

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Draduat Status	Obeslats
Product Status	UDSOIELE
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-25e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2.2.1 ALU STATUS REGISTER (ALUSTA)

The ALUSTA register contains the status bits of the Arithmetic and Logic Unit and the mode control bits for the indirect addressing register.

As with all the other registers, the ALUSTA register can be the destination for any instruction. If the ALUSTA register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the ALUSTA register as destination may be different than intended.

For example, CLRF ALUSTA will clear the upper four bits and set the Z bit. This leaves the ALUSTA register as 0000u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions be used to alter the ALUSTA register because these instructions do not affect any status bit. To see how other instructions affect the status bits, see the "Instruction Set Summary."

N	ote 1:	The C and DC bits operate as a borrow out bit in subtraction. See the SUBLW and SUBWF instructions for examples.
N	ote 2:	The overflow bit will be set if the 2's com- plement result exceeds +127 or is less than -128.

Arithmetic and Logic Unit (ALU) is capable of carrying out arithmetic or logical operations on two operands or a single operand. All single operand instructions operate either on the WREG register or a file register. For two operand instructions, one of the operands is the WREG register and the other one is either a file register or an 8-bit immediate constant.

R/W - 1	R/W - 1	R/W - 1	R/W - 1	R/W - x	R/W - x	R/W - x	R/W - x	
FS3 bit7	FS2	FS1	FS0	OV	Z	DC	C bit0	R = Readable bit W = Writable bit -n = Value at POR reset (x = unknown)
bit 7-6:	FS3:FS2 : 00 = Post 01 = Post 1x = FSR	FSR1 Mo t auto-dec t auto-incr t1 value de	ode Select rement FS ement FS pes not ch	bits R1 value R1 value ange				
bit 5-4:	FS1:FS0 : 00 = Post 01 = Post 1x = FSR	FSR0 Mo t auto-dec t auto-incr t0 value de	de Select rement FS ement FS pes not ch	bits R0 value R0 value ange				
bit 3:	OV : Overf This bit is which cau 1 = Overfl 0 = No over	flow bit s used for uses the si ow occurr erflow occ	signed ar ign bit (bit ed for sigr surred	thmetic (2 7) to chang red arithm	's complen ge state. etic, (in this	nent). It inc arithmetic	dicates an c coperation)	overflow of the 7-bit magnitude,
bit 2:	Z : Zero bi 1 = The re 0 = The re	t esult of an esults of a	arithmetic n arithmet	: or logic o ic or logic	peration is operation is	zero s not zero		
bit 1:	DC: Digit For ADDW 1 = A carr 0 = No ca Note: For	carry/borr F and ADD y-out from rry-out fro borrow th	ow bit pLw instruct in the 4th lo m the 4th e polarity	tions. w order b low order s reversed	it of the res bit of the re J.	ult occurre sult	d	
bit 0:	C: carry/b For ADDW 1 = A carr Note that (RRCF, RL 0 = No ca Note: For	orrow bit F and ADD y-out from a subtrac CF) instru rry-out fro borrow th	DLW instruct in the most tion is exe ctions, this m the most e polarity i	tions. significan cuted by a bit is load t significa s reversed	t bit of the r adding the ded with eit nt bit of the d.	result occu two's com her the hig result	rred plement of h or low ord	the second operand. For rotate der bit of the source register.

FIGURE 6-7: ALUSTA REGISTER (ADDRESS: 04h, UNBANKED)

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	;	FSR0 = 20h
	BCF	ALUSTA, FS1	;	Increment FSR
	BSF	ALUSTA, FSO	;	after access
	BCF	ALUSTA, C	;	C = 0
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	;	Addr(FSR) = 0
	CPFSEQ	FSR0	;	FSR0 = END_RAM+1?
	GOTO	LP	;	NO, clear next
	:		;	YES, All RAM is
	:		;	cleared

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

7.3 <u>Table Reads</u>

FIGURE 7-7:

The table read allows the program memory to be read. This allows constant data to be stored in the program memory space, and retrieved into data memory when needed. Example 7-2 reads the 16-bit value at program memory address TBLPTR. After the dummy byte has been read from the TABLATH, the TABLATH is loaded with the 16-bit data from program memory address TBLPTR + 1. The first read loads the data into the latch, and can be considered a dummy read (unknown data loaded into 'f'). INDF0 should be configured for either auto-increment or auto-decrement.

+ 1. The first read loads the data into TABLRD 0,1,INDF0 ; Read LO byte ; of TABLATCH and ; of TABLATCH and ; Update TABLATCH auto-increment or auto-decrement.

MOVLW

MOVWF

MOVLW

MOVWF

TLRD

TABLRD

EXAMPLE 7-2: TABLE READ

LOW (TBL_ADDR)

TBLPTRH

TBLPTRL

0,0,DUMMY

1, INDF0

HIGH (TBL_ADDR) ; Load the Table

;

;

;

;

address

; Dummy read,

; Read HI byte

; Updates TABLATCH

of TABLATCH

Q4 | AD15:AD0 Data in PC PC-TBL PC4 Instruction TABLRD INST (PC+1) INST (PC+2) fetched Instruction INST (PC-1) TABLRD cycle1 TABLRD cycle2 INST (PC+1) executed Data read cycle ALE ŌĒ $\overline{\mathsf{WR}}$

FIGURE 7-8: TABLRD TIMING (CONSECUTIVE TABLRD INSTRUCTIONS)

DS30412C-page 48

12.0 TIMER1, TIMER2, TIMER3, PWMS AND CAPTURES

The PIC17C4X has a wealth of timers and time-based functions to ease the implementation of control applications. These time-base functions include two PWM outputs and two Capture inputs.

Timer1 and Timer2 are two 8-bit incrementing timers, each with a period register (PR1 and PR2 respectively) and separate overflow interrupt flags. Timer1 and Timer2 can operate either as timers (increment on internal Fosc/4 clock) or as counters (increment on falling edge of external clock on pin RB4/TCLK12). They are also software configurable to operate as a single 16-bit timer. These timers are also used as the time-base for the PWM (pulse width modulation) module. Timer3 is a 16-bit timer/counter consisting of the TMR3H and TMR3L registers. This timer has four other associated registers. Two registers are used as a 16-bit period register or a 16-bit Capture1 register (PR3H/CA1H:PR3L/CA1L). The other two registers are strictly the Capture2 registers (CA2H:CA2L). Timer3 is the time-base for the two 16-bit captures.

TMR3 can be software configured to increment from the internal system clock or from an external signal on the RB5/TCLK3 pin.

Figure 12-1 and Figure 12-2 are the control registers for the operation of Timer1, Timer2, and Timer3, as well as PWM1, PWM2, Capture1, and Capture2.

FIGURE 12-1: TCON1 REGISTER (ADDRESS: 16h, BANK 3)

R/W - 0 CA2ED1	R/W - 0 R/W - 0 <t< th=""><th>R = Readable bit</th></t<>	R = Readable bit
bit7	bit0	-n = Value at POR reset
bit 7-6:	CA2ED1:CA2ED0 : Capture2 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 5-4:	 CA1ED1:CA1ED0: Capture1 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge 	
bit 3:	T16 : Timer1:Timer2 Mode Select bit 1 = Timer1 and Timer2 form a 16-bit timer 0 = Timer1 and Timer2 are two 8-bit timers	
bit 2:	TMR3CS : Timer3 Clock Source Select bit 1 = TMR3 increments off the falling edge of the RB5/TCLK3 pin 0 = TMR3 increments off the internal clock	
bit 1:	TMR2CS : Timer2 Clock Source Select bit 1 = TMR2 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR2 increments off the internal clock	
bit 0:	TMR1CS : Timer1 Clock Source Select bit 1 = TMR1 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR1 increments off the internal clock	

FIGURE 13-3: USART TRANSMIT

TABLE 13-3:	BAUD RATES FOR SYNCHRONOUS MODE

BAUD RATE (K)	Fosc = 3	3 MHz %ERROR	SPBRG value (decimal)	Fosc = 2	5 MHz %ERROR	SPBRG value (decimal)	FOSC = 2	0 MHz %ERROR	SPBRG value (decimal)	Fosc = 1	6 MHz %ERROR	SPBRG value (decimal)
()		/02/11/01/	(accinal)		<i>x</i> 021111011	(40011141)		<i>/</i> 021111011	(uconnai)		<i>/</i> 021111011	(uconnai)
0.3	NA	_	_	NA	—	_	NA	_	_	NA	_	_
1.2	NA	_	_	NA	—	_	NA	_	_	NA	_	_
2.4	NA	—	—	NA	—	—	NA	—	—	NA	—	—
9.6	NA	_	—	NA	_	—	NA	_	—	NA	_	_
19.2	NA	—	_	NA	—	_	19.53	+1.73	255	19.23	+0.16	207
76.8	77.10	+0.39	106	77.16	+0.47	80	76.92	+0.16	64	76.92	+0.16	51
96	95.93	-0.07	85	96.15	+0.16	64	96.15	+0.16	51	95.24	-0.79	41
300	294.64	-1.79	27	297.62	-0.79	20	294.1	-1.96	16	307.69	+2.56	12
500	485.29	-2.94	16	480.77	-3.85	12	500	0	9	500	0	7
HIGH	8250	—	0	6250	—	0	5000	—	0	4000	—	0
LOW	32.22	_	255	24.41	_	255	19.53	_	255	15.625	_	255

BAUD	Fosc = 10 M	Hz	SPBRG	Fosc = 7.159) MHz	SPBRG	FOSC = 5.068	3 MHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	NA	_	_	NA	_	_	NA	_	
1.2	NA	_	_	NA	_	_	NA	_	_
2.4	NA	_	_	NA	_	_	NA	_	_
9.6	9.766	+1.73	255	9.622	+0.23	185	9.6	0	131
19.2	19.23	+0.16	129	19.24	+0.23	92	19.2	0	65
76.8	75.76	-1.36	32	77.82	+1.32	22	79.2	+3.13	15
96	96.15	+0.16	25	94.20	-1.88	18	97.48	+1.54	12
300	312.5	+4.17	7	298.3	-0.57	5	316.8	+5.60	3
500	500	0	4	NA	_	_	NA	_	_
HIGH	2500	_	0	1789.8	_	0	1267	_	0
LOW	9.766	_	255	6.991	_	255	4.950	_	255
-									
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	Z	SPBRG	Fosc = 32.76	8 kHz	SPBRG
BAUD RATE (K)	Fosc = 3.579 KBAUD	MHz %ERROR	SPBRG value (decimal)	Fosc = 1 MH KBAUD	z %ERROR	SPBRG value (decimal)	Fosc = 32.76 KBAUD	68 kHz %ERROR	SPBRG value (decimal)
BAUD RATE (K)	Fosc = 3.579 KBAUD NA	MHz %ERROR —	SPBRG value (decimal)	Fosc = 1 MH KBAUD NA	z %ERROR —	SPBRG value (decimal)	Fosc = 32.76 KBAUD 0.303	68 kHz %ERROR +1.14	SPBRG value (decimal) 26
BAUD RATE (K) 0.3 1.2	Fosc = 3.579 KBAUD NA NA	MHz %ERROR — —	SPBRG value (decimal) —	Fosc = 1 MH KBAUD NA 1.202	z %ERROR — +0.16	SPBRG value (decimal) — 207	Fosc = 32.76 KBAUD 0.303 1.170	58 kHz %ERROR +1.14 -2.48	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4	Fosc = 3.579 KBAUD NA NA NA	MHz %ERROR — — —	SPBRG value (decimal) — —	Fosc = 1 MH KBAUD NA 1.202 2.404	z %ERROR +0.16 +0.16	SPBRG value (decimal) — 207 103	Fosc = 32.76 KBAUD 0.303 1.170 NA	68 kHz %ERROR +1.14 -2.48 —	SPBRG value (decimal) 26 6 —
BAUD RATE (K) 0.3 1.2 2.4 9.6	Fosc = 3.579 KBAUD NA NA 9.622	MHz %ERROR +0.23	SPBRG value (decimal) — — — 92	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615	z %ERROR 	SPBRG value (decimal) — 207 103 25	FOSC = 32.76 KBAUD 0.303 1.170 NA NA	8 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2	Fosc = 3.579 KBAUD NA NA 9.622 19.04	MHz %ERROR +0.23 -0.83	SPBRG value (decimal) — — — 92 46	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24	z %ERROR 	SPBRG value (decimal) — 207 103 25 12	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57	MHz %ERROR — — +0.23 -0.83 -2.90	SPBRG value (decimal) — — 92 46 11	FOSC = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34	Z %ERROR +0.16 +0.16 +0.16 +0.16 +0.16 +8.51	SPBRG value (decimal) — 207 103 25 12 2 2	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43	MHz %ERROR — — +0.23 -0.83 -2.90 _3.57	SPBRG value (decimal) — — — 92 46 11 8	FOSC = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA	z <u>~</u> +0.16 +0.16 +0.16 +0.16 +8.51 _	SPBRG value (decimal) — 207 103 25 12 2 2 	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57	SPBRG value (decimal) — — 92 46 11 8 2	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) — 207 103 25 12 2 2 — 2 —	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA	68 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3 NA	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57 —	SPBRG value (decimal) — — 92 46 11 8 2 	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA NA	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) 207 103 25 12 2 2 2 	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500 HIGH	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3 NA 894.9	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57 — _ _	SPBRG value (decimal) — — 92 46 11 8 2 — 0	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA NA NA 250	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) 207 103 25 12 2 2 0	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA NA NA NA S.192	68 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6 0

FIGURE 14-3: CRYSTAL OPERATION, OVERTONE CRYSTALS (XT OSC CONFIGURATION)

TABLE 14-2: CAPACITOR SELECTION FOR CERAMIC RESONATORS

Oscillator Type	Resonator Frequency	Capacitor Range C1 = C2
LF	455 kHz 2.0 MHz	15 - 68 pF 10 - 33 pF
ХТ	4.0 MHz 8.0 MHz 16.0 MHz	22 - 68 pF 33 - 100 pF 33 - 100 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used:

455 kHz	Panasonic EFO-A455K04B	± 0.3%
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%
Resona	tors used did not have built-in capaci	tors.

TABLE 14-3:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

Osc Type	Freq	C1	C2
LF	32 kHz ⁽¹⁾	100-150 pF	100-150 pF
	1 MHz	10-33 pF	10-33 pF
	2 MHz	10-33 pF	10-33 pF
XT	2 MHz	47-100 pF	47-100 pF
	4 MHz	15-68 pF	15-68 pF
	8 MHz ⁽²⁾	15-47 pF	15-47 pF
	16 MHz	TBD	TBD
	25 MHz	15-47 pF	15-47 pF
	32 MHz ⁽³⁾	₍₃₎	₍₃₎

Higher capacitance increases the stability of the oscillator but also increases the start-up time and the oscillator current. These values are for design guidance only. Rs may be required in XT mode to avoid overdriving the crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values for external components.

- Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.
 - Rs of 330Ω is required for a capacitor combination of 15/15 pF.
 - 3: Only the capacitance of the board was present.

Crystals Used:

32.768 kHz	Epson C-001R32.768K-A	± 20 PPM
1.0 MHz	ECS-10-13-1	\pm 50 PPM
2.0 MHz	ECS-20-20-1	± 50 PPM
4.0 MHz	ECS-40-20-1	± 50 PPM
8.0 MHz	ECS ECS-80-S-4	± 50 PPM
	ECS-80-18-1	
16.0 MHz	ECS-160-20-1	TBD
25 MHz	CTS CTS25M	± 50 PPM
32 MHz	CRYSTEK HF-2	± 50 PPM

14.2.3 EXTERNAL CLOCK OSCILLATOR

In the EC oscillator mode, the OSC1 input can be driven by CMOS drivers. In this mode, the OSC1/CLKIN pin is hi-impedance and the OSC2/CLK-OUT pin is the CLKOUT output (4 Tosc).

FIGURE 14-4: EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION)

BSF	:	Bit Set f				
Synt	ax:	[label] E	BSF f,b)		
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$0 \le f \le 255$ $0 \le b \le 7$			
Ope	ration:	$1 \rightarrow (f < b >$	•)			
State	us Affected:	None				
Enco	oding:	1000 0bbb ffff ffff			ffff	
Description: Bit 'b' in register 'f' is set.						
Words:		1				
Cycl	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q	3		Q4
	Decode	Read register 'f'	Exect	ute	Write register 'f'	
<u>Exa</u>	mple:	BSF	FLAG_RE	G, 7		
	Before Instru FLAG_R	iction EG= 0x0A				
	After Instruct FLAG_R	tion EG= 0x8A				

BTFSC	BTFSC Bit Test, skip if Clear					
Syntax:	[<i>label</i>] B	[label] BTFSC f,b				
Operands:	$0 \le f \le 255$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	skip if (f <b< td=""><td colspan="5">skip if (f) = 0</td></b<>	skip if (f) = 0				
Status Affected:	None	None				
Encoding:	1001	1bbb	ffff	ffff		
Description:	If bit 'b' in r instruction i	If bit 'b' in register 'f' is 0 then the next instruction is skipped.				
	If bit 'b' is 0 fetched dur cution is dis cuted instea instruction.	If bit 'b' is 0 then the next instruction fetched during the current instruction exe- cution is discarded, and a NOP is exe- cuted instead, making this a two-cycle instruction.				
Words:	1	1				
Cycles:	1(2)	1(2)				
Q Cycle Activity	:					
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Execu	ite	NOP		
lf skip:			•			
Q1	Q2	Q3		Q4		
Forced NO	P NOP	Execu	ite	NOP		
Example:	HERE E FALSE : TRUE :	STFSC	FLAG,1			
Before Inst	ruction					
PC	= ad	dress (HE	RE)			
After Instru If FLAG PC	ction <1> = 0; ; = ad	dress (TR	UE)			
If FLAG	<1> = 1;		>			
PC	, = ad	= address (FALSE)				

BTF	SS	Bit Test,	skip if Se	t		
Synt	ax:	[<i>label</i>] E	BTFSS f,b)		
Ope	rands:	0 ≤ f ≤ 12 0 ≤ b < 7	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$			
Ope	ration:	skip if (f<	b>) = 1			
State	us Affected:	None	None			
Enco	oding:	1001	1001 Obbb ffff ffff			
Des	cription:	If bit 'b' in register 'f' is 1 then the next instruction is skipped.				
		If bit 'b' is 1, then the next instruction fetched during the current instruction exe- cution, is discarded and an NOP is exe- cuted instead, making this a two-cycle instruction.				
Wor	ds:	1				
Cycl	es:	1(2)	1(2)			
QC	vcle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read register 'f'	Execu	ute	NOP	
lf sk	ip:					
	Q1	Q2	Q3		Q4	
	Forced NOP	NOP	Execu	ute	NOP	
<u>Exa</u>	<u>mple</u> :	HERE FALSE TRUE	BTFSS : :	FLAG,1		
	Before Instrue PC	ction = ad	ddress (HE	RE)		
After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)						

BTG	i	Bit Tog	ggle	e f			
Synt	ax:	[label] B	TG f,b			
Ope	rands:	0 ≤ f ≤ 0 ≤ b <	255 7	5			
Ope	ration:	([)	$(\overline{f}) \to (f)$				
State	us Affected:	None					
Enco	oding:	0011		1bbb	f	Eff	ffff
Description:		Bit 'b' in inverted	dat I.	a memory	loca	ation 'f	' is
Word	ds:	1					
Cycl	es:	1					
QC	cle Activity:						
	Q1	Q2		Q3		(Q4
	Decode	Read register	'f'	Execut	e	W regi	/rite ster 'f'
<u>Exar</u>	<u>mple</u> :	BTG	F	PORTC,	4		
	Before Instru PORTC	iction: = 011	1 0)101 [0x7 5	5]		
	After Instruct PORTC	tion: = 011	0 0	0101 [0x6 5	5]		

CPF	SLT	Compare skip if f <	f with WRE WREG	G,			
Synt	ax:	[label]	CPFSLT f				
Ope	rands:	$0 \le f \le 25$	$0 \le f \le 255$				
Ope	ration:	(f) – (WRE skip if (f) < (unsigned	(f) – (WREG), skip if (f) < (WREG) (unsigned comparison)				
State	us Affected:	None	None				
Enco	oding:	0011	0000 ff	ff ffff			
Description: Compares the contents of data memory location 'f' to the contents of WREG Is performing an unsigned subtraction. If the contents of 'f' < the contents of WREG, then the fetched instruction is discarded and an NOP is executed instead making this a two-cycle instru- tion.				f data memory of WREG by subtraction. contents of instruction is executed -cycle instruc-			
Wor	ds:	1					
Cycl	es:	1 (2)	1 (2)				
QC	vcle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Execute	NOP			
lf sk	ip:						
	Q1	Q2	Q3	Q4			
	Forced NOP	NOP	Execute	NOP			
<u>Exa</u>	<u>mple</u> :	HERE NLESS LESS	CPFSLT REG : :				
	Before Instru	iction					
	PC W	= Ac = ?	<pre>= Address (HERE) = ?</pre>				
After Instruction If REG < WREG; PC = Address (LESS) If REG ≥ WREG; PC = Address (NLESS)) 5)				

