skip if f = WREG		CPF	SGT	-	Compare f with WREG, skip if f > WREG			
Syntax:	[label]	CPFSEQ f		Syn	tax:	[label]	CPFSGT f		
Operands:	$0 \le f \le 255$	5		Ope	rands:	$0 \le f \le 255$	$0 \le f \le 255$		
Operation:	(f) – (WREG), skip if (f) = (WREG) (unsigned comparison)		Ope	ration:	skip if (f) >	(f) – (WREG), skip if (f) > (WREG) (unsigned comparison)			
Status Affected:	None			Stat	us Affected:	None			
Encoding:	0011	0001 fff	f ffff	Enc	oding:	0011	0010 ff:	ff ffff	
Description:	Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If 'f' = WREG then the fetched instruc- tion is discarded and an NOP is exe- cuted instead making this a two-cycle instruction.			Des	cription:	location 'f' t by performi If the conte WREG the discarded a instead ma	o the contents ng an unsigne nts of 'f' > the n the fetched in and an NOP is	nstruction is	
Words:	1			14/0 -	de .	tion. 1			
Cycles:	1 (2)			Wor		-			
Q Cycle Activity:				Cyc		1 (2)			
Q1	Q2	Q3	Q4	QC	ycle Activity: Q1	Q2	Q3	Q4	
Decode	Read register 'f'	Execute	NOP		Decode	Read	Execute	NOP	
If skip:				lf sk	in:	register 'f'			
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
Forced NOP	NOP	Execute	NOP		Forced NOP	NOP	Execute	NOP	
<u>Example</u> :	NEQUAL	CPFSEQ REG : :		<u>Exa</u>	mple:	HERE NGREATER GREATER	CPFSGT RE : :	G	
Before Instru PC Addre					Before Instru	-	·		
WREG REG	ess = HE = ? = ?	RE			PC WREG		dress (HERE)		
After Instruct If REG PC If REG PC	= W = Ac ≠ W	REG; Idress (EQUAL REG; Idress (NEQUA			After Instruc If REG PC If REG PC	> Wi = Ad ≤ Wi	REG; Idress (GREAT REG; Idress (NGREZ		

DCF	SNZ	Decreme	nt f, skip if	not (0
Syn	tax:	[<i>label</i>] D	CFSNZ f,c	1	
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1]	5		
Ope	ration:	(f) – 1 \rightarrow skip if not			
Stat	us Affected:	None			
Enc	oding:	0010	011d f:	Eff	ffff
Des	cription:	mented. If WREG. If back in reg If the result which is all and an NO	hts of register d' is 0 the res d' is 1 the res gister 'f'. t is not 0, the ready fetched P is executed -cycle instruct	sult is sult is p next ir I, is di d inste	placed in placed nstruction, scarded,
Wor	ds:	1			
Cyc	les:	1(2)			
Q Cycle Activity:					
Q1 Decode		Q2	Q3		Q4
		Read register 'f'	Execute		Write to estination
lf sk	ip:				
	Q1	Q2	Q3		Q4
	Forced NOP	NOP	Execute		NOP
<u>Example</u> :		HERE ZERO NZERO	DCFSNZ TI : :	EMP,	1
	Before Instru TEMP_V		?		
	After Instruct TEMP_V If TEMP_ PC If TEMP_ PC	ALUE = VALUE = =	TEMP_VA 0; Address (0; Address (ZERO)

Synta	av.	[lahel]	[<i>label</i>] GOTO k						
-	ands:		$0 \le k \le 8191$						
•		$k \rightarrow PC < 12:0>;$							
Oper	ation:	k<12:8> -	$k < 12:8> \rightarrow PCLATH < 4:0>,$ $PC < 15:13> \rightarrow PCLATH < 7:5>$						
Statu	is Affected:	None							
Enco	ding:	110k	kkkk	kkkk	kkkl				
		The thirteen loaded into upper eight	anywhere within an 8K page boundary. The thirteen bit immediate value is loaded into PC bits <12:0>. Then the upper eight bits of PC are loaded into PCLATH. GOTO is always a two-cycle instruction.						
Word	ls:	1							
Cycles:		2							
Q Cycle Activity:									
_	Q1	Q2	Q3	3	Q4				
	Decode	Read literal 'k'<7:0>	Execu	ute	NOP				
	Forced NOP	NOP	Execu	ute	NOP				
Exan		-		ute	NOP				

