

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

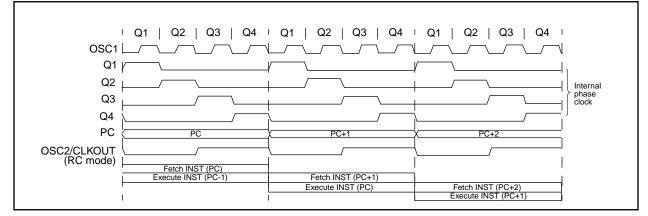
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-33i-p

Email: info@E-XFL.COM

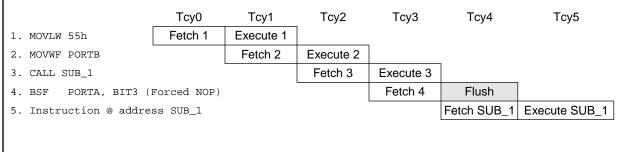
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

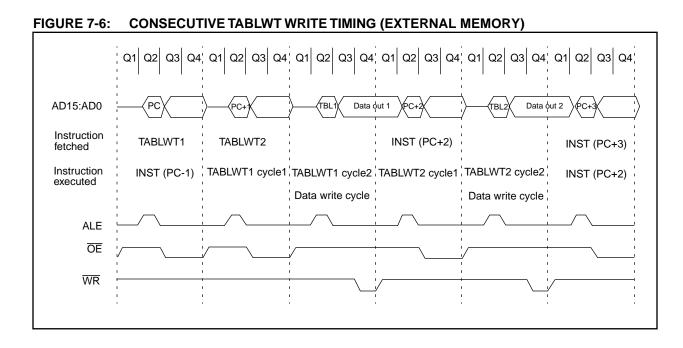
An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g.GOTO) then two cycles are required to complete the instruction (Example 3-2).


A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-2: INSTRUCTION PIPELINE FLOW


All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

5.2 <u>Peripheral Interrupt Enable Register</u> (PIE)

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 5-3: PIE REGISTER (ADDRESS: 17h, BANK 1)

RBIE	0 R/W - 0 R/W TMR3IE TMR2IE TMR1IE CA2IE CA1IE TXIE R0	CIE R = Readable bit
bit7		bit0 W = Writable bit -n = Value at POR reset
bit 7:	RBIE : PORTB Interrupt on Change Enable bit 1 = Enable PORTB interrupt on change 0 = Disable PORTB interrupt on change	
bit 6:	TMR3IE : Timer3 Interrupt Enable bit 1 = Enable Timer3 interrupt 0 = Disable Timer3 interrupt	
bit 5:	TMR2IE : Timer2 Interrupt Enable bit 1 = Enable Timer2 interrupt 0 = Disable Timer2 interrupt	
bit 4:	TMR1IE : Timer1 Interrupt Enable bit 1 = Enable Timer1 interrupt 0 = Disable Timer1 interrupt	
bit 3:	CA2IE : Capture2 Interrupt Enable bit 1 = Enable Capture interrupt on RB1/CAP2 pin 0 = Disable Capture interrupt on RB1/CAP2 pin	
bit 2:	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture interrupt on RB2/CAP1 pin 0 = Disable Capture interrupt on RB2/CAP1 pin	
bit 1:	TXIE : USART Transmit Interrupt Enable bit 1 = Enable Transmit buffer empty interrupt 0 = Disable Transmit buffer empty interrupt	
bit 0:	RCIE : USART Receive Interrupt Enable bit 1 = Enable Receive buffer full interrupt 0 = Disable Receive buffer full interrupt	

7.3 <u>Table Reads</u>

FIGURE 7-7:

The table read allows the program memory to be read. This allows constant data to be stored in the program memory space, and retrieved into data memory when needed. Example 7-2 reads the 16-bit value at program memory address TBLPTR. After the dummy byte has been read from the TABLATH, the TABLATH is loaded with the 16-bit data from program memory address TBLPTR + 1. The first read loads the data into the latch, and can be considered a dummy read (unknown data loaded into 'f'). INDF0 should be configured for either auto-increment or auto-decrement.