DAW	Decimal Adjust W	REG Register		
Syntax:	[label] DAW f,s			
Operands:	0 ≤ f ≤ 255 s ∈ [0,1]			
Operation:	If [WREG<3:0> >9] . WREG<3:0> + 6	OR. [DC = 1] then \rightarrow f<3:0>, s<3:0>;		
	WREG<3:0>→1	f<3:0>, s<3:0>;		
	If [WREG<7:4> >9] . WREG<7:4> + 6	OR. [C = 1] then → f<7:4>, s<7:4>		
	else WREG<7:4> \rightarrow 1	f<7:4>, s<7:4>		
Status Affected:	С			
Encoding:	0010 111s	ffff ffff		
Description:	DAW adjusts the eig WREG resulting from tion of two variables BCD format) and pro packed BCD result. s = 0: Result is pla memory loc WREG.	ht bit value in n the earlier addi- (each in packed iduces a correct aced in Data ation 'f' and		
	s = 1: Result is placed in Data			
	memory location 'f'.			
Words:	1			
Cycles:	1			
	02 03	04		
Decode	Read Execu	te Write		
	register 'f'	register 'f' and other specified register		
Example1:	DAW REG1, 0			
Before Instru	tion			
WREG REG1 C DC	= 0xA5 = ?? = 0 = 0			
After Instructi WREG REG1 C DC	on = 0x05 = 0x05 = 1 = 0			
Example 2:				
Before Instruc WREG REG1 C	= 0xCE = ?? = 0			

0	_	0
DC	=	0
After Instruc	tion	
WREG	=	0x24
REG1	=	0x24
С	=	1
DC	=	0

SW/	\PF	Swap f					
Synt	ax:	[label]	SWAPF	f,d			
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	5				
Ope	ration:	$f < 3:0 > \rightarrow f < 7:4 > \rightarrow$	dest<7: dest<3:	4>; 0>			
State	us Affected:	None					
Encoding:		0001	110d	ffff	ffff		
Description: The upper and lower nibbles of regist 'f' are exchanged. If 'd' is 0 the result placed in WREG. If 'd' is 1 the result i placed in register 'f'.				of register e result is result is			
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q	3	Q4		
	Decode	Read register 'f'	Exect	ute V de	Vrite to stination		
<u>Exar</u>	<u>mple</u> :	SWAPF	REG,	0			
	Before Instru REG	iction = 0x53					
	REG = 0x53 After Instruction REG = 0x35						

TAB	LRD	Table Rea	ıd			
Synt	ax:	[label]	TABLRD t,i,f			
Ope	rands:	$0 \le f \le 255$	5			
		t ∈ [0,1] t ∈ [0,1]				
Ope	ration:	lf t = 1, TBL AT	⊢ ∖f·			
		If t = 0.	$\Gamma I \rightarrow I,$			
		TBLAT	$L \rightarrow f;$			
		Prog N	lem (TBLPTI	$R) \rightarrow TBLAT;$		
		lf i = 1, TBLPT	$R + 1 \rightarrow TBL$	PTR		
State	us Affected:					
Enco	oding:	ng: 1010 10ti fff				
Des	cription:	 A byte of the table latch (TBLAT) is moved to register file 'f'. If t = 0: the high byte is moved; If t = 1: the low byte is moved 				
		 Then the contents of the program memory location pointed to by the 16-bit Table Pointer (TBLPTR) is loaded into the 16-bit Table Latch (TBLAT). 				
		3. If i = 1 If i = 0	: TBLPTR is i : TBLPTR is r incremented	ncremented; not I		
Wor	ds:	1				
Cycl	es:	2 (3 cycle	2 (3 cycle if f = PCL)			
QC	vcle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read	Execute	Write		
		register TBLATH or TBLATL		register 'f'		

TABLWT	Table Wr	ite		
<u>Example1</u> :	TABLWT	0, 1,	REG	
Before Instruct	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xFFF	F
After Instruction	on (table v	vrite co	mpletic	n)
REG		=	0x53	
TBLATH		=	0x53	
TBLATL		=	0x55	
TBLPTR		=	0xA35	7
MEMORY(TBLPTR -	1) =	0x535	5
Example 2:	TABLWT	1, 0,	REG	
Before Instruct	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xFFF	F
After Instructio	on (table v	vrite co	mpletic	on)
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x53	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xAA5	3
Brogram				Dette
Memory	15		0	Data Memorv
	4			,

	TBLPTR
16 bits	TBLAT 8 bits

TLRD	Table Lat	ch Read		
Syntax:	[label]	TLRD t,f		
Operands:	0 ≤ f ≤ 25 t ∈ [0,1]	5		
Operation:	lf t = 0, TBLAT lf t = 1,	$L \rightarrow f;$		
	TBLAT	$H \rightarrow f$		
Status Affected:	None			
Encoding:	1010	00tx	ffff	ffff
Description:	Read data (TBLAT) in is unaffecte	from 16-bit to file regis ed.	table la ter 'f'. Ta	tch ble Latch
	If t = 1; hig	h byte is re	ad	
	If $t = 0$; low	byte is rea	d in con	iunction
	with TABLE	RD to transf ory to data	er data f memor	from pro- y.
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read	Execute	e	Write
	register TBLATH or TBLATL		re	gister 't'
Example:	TLRD	t, RAM		
Before Instru	iction			
t	= 0			
RAM TBLAT	= ? = 0x00AF	= (TBLATI (TBLATI	H = 0x00 L = 0xAl	0) =)
After Instruct	ion			
RAM TBLAT	= 0xAF = 0x00AF	- (TBLATI (TBLATI	H = 0x0 L = 0xAl	0) =)
Before Instru	iction			
t RAM	= 1 - 2			
TBLAT	= 9 = 0x00AF	(TBLATI	H = 0x00	D)
		(TBLATI	L = 0 X A I	-)
After Instruct	ion	(TBLATI	L = 0xAI	-)
After Instruct RAM TBLAT	tion = 0x00 = 0x00AF	(TBLATI - (TBLATI (TBLATI	L = 0xAI H = 0x00 L = 0xAI	-) D) =)
After Instruct RAM TBLAT	tion = 0x00 = 0x00AF	(TBLATI TBLATI (TBLATI	L = 0xAI H = 0x00 L = 0xAI	-) 0) -) Data
After Instruct RAM TBLAT	tion = 0×00 = $0 \times 00 \text{AF}$	(TBLATI - (TBLATI (TBLATI	H = 0x00 $L = 0xA1$ W	-) D) Data lemory
After Instruct RAM TBLAT	tion = $0x00$ = $0x00AF$	(TBLATI = (TBLATI (TBLATI 0 BLPTR	H = 0x00 $L = 0xA1$ M	-) D) Data lemory
After Instruct RAM TBLAT	tion = 0×00 = $0 \times 00 \text{AF}$	(TBLATI - (TBLATI (TBLATI 	H = 0x01 L = 0xAl	-) -) Data lemory

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (fuzzyTECH[®]-MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLABTM Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

Applicable Devices 42 R42 42A 43 R43 44

17.3 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created using one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т				
F	Frequency	Т	Time	
Lowerc	case symbols (pp) and their meanings:			
рр				
ad	Address/Data	ost	Oscillator Start-up Timer	
al	ALE	pwrt	Power-up Timer	
сс	Capture1 and Capture2	rb	PORTB	
ck	CLKOUT or clock	rd	RD	
dt	Data in	rw	RD or WR	
in	INT pin	tO	TOCKI	
io	I/O port	t123	TCLK12 and TCLK3	
mc	MCLR	wdt	Watchdog Timer	
oe	ŌĒ	wr	WR	
os	OSC1			
Upperc	case symbols and their meanings:			
S				
D	Driven	L	Low	
E	Edge	P	Period	
F	Fall	R	Rise	
н	High	V	Valid	
	Invalid (Hi-impedance)	Z	Hi-impedance	

21.2 <u>40-Lead Plastic Dual In-line (600 mil)</u>

Package Group: Plastic Dual In-Line (PLA)								
	Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
A	_	5.080		_	0.200			
A1	0.381	_		0.015	_			
A2	3.175	4.064		0.125	0.160			
В	0.355	0.559		0.014	0.022			
B1	1.270	1.778	Typical	0.050	0.070	Typical		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	51.181	52.197		2.015	2.055			
D1	48.260	48.260	Reference	1.900	1.900	Reference		
E	15.240	15.875		0.600	0.625			
E1	13.462	13.970		0.530	0.550			
e1	2.489	2.591	Typical	0.098	0.102	Typical		
eA	15.240	15.240	Reference	0.600	0.600	Reference		
eB	15.240	17.272		0.600	0.680			
L	2.921	3.683		0.115	0.145			
N	40	40		40	40			
S	1.270	-		0.050	-			
S1	0.508	_		0.020	_			

21 5	44-Lead Plastic Surface Mount ((TOFP 10x10 mm Body	(10/010 mm Lead Form)
Z1.J	H-Leau I lastic Suilace Mount		

Package Group: Plastic TQFP						
		Millimeters			Inches	
Symbol	Min	Мах	Notes	Min	Мах	Notes
A	1.00	1.20		0.039	0.047	
A1	0.05	0.15		0.002	0.006	
A2	0.95	1.05		0.037	0.041	
D	11.75	12.25		0.463	0.482	
D1	9.90	10.10		0.390	0.398	
E	11.75	12.25		0.463	0.482	
E1	9.90	10.10		0.390	0.398	
L	0.45	0.75		0.018	0.030	
е	0.80	BSC		0.031	BSC	
b	0.30	0.45		0.012	0.018	
b1	0.30	0.40		0.012	0.016	
С	0.09	0.20		0.004	0.008	
c1	0.09	0.16		0.004	0.006	
N	44	44		44	44	
Θ	0°	7°		0°	7 °	

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.

