

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-33e-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Address	Power-on Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through interrupt
Unbanked			1	
INDF0	00h	0000 0000	0000 0000	0000 0000
FSR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
PCLATH	03h	0000 0000	0000 0000	uuuu uuuu
ALUSTA	04h	1111 xxxx	1111 uuuu	1111 uuuu
TOSTA	05h	0000 000-	0000 000-	0000 000-
CPUSTA ⁽³⁾	06h	11 11	11 qq	uu qq
INTSTA	07h	0000 0000	0000 0000	uuuu uuuu ⁽¹⁾
INDF1	08h	0000 0000	0000 0000	uuuu uuuu
FSR1	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
WREG	0Ah	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR0L	0Bh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR0H	0Ch	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁴⁾	0Dh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRH ⁽⁴⁾	0Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁵⁾	0Dh	0000 0000	0000 0000	uuuu uuuu
TBLPTRH ⁽⁵⁾	0Eh	0000 0000	0000 0000	uuuu uuuu
BSR	0Fh	0000 0000	0000 0000	uuuu uuuu
Bank 0				
PORTA	10h	0-xx xxxx	0-uu uuuu	uuuu uuuu
DDRB	11h	1111 1111	1111 1111	uuuu uuuu
PORTB	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
RCSTA	13h	0000 -00x	0000 -00u	uuuu -uuu
RCREG	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXSTA	15h	00001x	0000lu	uuuuuu
TXREG	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
SPBRG	17h	XXXX XXXX	uuuu uuuu	นนนน นนนน
Bank 1				
DDRC	10h	1111 1111	1111 1111	uuuu uuuu
PORTC	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu
DDRD	12h	1111 1111	1111 1111	uuuu uuuu
PORTD	13h	XXXX XXXX	นนนน นนนน	uuuu uuuu
DDRE	14h	111	111	uuu
PORTE	15h	xxx	uuu	uuu
PIR	16h	0000 0010	0000 0010	uuuu uuuu ⁽¹⁾
PIE	17h	0000 0000	0000 0000	นนนน นนนน

TABLE 4-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTER	TABLE 4-4:	INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS
--	------------	--

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

5.4 Interrupt Operation

Global Interrupt Disable bit, GLINTD (CPUSTA<4>), enables all unmasked interrupts (if clear) or disables all interrupts (if set). Individual interrupts can be disabled through their corresponding enable bits in the INTSTA register. Peripheral interrupts need either the global peripheral enable PEIE bit disabled, or the specific peripheral enable bit disabled. Disabling the peripherals via the global peripheral enable bit, disables all peripheral interrupts. GLINTD is set on reset (interrupts disabled).

The RETFIE instruction allows returning from interrupt and re-enable interrupts at the same time.

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with interrupt vector. There are four interrupt vectors to reduce interrupt latency.

The peripheral interrupt vector has multiple interrupt sources. Once in the peripheral interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The peripheral interrupt flag bit(s) must be cleared in software before reenabling interrupts to avoid continuous interrupts.

The PIC17C4X devices have four interrupt vectors. These vectors and their hardware priority are shown in Table 5-1. If two enabled interrupts occur "at the same time", the interrupt of the highest priority will be serviced first. This means that the vector address of that interrupt will be loaded into the program counter (PC).

TABLE 5-1: INTERRUPT VECTORS/ PRIORITIES

Address	Vector	Priority
0008h	External Interrupt on RA0/ INT pin (INTF)	1 (Highest)
0010h	TMR0 overflow interrupt (T0IF)	2
0018h	External Interrupt on T0CKI (T0CKIF)	3
0020h	Peripherals (PEIF)	4 (Lowest)

- **Note 1:** Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GLINTD bit.
- **Note 2:** When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

Note 3: For the PIC17C42 only: If an interrupt occurs while the Global Interrupt Disable (GLINTD) bit is being set, the GLINTD bit may unintentionally be reenabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:

- 1. An interrupt occurs simultaneously with an instruction that sets the GLINTD bit.
- 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
- 3. The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GLINTD bit to be cleared (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.