IORWF	Inclusive		with f	LCALL	Long Cal	I	
Syntax:	[label]	ORWF f,d		Syntax:	[label]	LCALL k	
Operands:	$0 \le f \le 255$	5		Operands:	$0 \le k \le 25$	5	
	d ∈ [0,1]			Operation:	PC + 1 \rightarrow	TOS;	
Operation:	(WREG) .	$OR.\left(f ight) ightarrow\left(de ight)$	est)		$k \rightarrow PCL$,	(PCLATH) -	\rightarrow PCH
Status Affected:	Z			Status Affecte	d: None		
Encoding:	0000	100d ff:	ff ffff	Encoding:	1011	0111 kk	kk kkkk
Description:	'd' is 0 the r	R WREG with esult is placed esult is placed	0	Description:	tine call to gram mem First, the re	anywhere with ory space. eturn address	· · ·
Words:	1				•	to the stack. A ress is then lo	
Cycles:	1					ounter. The lo	
Q Cycle Activity:							s embedded in
Q1	Q2	Q3	Q4			om PC high h	er 8-bits of PC olding latch,
Decode	Read register 'f'	Execute	Write to destination		PCLATH.	Ū	0
	0		uestination	Words:	1		
Example:		ESULT, O		Cycles:	2		
Before Instru RESULT				Q Cycle Activi	ty:		
WREG	= 0x13 = 0x91			Q1	Q2	Q3	Q4
After Instruct RESULT				Decode	Read literal 'k'	Execute	Write register PCL
WREG	= 0x13 = 0x93			Forced NC	DP NOP	Execute	NOP
				Example:	MOVPF W	IGH(SUBROU REG, PCLAT OW(SUBROUT	Н

Before Instruction

SUBROUTINE	=	16-bit Address
PC	=	?
After Instruction		

PC = Address (S	UBROUTINE)
-----------------	------------

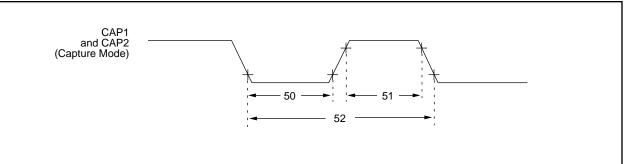
Droduct	** MDI ADTM		MD-Drivo/Mov		*** DICMACTED®/				DIC CTADT® DI
	Integrated	Compiler	Applications	Explorer/Edition	PICMASTER-CE	Low-Cost	II Universal	Ultra Low-Cost	Low-Cost
	Development Environment		Code Generator	Fuzzy Logic Dev. Tool	In-Circuit Emulator	In-Circuit Emulator	Microchip Programmer	Dev. Kit	Universal Dev. Kit
PIC12C508, 509	SW007002	SW006005	1	I	EM167015/ EM167101	1	DV007003	1	DV003001
PIC14000	SW007002	SW006005	I	I	EM147001/ EM147101	1	DV007003	I	DV003001
PIC16C52, 54, 54A, 55, 56, 57, 58A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167015/ EM167101	EM167201	DV007003	DV162003	DV003001
PIC16C554, 556, 558	SW007002	SW006005	1	DV005001/ DV005002	EM167033/ EM167113	1	DV007003	I	DV003001
PIC16C61	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167021/ N/A	EM167205	DV007003	DV162003	DV003001
PIC16C62, 62A, 64, 64A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167025/ EM167103	EM167203	DV007003	DV162002	DV003001
PIC16C620, 621, 622	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167023/ EM167109	EM167202	DV007003	DV162003	DV003001
PIC16C63, 65, 65A, 73, 73A, 74, 74A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167025/ EM167103	EM167204	DV007003	DV162002	DV003001
PIC16C642, 662*	SW007002	SW006005	1	I	EM167035/ EM167105	1	DV007003	DV162002	DV003001
PIC16C71	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167027/ EM167105	EM167205	DV007003	DV162003	DV003001
PIC16C710, 711	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167027/ EM167105	1	DV007003	DV162003	DV003001
PIC16C72	SW007002	SW006005	SW006006	I	EM167025/ EM167103	1	DV007003	DV162002	DV003001
PIC16F83	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107	1	DV007003	DV162003	DV003001
PIC16C84	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107	EM167206	DV007003	DV162003	DV003001
PIC16F84	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107		DV007003	DV162003	DV003001
PIC16C923, 924*	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167031/ EM167111		DV007003	I	DV003001
PIC17C42, 42A, 43, 44	SW007002	SW006005	SW006006	DV005001/ DV005002	EM177007/ EM177107	1	DV007003	I	DV003001
*Contact Microchip Technology for availability date **MPLAB Integrated Development Environment includes MPLAB-SIM Simulator and MPASM Assembler	innology for avails velopment Enviro	ability date inment includes	s MPLAB-SIM Sir	mulator and	***All PICMASTER and PICMASTER-CE ordering part numbers above include PRO MATE II programmer ****PRO MATE socket modules are ordered separately. See development systems ordering guide for specific ordering part numbers	and PICMAST rogrammer at modules are or specific orde	II PICMASTER and PICMASTER-CE ordering par PRO MATE II programmer RO MATE socket modules are ordered separately. ordering guide for specific ordering part numbers	***All PICMASTER and PICMASTER-CE ordering part numbers above include PRO MATE II programmer **PRO MATE socket modules are ordered separately. See development system ordering guide for specific ordering part numbers	lude stems
Product	TRUEGAUGI	TRUEGAUGE® Development Kit		SEEVAL® Designers Kit	Hopping Code Security Programmer Kit	Security Prog		Hopping Code Security Eval/Demo Kit	ity Eval/Demo Kit
All 2 wire and 3 wire Serial EEPROM's		N/A		DV243001		N/A		N/A	
MTA11200B		DV114001		N/A		N/A		N/A	
HCS200, 300, 301 *		N/A		N/A	-	PG306001		DM303001	001