3: This outline conforms to JEDEC MS-026.

21.6 **Package Marking Information** 40-Lead PDIP/CERDIP Example PIC17C43-25I/P L006 AABBCDE 9441CCA MICROCHIP MICROCHIP \bigcirc 40 Lead CERDIP Windowed Example XXXXXXXXXXXX PIC17C44 XXXXXXXXXXXX /JW XXXXXXXXXXXX L184 AABBCDE 9444CCT 44-Lead PLCC Example \mathcal{M} \mathcal{M} MICROCHIP MICROCHIP PIC17C42 XXXXXXXXXX ○ _{XXXXXXXXX} Ο -16I/L XXXXXXXXXX L013 AABBCDE 9445CCN 44-Lead MQFP Example \mathcal{M} \mathbf{w} XXXXXXXXXX PIC17C44 -25/PT XXXXXXXXXX XXXXXXXXXXX L247 AABBCDE 9450CAT \cap \cap 44-Lead TQFP Example \$ \mathcal{Q} PIC17C44 XXXXXXXXXXX -25/TQ XXXXXXXXXX XXXXXXXXXXX L247 AABBCDE 9450CAT \cap \cap Microchip part number information Legend: MM...M XX...X Customer specific information* AA Year code (last 2 digits of calendar year) BΒ Week code (week of January 1 is week '01') С Facility code of the plant at which wafer is manufactured C = Chandler, Arizona, U.S.A., S = Tempe, Arizona, U.S.A. D Mask revision number Е Assembly code of the plant or country of origin in which part was assembled Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information. Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond

code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: microcontroller, protected microcontroller, extended microcontroller, and microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions have been removed.
- 4. 4 new instructions for transferring data between data memory and program memory. This can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replaces function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing the interrupt.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt on change feature works on all eight port pins.
- 16. TMR0 is 16-bit plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Configuration bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit) (PIC17C43 and PIC17C44 only).
- 19. Peripheral modules operate slightly differently.
- 20. Oscillator modes slightly redefined.
- 21. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 22. Addition of a test mode pin.
- 23. In-circuit serial programming is not implemented.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXX to PIC17CXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the interrupt service routine into its four vectors.
- 3. Replace:

4.

MOVF with:	REG1,	W
MOVFP	REG1,	WREG
Replace:		
MOVF	REG1,	W
MOVWF with:	REG2	
MOVPF	REG1,	REG2 ; Addr(REG1)<20h
or		
MOVFP	REG1,	REG2 ; Addr(REG2)<20h

Note: If REG1 and REG2 are both at addresses greater then 20h, two instructions are required. MOVFP REG1, WREG ; MOVPF WREG, REG2 ;

- 5. Ensure that all bit names and register names are updated to new data memory map location.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on reset.

To convert code from the PIC17C42 to all the other PIC17C4X devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1996} Microchip Technology Inc.

Peripherals Features	Sources Sou	13 2.5-6.0 — 18-pin DIP, SOIC; 20-pin SSOP	13 2.5-6.0 — 18-pin DIP, SOIC; 20-pin SSOP	13 2.5-6.0 — 18-pin DIP, SOIC; 20-pin SSOP	13 2.5-6.0 Yes 18-pin DIP, SOIC; 20-pin SSOP	13 2.5-6.0 Yes 18-pin DIP, SOIC; 20-pin SSOP	13 2.5-6.0 Yes 18-pin DIP, SOIC; 20-pin SSOP	tchdog Timer, selectable code protect and high I/O
		ю	m	ო	4	4	4	able Wa
ory	(S)+0,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B	Ι	1	I	Yes	Yes	Yes	selecta
Mem	Contraction of the second	Ι	I	I	2	2	2	Reset,
Clock	Louge of the second sec	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	Power-on
		80	80	128	80	80	128	es have
	TO BROAT HALL	512	ź	2K	512	1 K	2K	nily device
	1.4 CM	20	20	20	20	20	20	'17 Fan
		PIC16C554	PIC16C556	PIC16C558	PIC16C620	PIC16C621	PIC16C622	All PIC16/

current capability. All PIC16C6XXX Family devices use serial programming with clock pin RB6 and data pin RB7.

DS30412C-page 215