The method to ensure that interrupts are globally disabled is:

1. Ensure that the GLINTD bit was set by the instruction, as shown in the follow-ing code:

LOOP	BSF	CPUSTA,	GLINTD	;	Disable Global
				;	Interrupt
	BTFSS	CPUSTA,	GLINTD	;	Global Interrupt
				;	Disabled?
	GOTO	LOOP		;	NO, try again
				;	YES, continue
				;	with program
				:	low

5.5 RA0/INT Interrupt

The external interrupt on the RA0/INT pin is edge triggered. Either the rising edge, if INTEDG bit (T0STA<7>) is set, or the falling edge, if INTEDG bit is clear. When a valid edge appears on the RA0/INT pin, the INTF bit (INTSTA<4>) is set. This interrupt can be disabled by clearing the INTE control bit (INTSTA<0>). The INT interrupt can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.6 TMR0 Interrupt

An overflow (FFFFh \rightarrow 0000h) in TMR0 will set the T0IF (INTSTA<5>) bit. The interrupt can be enabled/ disabled by setting/clearing the T0IE control bit (INTSTA<1>). For operation of the Timer0 module, see Section 11.0.

5.7 TOCKI Interrupt

The external interrupt on the RA1/T0CKI pin is edge triggered. Either the rising edge, if the T0SE bit (T0STA<6>) is set, or the falling edge, if the T0SE bit is clear. When a valid edge appears on the RA1/T0CKI pin, the T0CKIF bit (INTSTA<6>) is set. This interrupt can be disabled by clearing the T0CKIE control bit (INTSTA<2>). The T0CKI interrupt can wake up the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.8 Peripheral Interrupt

The peripheral interrupt flag indicates that at least one of the peripheral interrupts occurred (PEIF is set). The PEIF bit is a read only bit, and is a bit wise OR of all the flag bits in the PIR register AND'ed with the corresponding enable bits in the PIE register. Some of the peripheral interrupts can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

FIGURE 5-5: INT PIN / TOCKI PIN INTERRUPT TIMING

6.2.2.3 TMR0 STATUS/CONTROL REGISTER (T0STA)

This register contains various control bits. Bit7 (INTEDG) is used to control the edge upon which a signal on the RA0/INT pin will set the RB0/INT interrupt flag. The other bits configure the Timer0 prescaler and clock source. (Figure 11-1).

FIGURE 6-9: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W - 0 INTED0 bit7) R/W - 0 R/ G TOSE T	<u>/W - 0 R/W - 0</u> TOCS PS3	R/W - 0 PS2	<u>R/W - 0</u> PS1	R/W - 0 PS0	U - 0 — bit0	R = Readable bit W = Writable bit U = Unimplemented, reads as '0'
bit 7:	INTEDG: RA0/ This bit selects 1 = Rising edge 0 = Falling edge	INT Pin Interrupt E the edge upon wh of RA0/INT pin g e of RA0/INT pin g	dge Selec nich the int enerates ir enerates i	t bit errupt is d nterrupt nterrupt	etected.		-n = Value at POR reset
bit 6:	TOSE : Timer0 (This bit selects <u>When TOCS =</u> 1 = Rising edge 0 = Falling edg <u>When TOCS =</u> Don't care	Clock Input Edge S the edge upon wh <u>0</u> e of RA1/T0CKI pin e of RA1/T0CKI pin <u>1</u>	Select bit hich TMR0 n incremer n incremer	will incren hts TMR0 a hts TMR0 a	nent. and/or gene and/or gene	erates a TOC erates a TOC	KIF interrupt KIF interrupt
bit 5:	TOCS : Timer0 This bit selects 1 = Internal ins 0 = TOCKI pin	Clock Source Sele the clock source f truction clock cycle	ct bit or Timer0. e (TCY)				
bit 4-1:	PS3:PS0: Time These bits sele	er0 Prescale Selected the prescale va	tion bits lue for Tim	er0.			
	PS3:PS0	Prescale Value	•				
	0000 0001 0010 010 0100 0101 0110 0111 1xxx	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256					
bit 0:	Unimplemente	ed: Read as '0'					

6.7 Program Counter Module

The Program Counter (PC) is a 16-bit register. PCL, the low byte of the PC, is mapped in the data memory. PCL is readable and writable just as is any other register. PCH is the high byte of the PC and is not directly addressable. Since PCH is not mapped in data or program memory, an 8-bit register PCLATH (PC high latch) is used as a holding latch for the high byte of the PC. PCLATH is mapped into data memory. The user can read or write PCH through PCLATH.

The 16-bit wide PC is incremented after each instruction fetch during Q1 unless:

- Modified by GOTO, CALL, LCALL, RETURN, RETLW, or RETFIE instruction
- · Modified by an interrupt response
- Due to destination write to PCL by an instruction

"Skips" are equivalent to a forced NOP cycle at the skipped address.

Figure 6-11 and Figure 6-12 show the operation of the program counter for various situations.

FIGURE 6-11: PROGRAM COUNTER OPERATION

FIGURE 6-12: PROGRAM COUNTER USING THE CALL AND GOTO INSTRUCTIONS

Using Figure 6-11, the operations of the PC and PCLATH for different instructions are as follows:

- a) <u>LCALL instructions</u>: An 8-bit destination address is provided in the instruction (opcode). PCLATH is unchanged. PCLATH → PCH Opcode<7:0> → PCL
- b) Read instructions on PCL: Any instruction that reads PCL. PCL \rightarrow data bus \rightarrow ALU or destination PCH \rightarrow PCLATH
- c) <u>Write instructions on PCL</u>: Any instruction that writes to PCL. 8-bit data \rightarrow data bus \rightarrow PCL PCLATH \rightarrow PCH
- d) <u>Read-Modify-Write instructions on PCL:</u> Any instruction that does a read-write-modify operation on PCL, such as ADDWF PCL. Read: PCL → data bus → ALU Write: 8-bit result → data bus → PCL
 - $\mathsf{PCLATH} \to \mathsf{PCH}$
- e) <u>RETURN instruction:</u> PCH \rightarrow PCLATH Stack<MRU> \rightarrow PC<15:0>

Using Figure 6-12, the operation of the PC and PCLATH for GOTO and CALL instructions is a follows:

CALL, GOTO instructions: A 13-bit destination address is provided in the instruction (opcode). Opcode<12:0> \rightarrow PC <12:0>

 $PC<15:13> \rightarrow PCLATH<7:5>$

Opcode<12:8> \rightarrow PCLATH <4:0>

The read-modify-write only affects the PCL with the result. PCH is loaded with the value in the PCLATH. For example, ADDWF PCL will result in a jump within the current page. If PC = 03F0h, WREG = 30h and PCLATH = 03h before instruction, PC = 0320h after the instruction. To accomplish a true 16-bit computed jump, the user needs to compute the 16-bit destination address, write the high byte to PCLATH and then write the low value to PCL.

The following PC related operations do not change PCLATH:

- a) LCALL, RETLW, and RETFIE instructions.
- b) Interrupt vector is forced onto the PC.
- c) Read-modify-write instructions on PCL (e.g.BSF PCL).

8.0 HARDWARE MULTIPLIER

All PIC17C4X devices except the PIC17C42, have an 8 x 8 hardware multiplier included in the ALU of the device. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit PRODuct register (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between the PIC17C42 and all other PIC17CXX devices, which have the single cycle hardware multiply.

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8×8 signed multiply. To account for the sign bits of the arguments, each argument's most significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 MULTIPLY ROUTINE

MOVFP	ARG1,	WREG					
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRO	DDI	H:PROI	DГ

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVFP	ARG1, WREG		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH: PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVFP	ARG2, WREG		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		•	- ARC2

Doutino	Deviee	Program Memory Cycles (Max		Time			
Routine	Device	(Words)	Cycles (Max)	@ 25 MHz	@ 33 MHz		
8 x 8 unsigned	PIC17C42	13	69	11.04 μs	N/A		
	All other PIC17CXX devices	1	1	160 ns	121 ns		
8 x 8 signed	PIC17C42	—	—	—	N/A		
	All other PIC17CXX devices	6	6	960 ns	727 ns		
16 x 16 unsigned	PIC17C42	21	242	38.72 μs	N/A		
	All other PIC17CXX devices	24	24	3.84 µs	2.91 μs		
16 x 16 signed	PIC17C42	52	254	40.64 μs	N/A		
	All other PIC17CXX devices	36	36	5.76 μs	4.36 μs		

TABLE 8-1: PERFORMANCE COMPARISON

11.1 <u>Timer0 Operation</u>

When the TOCS (TOSTA<5>) bit is set, TMR0 increments on the internal clock. When TOCS is clear, TMR0 increments on the external clock (RA1/T0CKI pin). The external clock edge can be configured in software. When the TOSE (TOSTA<6>) bit is set, the timer will increment on the rising edge of the RA1/T0CKI pin. When T0SE is clear, the timer will increment on the falling edge of the RA1/T0CKI pin. The prescaler can be programmed to introduce a prescale of 1:1 to 1:256. The timer increments from 0000h to FFFFh and rolls over to 0000h. On overflow, the TMR0 Interrupt Flag bit (T0IF) is set. The TMR0 interrupt can be masked by clearing the corresponding TMR0 Interrupt Enable bit (T0IE). The TMR0 Interrupt Flag bit (T0IF) is automatically cleared when vectoring to the TMR0 interrupt vector.

11.2 Using Timer0 with External Clock

When the external clock input is used for Timer0, it is synchronized with the internal phase clocks. Figure 11-3 shows the synchronization of the external clock. This synchronization is done after the prescaler. The output of the prescaler (PSOUT) is sampled twice in every instruction cycle to detect a rising or a falling edge. The timing requirements for the external clock are detailed in the electrical specification section for the desired device.

11.2.1 DELAY FROM EXTERNAL CLOCK EDGE

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time TMR0 is actually incremented. Figure 11-3 shows that this delay is between 3Tosc and 7Tosc. Thus, for example, measuring the interval between two edges (e.g. period) will be accurate within \pm 4Tosc (\pm 121 ns @ 33 MHz).

FIGURE 11-2: TIMER0 MODULE BLOCK DIAGRAM

12.1.2 TIMER1 & TIMER2 IN 16-BIT MODE

To select 16-bit mode, the T16 bit must be set. In this mode TMR1 and TMR2 are concatenated to form a 16-bit timer (TMR2:TMR1). The 16-bit timer increments until it matches the 16-bit period register (PR2:PR1). On the following timer clock, the timer value is reset to 0h, and the TMR1IF bit is set.

When selecting the clock source for the16-bit timer, the TMR1CS bit controls the entire 16-bit timer and TMR2CS is a "don't care." When TMR1CS is clear, the timer increments once every instruction cycle (Fosc/4). When TMR1CS is set, the timer increments on every falling edge of the RB4/TCLK12 pin. For the 16-bit timer to increment, both TMR1ON and TMR2ON bits must be set (Table 12-1).

12.1.2.1 EXTERNAL CLOCK INPUT FOR TMR1:TMR2

When TMR1CS is set, the 16-bit TMR2:TMR1 increments on the falling edge of clock input TCLK12. The input on the RB4/TCLK12 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on RB4/TCLK12 to the time TMR2:TMR1 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

TABLE 12-1. TORINING ON TO-DIT TIME

TMR2ON	TMR10N	Result
1	1	16-bit timer (TMR2:TMR1) ON
0	1	Only TMR1 increments
х	0	16-bit timer OFF

FIGURE 12-4: TMR1 AND TMR2 IN 16-BIT TIMER/COUNTER MODE

TABLE 12-2: SUMMARY OF TIMER1 AND TIMER2 REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 re	imer1 register							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 re	ïmer2 register							xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD		_	11 11	11 qq
14h, Bank 2	PR1	Timer1 pe	riod registe	r						xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 pe	riod registe	r						xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	_	—	_	_	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	_	_	_	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', q - value depends on condition,

shaded cells are not used by Timer1 or Timer2.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

12.1.3.3.1 MAX RESOLUTION/FREQUENCY FOR EXTERNAL CLOCK INPUT

The use of an external clock for the PWM time-base (Timer1 or Timer2) limits the PWM output to a maximum resolution of 8-bits. The PWxDCL<7:6> bits must be kept cleared. Use of any other value will distort the PWM output. All resolutions are supported when internal clock mode is selected. The maximum attainable frequency is also lower. This is a result of the timing requirements of an external clock input for a timer (see the Electrical Specification section). The maximum PWM frequency, when the timers clock source is the RB4/TCLK12 pin, is shown in Table 12-3 (standard resolution mode).

12.2 <u>Timer3</u>

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a second 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the timer increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer to increment. When TMR3ON is clear, the timer will not increment or set the TMR3IF bit.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- · One capture and one period register mode
- Dual capture register mode

The PIC17C4X has up to two 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are two capture pins (RB0/CAP1 and RB1/CAP2), one for each capture register. The capture pins are multiplexed with PORTB pins. An event can be:

- · a rising edge
- a falling edge
- every 4th rising edge
- every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture module is truly part of the Timer3 block. Figure 12-7 and Figure 12-8 show the block diagrams for the two modes of operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR1ON	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 reg	mer1 register							XXXX XXXX	uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	ister							XXXX XXXX	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
10h, Bank 3	PW1DCL	DC1	DC0	—	-	—	—	—	_	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	—	_	—	—	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 12-4: REGISTERS/BITS ASSOCIATED WITH PWM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on conditions, shaded cells are not used by PWM.

FIGURE 13-2: RCSTA REGISTER (ADDRESS: 13h, BANK 0)

					P 0	P 0	Рv	
SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	R = Readable bit
bit7							bit 0	W = Writable bit -n = Value at POR reset (x = unknown)
bit 7:	bit 7: SPEN: Serial Port Enable bit 1 = Configures RA5/RX/DT and RA4/TX/CK pins as serial port pins 0 = Serial port disabled							
bit 6:	RX9 : 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception							
bit 5:	 SREN: Single Receive Enable bit This bit enables the reception of a single byte. After receiving the byte, this bit is automatically cleared. <u>Synchronous mode:</u> 1 = Enable reception 0 = Disable reception Note: This bit is ignored in synchronous slave reception. <u>Asynchronous mode:</u> Don't care 							
bit 4:	CREN : Co This bit er Asynchron 1 = Enable 0 = DisablSynchron $1 = Enable0 = Disabl$	ontinuous nables the nous mod e receptio les recepti ous mode es continu les continu	Receive Er continuou <u>e:</u> n on <u>:</u> ous recept uous recept	nable bit s receptic ion until (tion	on of serial CREN is cle	data. eared (CRE	EN override	s SREN)
bit 3:	Unimpler	nented: R	ead as '0'					
bit 2:	FERR : Fra 1 = Framir 0 = No fra	aming Erro ng error (L ming erro	or bit Jpdated by r	reading l	RCREG)			
bit 1:	OERR : Ov 1 = Overru 0 = No ove	verrun Err un (Cleare errun erro	or bit ed by cleari r	ng CREN	I)			
bit 0:	RX9D : 9th	n bit of rec	eive data (can be th	e software	calculated	parity bit)	

Mnemonic,		Description		16-bit Opcode				Status	Notes	
Operands					MSb LSb		LSb	Affected		
TABLWT	t,i,f	Table Write	2	1010 1	lti.	ffff	ffff	None	5	
TLRD	t,f	Table Latch Read	1	1010 0	00tx	ffff	ffff	None		
TLWT	t,f	Table Latch Write	1	1010 0)1tx	ffff	ffff	None		
TSTFSZ	f	Test f, skip if 0	1 (2)	0011 0	0011	ffff	ffff	None	6,8	
XORWF	f,d	Exclusive OR WREG with f	1	0000 1	10d	ffff	ffff	Z		
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS		1				1		
BCF	f,b	Bit Clear f	1	1000 1	bbb	ffff	ffff	None		
BSF	f,b	Bit Set f	1	1000 0)bbb	ffff	ffff	None		
BTFSC	f,b	Bit test, skip if clear	1 (2)	1001 1	bbb	ffff	ffff	None	6,8	
BTFSS	f,b	Bit test, skip if set	1 (2)	1001 0)bbb	ffff	ffff	None	6,8	
BTG	f,b	Bit Toggle f	1	0011 1	bbb	ffff	ffff	None		
LITERAL AI	ND CON	ITROL OPERATIONS	•							
ADDLW	k	ADD literal to WREG	1	1011 0	0001	kkkk	kkkk	OV,C,DC,Z		
ANDLW	k	AND literal with WREG	1	1011 0	0101	kkkk	kkkk	Z		
CALL	k	Subroutine Call	2	111k k	kkk	kkkk	kkkk	None	7	
CLRWDT	_	Clear Watchdog Timer	1	0000 0	0000	0000	0100	TO,PD		
GOTO	k	Unconditional Branch	2	110k k	kkk	kkkk	kkkk	None	7	
IORLW	k	Inclusive OR literal with WREG	1	1011 0	0011	kkkk	kkkk	Z		
LCALL	k	Long Call	2	1011 0)111	kkkk	kkkk	None	4,7	
MOVLB	k	Move literal to low nibble in BSR	1	1011 1	000	uuuu	kkkk	None		
MOVLR	k	Move literal to high nibble in BSR	1	1011 1	.01x	kkkk	uuuu	None	9	
MOVLW	k	Move literal to WREG	1	1011 0	0000	kkkk	kkkk	None		
MULLW	k	Multiply literal with WREG	1	1011 1	100	kkkk	kkkk	None	9	
RETFIE	_	Return from interrupt (and enable interrupts)	2	0000 0	0000	0000	0101	GLINTD	7	
RETLW	k	Return literal to WREG	2	1011 0	0110	kkkk	kkkk	None	7	
RETURN	_	Return from subroutine	2	0000 0	0000	0000	0010	None	7	
SLEEP	_	Enter SLEEP Mode	1	0000 0	0000	0000	0011	TO, PD		
SUBLW	k	Subtract WREG from literal	1	1011 0	010	kkkk	kkkk	OV,C,DC,Z		
XORLW	k	Exclusive OR literal with WREG	1	1011 0	0100	kkkk	kkkk	Z		
-										

TABLE 15-2: PIC17CXX INSTRUCTION SET (Cont.'d)

Legend: Refer to Table 15-1 for opcode field descriptions.

Note 1: 2's Complement method.

- 2: Unsigned arithmetic.
- 3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.
- 4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL)
- Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.
- 6: Two-cycle instruction when condition is true, else single cycle instruction.
- 7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
- 8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead an NOP is executed.
- 9: These instructions are not available on the PIC17C42.

CLRWDT Clear Watchdog Timer								
Synt	ax:	[label]	[label] CLRWDT					
Ope	rands:	None						
Ope	ration:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ postscaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$						
State	us Affected:	to, PD						
Enco	oding:	0000		0000	000	00	0100	
Des	cription:	CLRWDT timer. It a WDT. Sta	inst also atus	truction resets bits TC	resets the pro and I	the vesca	watchdog ler of the re set.	
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q	3		Q4	
	Decode	Read register ALUSTA		Exec	ute		NOP	
<u>Exa</u>	<u>mple</u> :	CLRWDT						
	Before Instru WDT cou	ction Inter	=	?				
	After Instruct	ion						
WDT counter			=	0x00				
		stscaler	=	0				
			=	י 1				
	· -			•				

COMF	Complem	nent f						
Syntax:	[label] ([<i>label</i>] COMF f,d						
Operands:	$0 \le f \le 255$ d \equiv [0,1]							
Operation:	$(\overline{f}) \rightarrow (d$	$(\overline{f}) \rightarrow (dest)$						
Status Affected:	Z	Z						
Encoding:	0001	001d	ffff	ffff				
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Read register 'f'	Execu	ute re	Write gister 'f'				
Example:	COMF	REG	1,0					
Before Instru REG1	uction = 0x13							
After Instruc REG1 WREG	tion = 0x13 = 0xEC							

RRN	ICF	Rotate R	light f (n	o carry)				
Syn	tax:	[label]	RRNCF	f,d				
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1]	55					
Ope	ration:	$f < n > \rightarrow c$ $f < 0 > \rightarrow c$	$f < n > \rightarrow d < n-1 >;$ $f < 0 > \rightarrow d < 7 >$					
Stat	us Affected:	None						
Enc	oding:	0010	000d	ffff	ffff			
Des	cription:	The conte one bit to placed in ^v placed ba	nts of regi the right. I WREG. If ck in regis	ster 'f' are f 'd' is 0 the 'd' is 1 the ter 'f'.	rotated e result is result is			
				9.0101 1				
Wor	ds:	1						
Cycl	es:	1						
$\cap \cap$	vcle Activity							
QU	yolo / totivity.							
QU	Q1	Q2	Q	3	Q4			
QU	Q1 Decode	Q2 Read register 'f'	Q3 Exect	B ute V des	Q4 Vrite to stination			
Exa	Q1 Decode mple 1:	Q2 Read register 'f'	Q3 Exect REG, 1	3 ute V des	Q4 Vrite to stination			
Exa	Q1 Decode mple 1: Before Instru WREG REG	Q2 Read register 'f' RRNCF Inction = ? = 1101	Q3 Exect REG, 1 0111	3 ute V de:	Q4 Vrite to stination			
Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct	Q2 Read register 'f' RRNCF Iction = ? = 1101 tion	Q3 Exect REG, 1 0111	3 ute V de:	Q4 Vrite to stination			
Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110	Q3 Exect REG, 1 0111 1011	3 ute V de:	Q4 Vrite to stination			
<u>Exa</u>	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110 RRNCF	Q3 Exect REG, 1 0111 1011 REG, 0	3 ute V des	Q4 Vrite to stination			
Exa Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG mple 2: Before Instru WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110 RRNCF action = ? = 1101	Q3 Exect REG, 1 0111 REG, 0 0111	3 ute V des	Q4 Vrite to stination			
Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG Before Instru WREG REG After Instruct WREG	Q2 Read register 'f' RRNCF action = ? = 1101 tion RRNCF action = ? = 1110 RRNCF action = ? = 1110	Q3 Exect REG, 1 0111 REG, 0 0111	3 ute V des	Q4 Vrite to stination			

SETF	S	et f							
Syntax:	[/	abel]	SETF	f,s					
Operands:	0 s	≤ f ≤ 25 ∈ [0,1]	5						
Operation:	FI FI	$Fh \rightarrow f;$ $Fh \rightarrow d$							
Status Affected:	Ν	None							
Encoding:		0010	101s	ffff	ffff				
Description:	lf 'f' or to	's' is 0, b and WR nly the da FFh.	oth the da EG are se ata memo	ta memo et to FFh. ry locatio	ry location If 's' is 1 n 'f' is set				
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2		Q	3	Q4				
Decode	re	Read gister 'f'	Exect	ute re a s	Write egister 'f' nd other pecified register				
Example1:	SI	STF	REG, 0						
Before Instru REG WREG	uctio = =	n 0xDA 0x05							
After Instruct REG WREG	tion = =	0xFF 0xFF							
Example2:	SE	TF	REG, 1						
Before Instru REG WREG	uctio = =	n 0xDA 0x05							
After Instruct REG WREG	tion = =	0xFF 0x05							

Applicable Devices 42 R42 42A 43 R43 44

17.2 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial

Operating voltage VDD range as described in Section 17.1 Parameter No. Sym Characteristic Min Typ† Max Units Conditions Input Low Voltage VIL I/O ports D030 with TTL buffer Vss 0.8 V D031 with Schmitt Trigger buffer Vss 0.2VDD V _ D032 MCLR, OSC1 (in EC and RC Vss 0.2Vdd V Note1 _ mode) D033 OSC1 (in XT, and LF mode) 0.5VDD V _ Input High Voltage Vн I/O ports V D040 2.0 with TTL buffer _ Vdd D041 with Schmitt Trigger buffer 0.8VDD Vdd V _ D042 MCLR 0.8Vdd Vdd Note1 V D043 OSC1 (XT, and LF mode) 0.5VDD V D050 Hysteresis of 0.15VDD* VHYS V _ _ Schmitt Trigger inputs Input Leakage Current (Notes 2, 3) D060 lı∟ I/O ports (except RA2, RA3) $Vss \leq VPIN \leq VDD$, ±1 μΑ I/O Pin at hi-impedance PORTB weak pull-ups disabled MCLR D061 <u>+2</u> μA VPIN = Vss or VPIN = VDD D062 **RA2, RA3** ±2 μΑ $Vss \leq VRA2$, $VRA3 \leq 12V$ D063 OSC1, TEST ±1 μΑ $Vss \le VPIN \le VDD$ MCLR D064 VMCLR = VPP = 12V 10 μA

IPURB PORTB weak pull-up current These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only t and are not tested.

200

400

μΑ

60

These parameters are for design guidance only and are not tested, nor characterized. t

Design guidance to attain the AC timing specifications. These loads are not tested. ++

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

D070

(when not programming)

VPIN = Vss. $\overline{RBPU} = 0$

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-11: MEMORY INTERFACE WRITE TIMING

TABLE 17-11: MEMORY INTERFACE WRITE REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 30	_	_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	0	_	—	ns	
152	TadV2wrL	Data out valid to $\overline{WR} \downarrow$ (data setup time)	0.25Tcy - 40	—	_	ns	
153	TwrH2adl	WR [↑] to data out invalid (data hold time)	_	0.25Tcy §	_	ns	
154	TwrL	WR pulse width	—	0.25Tcy §	_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification is guaranteed by design.

Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-12: MEMORY INTERFACE READ REQUIREMENTS (NOT SUPPORTED IN PIC17LC4X DEVICES)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD15:AD0 (address) valid to ALE↓ (address setup time)	0.25Tcy - 10	_	ľ	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	5*		_	ns	
160	TadZ2oeL	AD15:AD0 hi-impedance to $\overline{OE}\downarrow$	0*	—	_	ns	
161	ToeH2adD	OE↑ to AD15:AD0 driven	0.25Tcy - 15	_	_	ns	
162	TadV2oeH	Data in valid before OE↑ (data setup time)	35	—	—	ns	
163	ToeH2adI	OE↑to data in invalid (data hold time)	0	_	_	ns	
164	TalH	ALE pulse width	—	0.25Tcy §	_	ns	
165	ToeL	OE pulse width	0.5Tcy - 35 §	—	_	ns	
166	TalH2alH	ALE↑ to ALE↑(cycle time)	—	TCY §	_	ns	
167	Тасс	Address access time	—	—	0.75Tcy - 30	ns	
168	Тое	Output enable access time (OE low to Data Valid)	_	_	0.5Tcy - 45	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

*

E.6 **PIC16C8X Family of Devices**

÷ Note

Indirect Addressing	
Operation 40	
Registers	
Initialization Conditions For Special Function Registers 19	
Initializing PORTB	
Initializing PORTC	
Initializing PORTE 62	
Instruction Flow/Pipelining14	
Instruction Set	
ADDLW	
ADDWF	
ADDW1 C	
ANDWF	
BCF114	
BSF	
BIFSC	
BTG	
CALL	
CLRF	
CLRWDT	
COMF	
CPFSGT	
CPFSLT 120	
DAW	
DECF	
DECFSIZ	
GOTO	
INCF	
INCFSNZ	
INCESZ	
IORWF	
LCALL	
MOVFP	
MOVLB	
MOVLR	
MOVPF	
MOVWF	
MULLW	
MULWF	
NOP 130	
RETFIE	
RETLW131	
RETURN	
RLCF	
RECF	
RRNCF	
SETF134	
SLEEP	
SUBWE 136	
SUBWFB	
SWAPF	
TABLRD	
IABLWT	
TLWT	
140	

TSTFSZ	140
XORLW	141
XORWF	141
Instruction Set Summary	107
NT Pin	
NTE	22
NTEDG	38, 67
Interrupt on Change Feature	55
Interrupt Status Register (INTSTA)	22
Interrupts	
Context Saving	27
Flag bits	
TMR1IE	21
TMR1IF	21
TMR2IE	21
TMR2IF	21
TMR3IE	21
TMR3IF	21
Interrupts	21
Logic	21
Operation	25
Peripheral Interrupt Enable	23
Peripheral Interrupt Request	24
PWM	
Status Register	22
Table Write Interaction	45
Timina	
Vectors	
Peripheral Interrupt	
RA0/INT Interrupt	
TOCKI Interrupt	
TMR0 Interrupt	
Vectors/Priorities	25
Wake-up from SLEEP	105
NTF	22
NTSTA	
NTSTA Register	22
ORLW	124
ORWF	125
	-

L

LCALL	
Long Writes	

М

Memory	
External Interface	31
External Memory Waveforms	31
Memory Map (Different Modes)	30
Mode Memory Access	30
Organization	29
Program Memory	29
Program Memory Map	29
Microcontroller	29
Microprocessor	29
Minimizing Current Consumption	106
MOVFP	126
MOVLB	126
MOVLR	127
MOVLW	127
MOVPF	128
MOVWF	128
MPASM Assembler	143, 144

PIC17C4X Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

PART NO. – XX X /XX XXX	$\frac{1}{100} - \frac{1}{100} $		Examples		
	Pattern:	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices		a)	PIC17C42 – 16/P Commercial Temp., PDIP package.
	Package:	P JW PQ PT L	 PDIP Windowed CERDIP PDIP (600 mil) MQFP TQFP PLCC 	b)	16 MHZ, normal VDD limits PIC17LC44 – 08/PT Commercial Temp., TQFP package,
	Temperature Range: Frequency Range:	– I 08 16 25 33	= 0°C to +70°C = -40°C to +85°C = 8 MHz = 16 MHz = 25 Mhz = 33 Mhz	c)	8MHz, extended VDD limits PIC17C43 – 25I/P Industrial Temp., PDIP package,
	Device:	PIC17C44 PIC17C44T PIC17LC44	: Standard Vdd range : (Tape and Reel) : Extended Vdd range		25 MHz, normal VDD limits

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

^{© 1996} Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.