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

17.3 <u>Timing Parameter Symbology</u>


The timing parameter symbols have been created using one of the following formats:

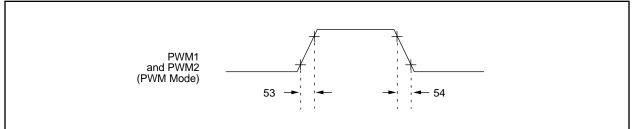
- 1. TppS2ppS
- 2. TppS

2.100				
Т				
F	Frequency	T	Time	
Lowerc	case symbols (pp) and their meanings:			
рр				
ad	Address/Data	ost	Oscillator Start-up Timer	
al	ALE	pwrt	Power-up Timer	
сс	Capture1 and Capture2	rb	PORTB	
ck	CLKOUT or clock	rd	RD	
dt	Data in	rw	RD or WR	
in	INT pin	tO	ТОСКІ	
io	I/O port	t123	TCLK12 and TCLK3	
mc	MCLR	wdt	Watchdog Timer	
oe	OE	wr	WR	
OS	OSC1			
Upperc	case symbols and their meanings:			
S				
D	Driven	L	Low	
E	Edge	P	Period	
F	Fall	R	Rise	
н	High	V	Valid	
I	Invalid (Hi-impedance)	Z	Hi-impedance	

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-7: CAPTURE TIMINGS

TABLE 17-7: CAPTURE REQUIREMENTS


Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
50	TccL	Capture1 and Capture2 input low time	10 *	—	—	ns	
51	TccH	Capture1 and Capture2 input high time	10 *	—	_	ns	
52	TccP	Capture1 and Capture2 input period	<u>2 Tcy</u> § N	—	—	ns	N = prescale value (4 or 16)

* These parameters are characterized but not tested.