+ 1. The first read loads the data into TABLRD 0,1,INDF0 ; Read LO byte ; of TABLATCH and ; of TABLATCH and ; Update TABLATCH auto-increment or auto-decrement.

MOVLW

MOVWF

MOVLW

MOVWF

TLRD

TABLRD

EXAMPLE 7-2: TABLE READ

LOW (TBL_ADDR)

TBLPTRH

TBLPTRL

0,0,DUMMY

1, INDF0

HIGH (TBL_ADDR) ; Load the Table

;

;

;

;

address

; Dummy read,


; Read HI byte

; Updates TABLATCH

of TABLATCH

Q4 | AD15:AD0 Data in PC PC-TBL PC4 Instruction TABLRD INST (PC+1) INST (PC+2) fetched Instruction INST (PC-1) TABLRD cycle1 TABLRD cycle2 INST (PC+1) executed Data read cycle ALE ŌĒ $\overline{\mathsf{WR}}$

FIGURE 7-8: TABLRD TIMING (CONSECUTIVE TABLRD INSTRUCTIONS)

DS30412C-page 48

Example 9-1 shows the instruction sequence to initialize PORTB. The Bank Select Register (BSR) must be selected to Bank 0 for the port to be initialized.

EXAMPLE 9-1: INITIALIZING PORTB

MOVLB	0	;	Select Bank 0
CLRF	PORTB	;	Initialize PORTB by clearing
		;	output data latches
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Name	Bit	Buffer Type	Function
RB0/CAP1	bit0	ST	Input/Output or the RB0/CAP1 input pin. Software programmable weak pull- up and interrupt on change features.
RB1/CAP2	bit1	ST	Input/Output or the RB1/CAP2 input pin. Software programmable weak pull- up and interrupt on change features.
RB2/PWM1	bit2	ST	Input/Output or the RB2/PWM1 output pin. Software programmable weak pull-up and interrupt on change features.
RB3/PWM2	bit3	ST	Input/Output or the RB3/PWM2 output pin. Software programmable weak pull-up and interrupt on change features.
RB4/TCLK12	bit4	ST	Input/Output or the external clock input to Timer1 and Timer2. Software pro- grammable weak pull-up and interrupt on change features.
RB5/TCLK3	bit5	ST	Input/Output or the external clock input to Timer3. Software programmable weak pull-up and interrupt on change features.
RB6	bit6	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.
RB7	bit7	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.

TABLE 9-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger input.

TABLE 9-4: REGISTERS/BITS ASSOCIATED WITH PORTB

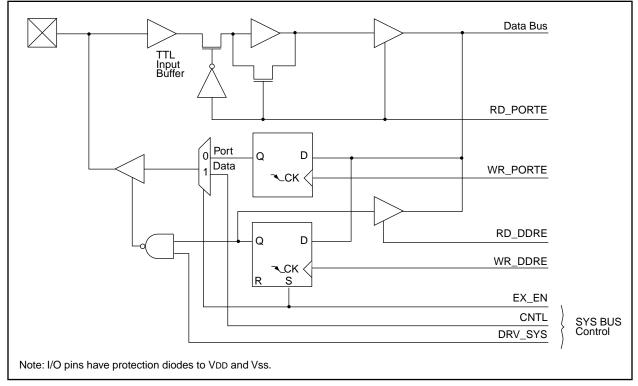
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
12h, Bank 0	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu
11h, Bank 0	DDRB	Data dired	ction registe	er for PORTE	5					1111 1111	1111 1111
10h, Bank 0	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = Value depends on condition.

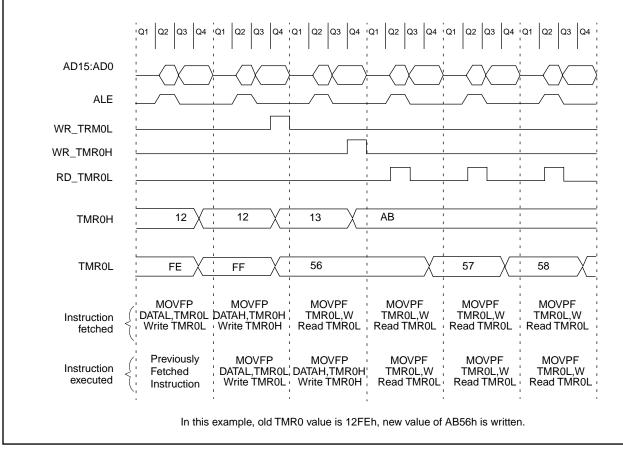
Shaded cells are not used by PORTB.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

9.4.1 PORTE AND DDRE REGISTER


PORTE is a 3-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to it will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (\overline{OE}), and Write (\overline{WR}). The control signals \overline{OE} and \overline{WR} are active low signals. The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-4 shows the instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.


EXAMPLE 9-4: INITIALIZING PORTE

MOVLB	1	;	Select Bank 1
CLRF	PORTE	;	Initialize PORTE data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0x03	;	Value used to initialize
		;	data direction
MOVWF	DDRE	;	Set RE<1:0> as inputs
		;	RE<2> as outputs
		;	RE<7:3> are always
		;	read as '0'

FIGURE 9-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0		0000 000-	0000 000-
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	EIF TOCKIF TOIF INTE PEIE TOCKIE TOIE INTE O							0000 0000	0000 0000
0Bh, Unbanked	TMR0L	TMR0 reg	MR0 register; low byte xxxx xxxx uuuu uuuu								
0Ch, Unbanked	TMR0H	TMR0 reg	IRO register; high byte xxxx xxxx uuuu uuuu								

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

14.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC17CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- OSC selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code protection

The PIC17CXX has a Watchdog Timer which can be shut off only through EPROM bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 96 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external reset, Watchdog Timer Reset or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LF crystal option saves power. Configuration bits are used to select various options. This configuration word has the format shown in Figure 14-1.

<u>R/P - 1</u> PM2 ⁽¹⁾	U - x	U - x	<u>U-x</u>	U - x	U - x	<u>U-x</u>	U - x	
bit15-7			_				bit0	
U - x	R/P - 1	U - x	<u>R/P - 1</u>	R/P - 1	R/P - 1	R/P - 1	R/P - 1	R = Readable bit
 bit15-7	PM1		PM0	WDTPS1	WDTPS0	FOSC1	FOSC0 bit0	P = Programmable bit $P = Programmable bit$ $U = Unimplemented$ $- n = Value for Erased Device$ $(x = unknown)$
bit 15-9:	Unimpler	nented: R	ead as a	'1'				
		rocontrolle ended mic de protect	er mode crocontrol ed microc	ontroller m	ode			
bit 7, 5:	Unimpler	nented: R	ead as a	'0'				
bit 3-2:	11 = WD 10 = WD 01 = WD	Γ enabled Γ enabled Γ enabled	, postscal , postscal , postscal	er = 256				
bit 1-0:	FOSC1:F 11 = EC (10 = XT (01 = RC (00 = LF (oscillator oscillator oscillator	scillator S	elect bits				

FIGURE 14-1: CONFIGURATION WORD

^{© 1996} Microchip Technology Inc.

TABLE 15-2: PIC17CXX INSTRUCTION SET

Mnemonic,		Description	Cycles	16-bit Opcoo	le	Status Affected	Notes	
Operands)perands			MSb	b LSb			
BYTE-ORIE		TILE REGISTER OPERATIONS	•				•	
ADDWF	f,d	ADD WREG to f	1	0000 111d ffff	ffff	OV,C,DC,Z		
ADDWFC	f,d	ADD WREG and Carry bit to f	1	0001 000d ffff	ffff	OV,C,DC,Z		
ANDWF	f,d	AND WREG with f	1	0000 101d ffff	ffff	Z		
CLRF	f,s	Clear f, or Clear f and Clear WREG	1	0010 100s ffff	ffff	None	3	
COMF	f,d	Complement f	1	0001 001d ffff	ffff	Z		
CPFSEQ	f	Compare f with WREG, skip if f = WREG	1 (2)	0011 0001 ffff	ffff	None	6,8	
CPFSGT	f	Compare f with WREG, skip if f > WREG	1 (2)	0011 0010 ffff	ffff	None	2,6,8	
CPFSLT	f	Compare f with WREG, skip if f < WREG	1 (2)	0011 0000 ffff	ffff	None	2,6,8	
DAW	f,s	Decimal Adjust WREG Register	1	0010 111s ffff	ffff	C	3	
DECF	f,d	Decrement f	1	0000 011d ffff	ffff	OV,C,DC,Z		
DECFSZ	f,d	Decrement f, skip if 0	1 (2)	0001 011d ffff	ffff	None	6,8	
DCFSNZ	f,d	Decrement f, skip if not 0	1 (2)	0010 011d ffff	ffff	None	6,8	
INCF	f,d	Increment f	1	0001 010d ffff	ffff	OV,C,DC,Z		
INCFSZ	f,d	Increment f, skip if 0	1 (2)	0001 111d ffff	ffff	None	6,8	
INFSNZ	f,d	Increment f, skip if not 0	1 (2)	0010 010d ffff	ffff	None	6,8	
IORWF	f,d	Inclusive OR WREG with f	1	0000 100d ffff	ffff	Z		
MOVFP	f,p	Move f to p	1	011p pppp ffff	ffff	None		
MOVPF	p,f	Move p to f	1	010p pppp ffff	ffff	Z		
MOVWF	f	Move WREG to f	1	0000 0001 ffff	ffff	None		
MULWF	f	Multiply WREG with f	1	0011 0100 ffff	ffff	None	9	
NEGW	f,s	Negate WREG	1	0010 110s ffff	ffff	OV,C,DC,Z	1,3	
NOP	—	No Operation	1	0000 0000 0000	0000	None		
RLCF	f,d	Rotate left f through Carry	1	0001 101d ffff	ffff	С		
RLNCF	f,d	Rotate left f (no carry)	1	0010 001d ffff	ffff	None		
RRCF	f,d	Rotate right f through Carry	1	0001 100d ffff	ffff	C		
RRNCF	f,d	Rotate right f (no carry)	1	0010 000d ffff	ffff	None		
SETF	f,s	Set f	1	0010 101s ffff	ffff	None	3	
SUBWF	f,d	Subtract WREG from f	1	0000 010d ffff	ffff	OV,C,DC,Z	1	
SUBWFB	f,d	Subtract WREG from f with Borrow	1	0000 001d ffff	ffff	OV,C,DC,Z	1	
SWAPF	f,d	Swap f	1	0001 110d ffff	ffff	None		
TABLRD	t,i,f	Table Read	2 (3)	1010 10ti ffff	ffff	None	7	

Legend: Refer to Table 15-1 for opcode field descriptions.

- Note 1: 2's Complement method.
 - 2: Unsigned arithmetic.

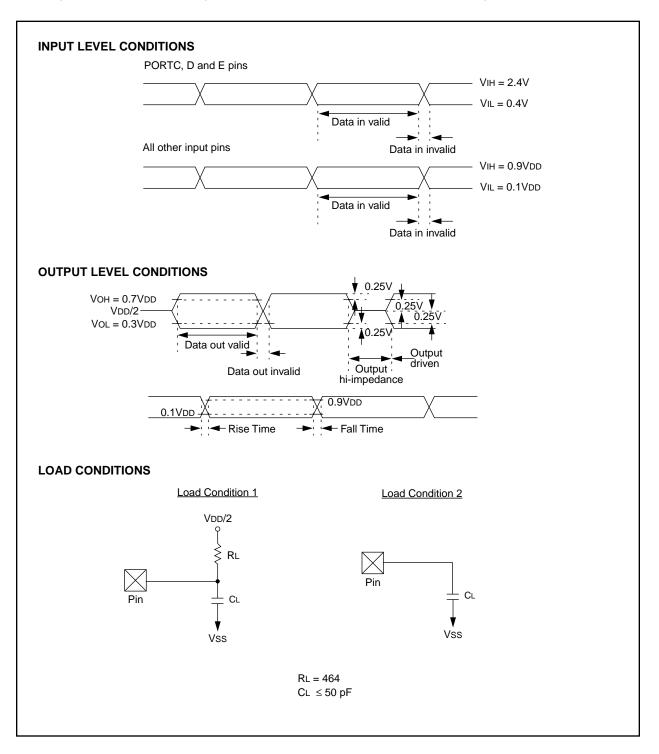
3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.

- 4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL)
- 5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.
- 6: Two-cycle instruction when condition is true, else single cycle instruction.
- 7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
- 8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead an NOP is executed.
- 9: These instructions are not available on the PIC17C42.

PIC17C4X

IORWF	Inclusive		with f	LCALL	Long Cal	I			
Syntax:	[label]	ORWF f,d		Syntax:	[label]	LCALL k			
Operands:	0 ≤ f ≤ 255	5		Operands:	$0 \le k \le 25$	5			
	d ∈ [0,1]			Operation:	PC + 1 \rightarrow	TOS;			
Operation:	(WREG) .	$OR.\left(f ight) ightarrow\left(de ight)$	est)		$k \rightarrow PCL$,	(PCLATH) -	→ PCH		
Status Affected:	Z			Status Affected:	None				
Encoding:	0000	100d ff	ff ffff	Encoding:	1011	0111 kk	kk kkkk		
Description:	'd' is 0 the r	R WREG with esult is placed esult is placed	0	Description:	tine call to a gram memor First, the re	LCALL allows an unconditional subr tine call to anywhere within the 64k gram memory space. First, the return address (PC + 1) is			
Words:	1				•	to the stack. A ress is then lo			
Cycles:	1				program co	ounter. The lo	wer 8-bits of		
Q Cycle Activity:							s embedded in er 8-bits of PC		
Q1	Q2	Q3	Q4			om PC high h			
Decode	Read register 'f'	Execute	Write to destination		PCLATH.				
Evemple:			uccundulori	Words:	1				
Example:		ESULT, O		Cycles:	2				
Before Instru RESULT				Q Cycle Activity:					
WREG	= 0x13 = 0x91			Q1	Q2	Q3	Q4		
After Instruct RESULT				Decode	Read literal 'k'	Execute	Write register PCL		
WREG	= 0x13 = 0x93			Forced NOP	NOP	Execute	NOP		
				Example:	MOVPF W	IGH(SUBROU REG, PCLAT OW(SUBROUT	Н		

Before Instruction


SUBROUTINE PC	= =	16-bit Address ?					
After Instruction							

PC = Address	(SUBROUTINE)
--------------	--------------

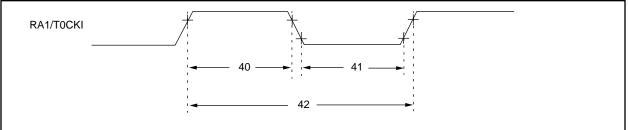
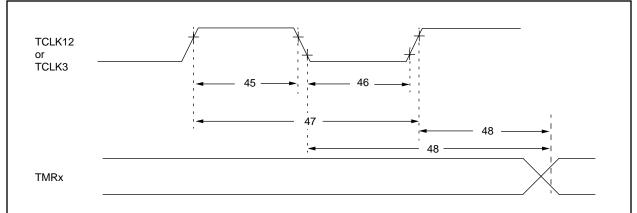

MULLW	Multiply I	_iteral with V	VREG	MULWF	Multiply V	VREG with	f		
Syntax:	[label]	MULLW k		Syntax:	[label]	MULWF f			
Operands:	$0 \le k \le 25$	5		Operands:	$0 \le f \le 25$	$0 \le f \le 255$			
Operation:	(k x WRE	G) \rightarrow PRODI	H:PRODL	Operation:	(WREG x	(WREG x f) \rightarrow PRODH:PRODL			
Status Affected:	None			Status Affected	: None	None			
Encoding:	1011	1100 kk	kk kkkk	Encoding:	0011	0100 ff	Ef ffff		
Description:	out betwee and the 8-b result is pla register pai high byte. WREG is u None of the Note that n is possible	ed multiplicatio n the contents bit literal 'k'. The aced in PRODH ir. PRODH con unchanged. e status flags a either overflow in this operatio ssible but not o	of WREG e 16-bit H:PRODL tains the are affected. / nor carry on. A zero	Description:	out betwee and the reg 16-bit resul PRODH:PF PRODH co Both WREC None of the Note that n is possible	ed multiplication in the contents gister file locati t is stored in the RODL register ntains the hig G and 'f' are un e status flags a either overflow in this operations ssible but not	s of WREG ion 'f'. The he pair. h byte. nchanged. are affected. v nor carry on. A zero		
Words:	1			Words:	1				
Cycles:	1			Cycles:	1				
Q Cycle Activity:				Q Cycle Activity	:				
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		
Decode	Read literal 'k'	Execute	Write registers PRODH: PRODL	Decode	Read register 'f'	Execute	Write registers PRODH: PRODL		
Example:	MULLW	0xC4		Example:	MULWF	REG	1		
Before Instru WREG PRODH PRODL	= 0) = ? = ?	Æ2		Before Inst WREG REG PRODI PRODI	= 0x = 0x H = ?	(C4 (B5			
After Instruct WREG PRODH PRODL Note: This	$= 0 \\ = 0 $	(C4 (AD (08 is not avail	lable in the	After Instru WREG REG PRODI PRODI	$\begin{array}{rcl} = & 0 \\ = & 0 \\ H & = & 0 \end{array}$	xC4 xB5 x8A x94			
PIC17	C42 device				instruction		lable in tl		

FIGURE 17-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.

FIGURE 17-5: TIMER0 CLOCK TIMINGS

TABLE 17-5: TIMER0 CLOCK REQUIREMENTS


Parameter No.	Sum	Characteristic		Min	Tunt	Мах	Unito	Conditions
NO.	Sym	Characteristic		IVIIII	Typ†	IVIAX	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20 §	_	_	ns	
			With Prescaler	10*	—	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20 §	—	—	ns	
			With Prescaler	10*	—	—	ns	
42	Tt0P	T0CKI Period	•	<u>Tcy + 40</u> §	—	—	ns	N = prescale value
				N				(1, 2, 4,, 256)

* These parameters are characterized but not tested.

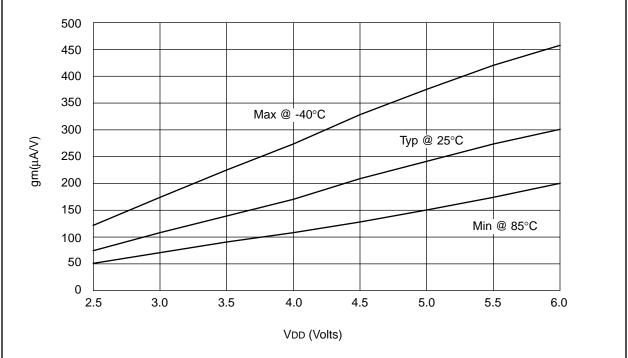
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5 TCY + 20 §		_	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5 TCY + 20 §			ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N			ns	N = prescale value (1, 2, 4, 8)
48	TckE2tmrl	Delay from selected External Clock Edge to Timer increment	2Tosc §		6 Tosc §	_	


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

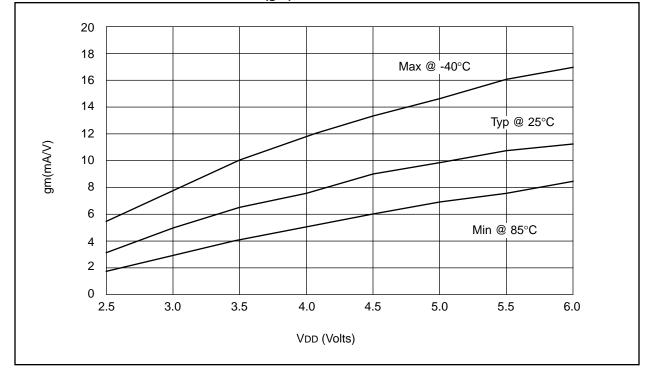
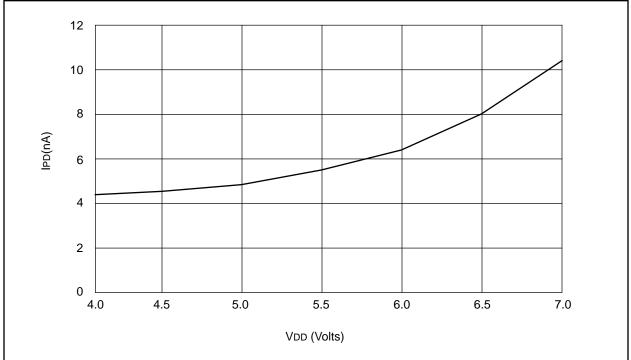
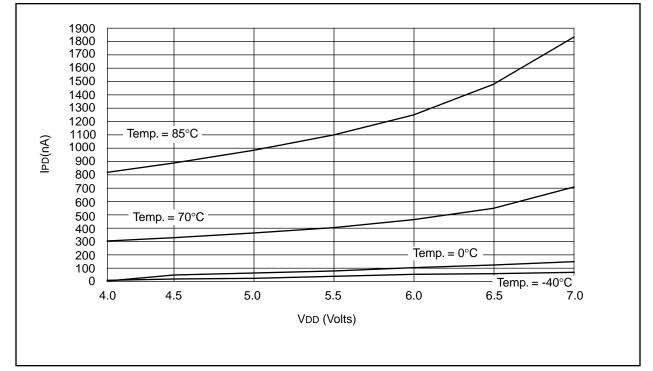



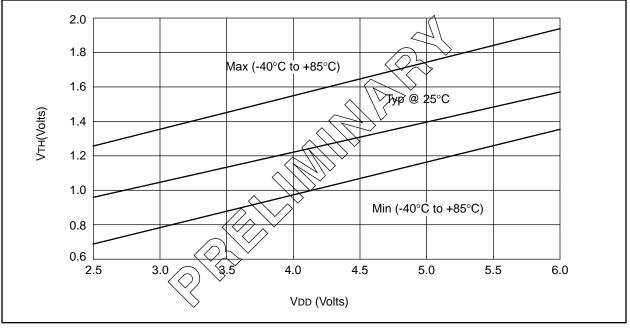
FIGURE 18-6: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C




FIGURE 18-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

Applicable Devices 42 R42 42A 43 R43 44

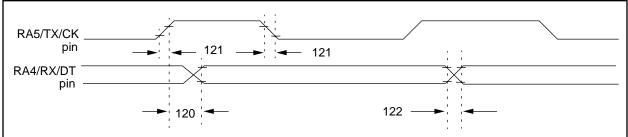

FIGURE 18-17: IOL vs. VOL, VDD = 5V

FIGURE 19-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

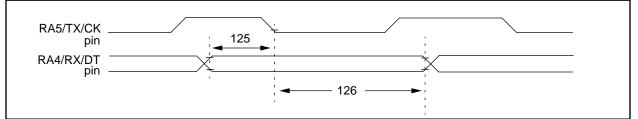


TABLE 19-9: SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param	C. m	Characteristic		Min	Trent	Max	Unito	Conditions
No.	Sym	Characteristic		IVIIII	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER &						
		SLAVE)	PIC17CR42/42A/43/R43/44	—	—	50	ns	
		Clock high to data out valid	PIC17LCR42/42A/43/R43/44	—	—	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
		(Master Mode)	PIC17LCR42/42A/43/R43/44	—	—	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
			PIC17LCR42/42A/43/R43/44	—	—	40	ns	
†	† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not							

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

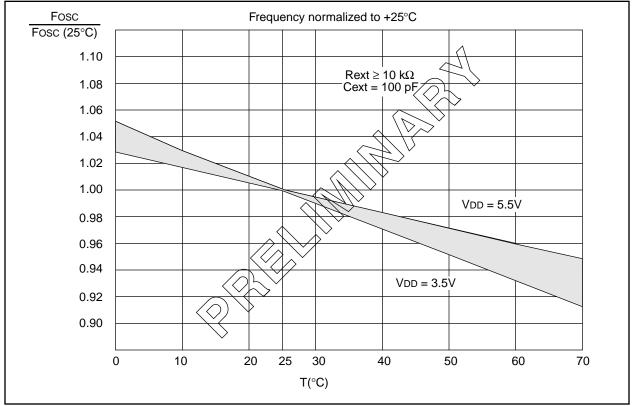
FIGURE 19-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-10: SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

20.0 PIC17CR42/42A/43/R43/44 DC AND AC CHARACTERISTICS


The graphs and tables provided in this section are for design guidance and are not tested nor guaranteed. In some graphs or tables the data presented is outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

TABLE 20-1: PIN CAPACITANCE PER PACKAGE TYPE

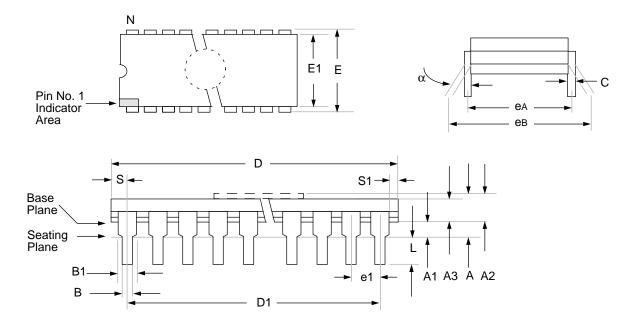

Din Nama	Typical Capacitance (pF)						
Pin Name	40-pin DIP	44-pin PLCC	44-pin MQFP	44-pin TQFP			
All pins, except MCLR, VDD, and Vss	10	10	10	10			
MCLR pin	20	20	20	20			

FIGURE 20-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

21.0 PACKAGING INFORMATION

21.1 40-Lead Ceramic CERDIP Dual In-line, and CERDIP Dual In-line with Window (600 mil)

	Package Group: Ceramic CERDIP Dual In-Line (CDP)					
	Millimeters				Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
Ν	40	40		40	40	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

© 1996 Microchip Technology Inc.

PIC17C4X

Table 17-9:	Serial Port Synchronous Transmission
	Requirements 160
Table 17-10:	Serial Port Synchronous Receive
	Requirements 160
Table 17-11:	Memory Interface Write Requirements 161
Table 17-12:	Memory Interface Read Requirements 162
Table 18-1:	Pin Capacitance per Package Type 163
Table 18-2:	RC Oscillator Frequencies165
Table 19-1:	Cross Reference of Device Specs for
	Oscillator Configurations and Frequencies
	of Operation (Commercial Devices)
Table 19-2:	External Clock Timing Requirements 184
Table 19-3:	CLKOUT and I/O Timing Requirements 185
Table 19-4:	Reset, Watchdog Timer,
	Oscillator Start-Up Timer and
	Power-Up Timer Requirements 186
Table 19-5:	Timer0 Clock Requirements 187
Table 19-6:	Timer1, Timer2, and Timer3 Clock
	Requirements 187
Table 19-7:	Capture Requirements188
Table 19-8:	PWM Requirements188
Table 19-9:	Synchronous Transmission
	Requirements189
Table 19-10:	Synchronous Receive Requirements 189
Table 19-11:	Memory Interface Write Requirements
	(Not Supported in PIC17LC4X Devices) 190
Table 19-12:	Memory Interface read Requirements
	(Not Supported in PIC17LC4X Devices) 191
Table 20-1:	Pin Capacitance per Package Type 193
Table 20-2:	RC Oscillator Frequencies 195
Table E-1:	Pin Compatible Devices

LIST OF EQUATIONS

16 x 16 Unsigned Multiplication
Algorithm50
16 x 16 Signed Multiplication
Algorithm51