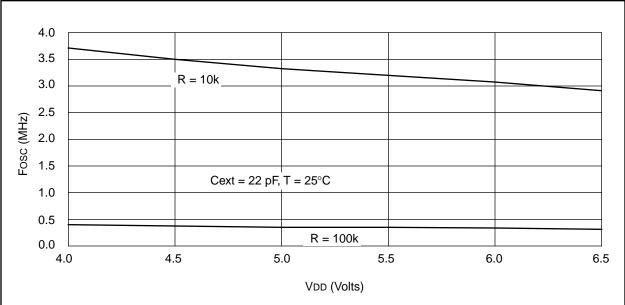
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

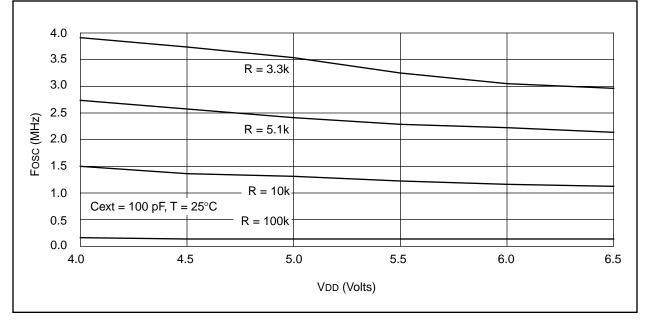
FIGURE 17-8: PWM TIMINGS

TABLE 17-8: PWM REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
53	TccR	PWM1 and PWM2 output rise time	_	10 *	35 *§	ns	
54	TccF	PWM1 and PWM2 output fall time	—	10 *	35 *§	ns	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 18-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

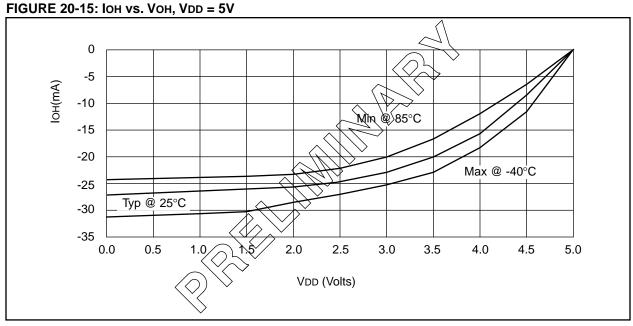
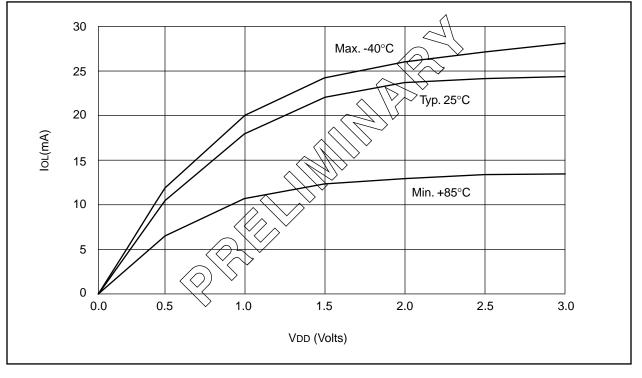
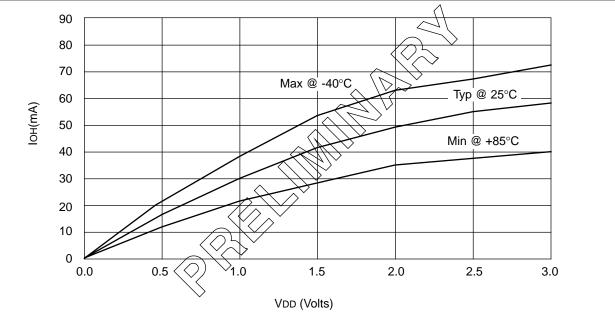
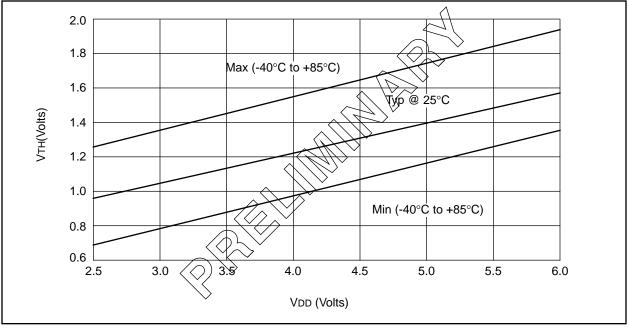




FIGURE 20-16: IOL vs. VOL, VDD = 3V



Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-17: IOL vs. VOL, VDD = 5V

FIGURE 20-18: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS (TTL) VS. VDD

NOTES: