

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	EPROM, UV
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-CDIP (0.600", 15.24mm) Window
Supplier Device Package	40-Cerdip
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42a-jw

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

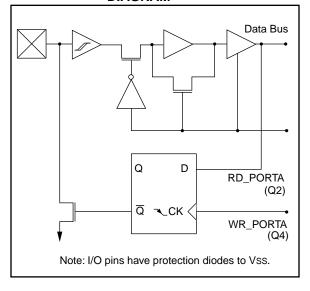
Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

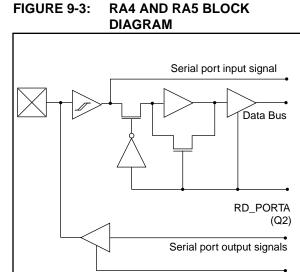
If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	; FSR0 = 20	h
	BCF	ALUSTA, FS1	; Increment	FSR
	BSF	ALUSTA, FSO	; after acc	ess
	BCF	ALUSTA, C	; C = 0	
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	; Addr(FSR)	= 0
	CPFSEQ	FSR0	; FSRO = EN	ID_RAM+1?
	GOTO	LP	; NO, clear	next
	:		; YES, All	RAM is
	:		; cleared	

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>


File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.


The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

FIGURE 9-2: RA2 AND RA3 BLOCK DIAGRAM

 \overline{OE} = SPEN,SYNC,TXEN, \overline{CREN} , \overline{SREN} for RA4 \overline{OE} = SPEN (\overline{SYNC} +SYNC, \overline{CSRC}) for RA5

Note: I/O pins have protection diodes to VDD and VSS.

TABLE 9-1:	PO	RTA FUNCTI	ONS

.

_ _ _ _

Name	Bit0	Buffer Type	Function
RA0/INT	bit0	ST	Input or external interrupt input.
RA1/T0CKI	bit1	ST	Input or clock input to the TMR0 timer/counter, and/or an external interrupt input.
RA2	bit2	ST	Input/Output. Output is open drain type.
RA3	bit3	ST	Input/Output. Output is open drain type.
RA4/RX/DT	bit4	ST	Input or USART Asynchronous Receive or USART Synchronous Data.
RA5/TX/CK	bit5	ST	Input or USART Asynchronous Transmit or USART Synchronous Clock.
RBPU	bit7		Control bit for PORTB weak pull-ups.

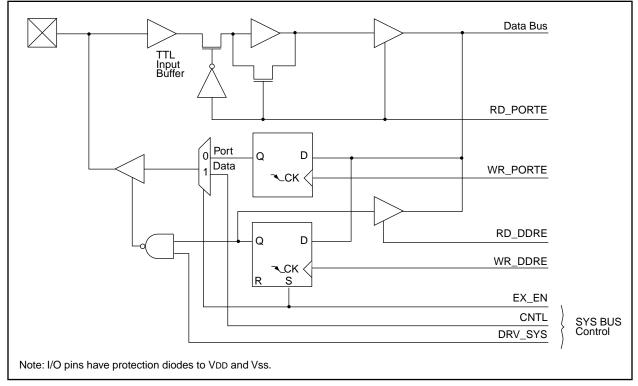
Legend: ST = Schmitt Trigger input.

TABLE 9-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
10h, Bank 0	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0	_	0000 000-	0000 000-
13h, Bank 0	RCSTA	SPEN	RC9	SREN	CREN	—	FERR	OERR	RC9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	0000lu

Legend: x = unknown, u = unchanged, - = unimplemented reads as '0'. Shaded cells are not used by PORTA. Note 1: Other (non power-up) resets include: external reset through \overline{MCLR} and the Watchdog Timer Reset.

9.4.1 PORTE AND DDRE REGISTER


PORTE is a 3-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to it will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (\overline{OE}), and Write (\overline{WR}). The control signals \overline{OE} and \overline{WR} are active low signals. The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-4 shows the instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-4: INITIALIZING PORTE

MOVLB	1	;	Select Bank 1
CLRF	PORTE	;	Initialize PORTE data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0x03	;	Value used to initialize
		;	data direction
MOVWF	DDRE	;	Set RE<1:0> as inputs
		;	RE<2> as outputs
		;	RE<7:3> are always
		;	read as '0'

FIGURE 9-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

12.1.3.1 PWM PERIODS

The period of the PWM1 output is determined by Timer1 and its period register (PR1). The period of the PWM2 output can be software configured to use either Timer1 or Timer2 as the time-base. When TM2PW2 bit (PW2DCL<5>) is clear, the time-base is determined by TMR1 and PR1. When TM2PW2 is set, the time-base is determined by Timer2 and PR2.

Running two different PWM outputs on two different timers allows different PWM periods. Running both PWMs from Timer1 allows the best use of resources by freeing Timer2 to operate as an 8-bit timer. Timer1 and Timer2 can not be used as a 16-bit timer if either PWM is being used.

The PWM periods can be calculated as follows:

period of PWM1 =[(PR1) + 1] x 4Tosc

period of PWM2 =[(PR1) + 1] x 4Tosc or [(PR2) + 1] x 4Tosc

The duty cycle of PWMx is determined by the 10-bit value DCx<9:0>. The upper 8-bits are from register PWxDCH and the lower 2-bits are from PWxDCL<7:6> (PWxDCH:PWxDCL<7:6>). Table 12-3 shows the maximum PWM frequency (FPWM) given the value in the period register.

The number of bits of resolution that the PWM can achieve depends on the operation frequency of the device as well as the PWM frequency (FPWM).

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log\left(2\right)} \quad \text{bits}$$

The PWMx duty cycle is as follows:

PWMx Duty Cycle = $(DCx) \times TOSC$

where DCx represents the 10-bit value from PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If PRx = PWxDCH, then the PWM output will be low for one to four Q-clock (depending on the state of the PWxDCL<7:6> bits). For a Duty Cycle to be 100%, the PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are double buffered. When the user writes to these registers, they are stored in master latches. When TMR1 (or TMR2) overflows and a new PWM period begins, the master latch values are transferred to the slave latches and the PWMx pin is forced high.

Note:	For PW1DCH, PW1DCL, PW2DCH and
	PW2DCL registers, a write operation
	writes to the "master latches" while a read
	operation reads the "slave latches". As a
	result, the user may not read back what
	was just written to the duty cycle registers.

The user should also avoid any "read-modify-write" operations on the duty cycle registers, such as: ADDWF PW1DCH. This may cause duty cycle outputs that are unpredictable.

TABLE 12-3:	PWM FREQUENCY vs.
	RESOLUTION AT 25 MHz

PWM	Frequency (kHz)								
Frequency	24.4	48.8	65.104	97.66	390.6				
PRx Value	0xFF	0x7F	0x5F	0x3F	0x0F				
High Resolution	10-bit	9-bit	8.5-bit	8-bit	6-bit				
Standard Resolution	8-bit	7-bit	6.5-bit	6-bit	4-bit				

12.1.3.2 PWM INTERRUPTS

The PWM module makes use of TMR1 or TMR2 interrupts. A timer interrupt is generated when TMR1 or TMR2 equals its period register and is cleared to zero. This interrupt also marks the beginning of a PWM cycle. The user can write new duty cycle values before the timer roll-over. The TMR1 interrupt is latched into the TMR1IF bit and the TMR2 interrupt is latched into the TMR2IF bit. These flags must be cleared in software.

12.1.3.3 EXTERNAL CLOCK SOURCE

The PWMs will operate regardless of the clock source of the timer. The use of an external clock has ramifications that must be understood. Because the external TCLK12 input is synchronized internally (sampled once per instruction cycle), the time TCLK12 changes to the time the timer increments will vary by as much as TCY (one instruction cycle). This will cause jitter in the duty cycle as well as the period of the PWM output.

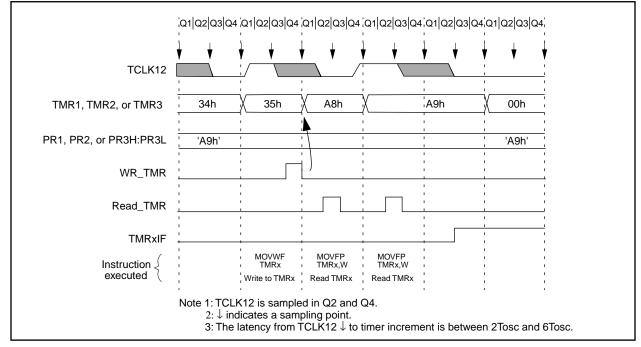
This jitter will be \pm TCY, unless the external clock is synchronized with the processor clock. Use of one of the PWM outputs as the clock source to the TCLKx input, will supply a synchronized clock.

In general, when using an external clock source for PWM, its frequency should be much less than the device frequency (Fosc).

12.2.3 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 12-9 shows the timing diagram when operating from an external clock.

12.2.4 READING/WRITING TIMER3


Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method to read or write the timer is to stop the timer, perform any read or write operation, and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 free-running, care must be taken. For writing to the 16-bit TMR3, Example 12-2 may be used. For reading the 16-bit TMR3, Example 12-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 12-2: WRITING TO TMR3

BSF CPUSTA, GLINTD ;Disable interrupt MOVFP RAM_L, TMR3L ; MOVFP RAM_H, TMR3H ; BCF CPUSTA, GLINTD ;Done,enable interrupt

EXAMPLE 12-3: READING FROM TMR3

MOVPF TMR3L, TMPLO ;read low t MOVPF TMR3H, TMPHI ;read high MOVFP TMPLO, WREG ;tmplo -> w	tmr0
CPFSLT TMR3L, WREG ;tmr0l < wr	eg?
RETURN ;no then re	eturn
MOVPF TMR3L, TMPLO ;read low t	.mr0
MOVPF TMR3H, TMPHI ;read high	tmr0
RETURN ;return	

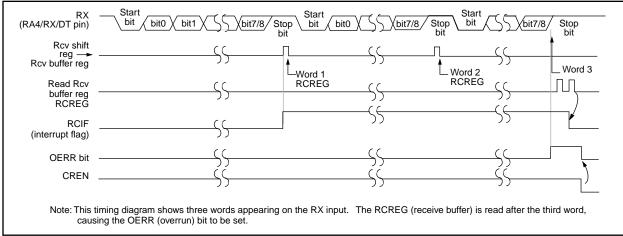


FIGURE 12-9: TMR1, TMR2, AND TMR3 OPERATION IN EXTERNAL CLOCK MODE

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-8: ASYNCHRONOUS RECEPTION

TABLE 13-6:	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous reception. Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

ANDWF	AND WRE	EG with	f	
Syntax:	[<i>label</i>] A	NDWF	f,d	
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5		
Operation:	(WREG) .	AND. (f)	\rightarrow (dest))
Status Affected:	Z			
Encoding:	0000	101d	ffff	ffff
Description:	The conten register 'f'. in WREG. I back in reg	lf 'd' is 0 f 'd' is 1 t	the result	is stored
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4
Decode	Read register 'f'	Execu		Vrite to stination
Example:	ANDWF	REG, 1		
Before Instru WREG REG After Instruct WREG	= 0x17 = 0xC2			

BCF		Bit Clear	Bit Clear f						
Syntax:		[label] E	[label] BCF f,b						
Operand	s:	$0 \le f \le 25$ $0 \le b \le 7$	$0 \le f \le 255$ $0 \le b \le 7$						
Operatio	n:	$0 \rightarrow (f < b >$	-)						
Status A	ffected:	None							
Encoding	g:	1000	1bbb	fff	f	ffff			
Descripti	ion:	Bit 'b' in re	Bit 'b' in register 'f' is cleared.						
Words:		1	1						
Cycles:		1							
Q Cycle	Activity:								
	Q1	Q2	Q3	8	Q4				
D	ecode	Read register 'f'	Execu	ute		Write gister 'f'			
<u>Example</u>	:	BCF	FLAG_R	EG,	7				
	r Instruct	EG = 0xC7							
		20 - 0,47							

CPFSEQ	Compare skip if f =	f with WREC WREG	Э,	CPF	SGT	Compare skip if f >	f with WRE WREG	G,		
Syntax:	[label]	CPFSEQ f		Syn	tax:	[label]	[label] CPFSGT f			
Operands:	$0 \le f \le 255$	5		Ope	rands:	$0 \le f \le 255$	$0 \le f \le 255$			
Operation:	(f) – (WRE) skip if (f) = (unsigned o			Ope	ration:	skip if (f) >	(f) – (WREG), skip if (f) > (WREG) (unsigned comparison)			
Status Affected:	None	None		Stat	us Affected:	None	None			
Encoding:	0011	0001 fff	f ffff	Enc	oding:	0011	0010 ff	ff ffff		
Description:	Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If 'f' = WREG then the fetched instruc- tion is discarded and an NOP is exe- cuted instead making this a two-cycle instruction.			Des	cription:	Compares the contents of data memory location 'f' to the contents of the WREG by performing an unsigned subtraction. If the contents of 'f' > the contents of WREG then the fetched instruction is discarded and an NOP is executed instead making this a two-cycle instruc-				
Words:	1			14/0 -	de .	tion. 1				
Cycles:	1 (2)			Words: 1 Cycles: 1 (2)						
Q Cycle Activity:				•		1 (2)				
Q1	Q2	Q3	Q4	QC	ycle Activity: Q1	Q2	Q3	3 Q4		
Decode	Read register 'f'	Execute	NOP		Decode	Read	Execute	NOP		
If skip:			lf sk	in:	register t	register 'f'				
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
Forced NOP	NOP	Execute	NOP		Forced NOP	NOP	Execute	NOP		
<u>Example</u> :	NEQUAL	CPFSEQ REG : :		<u>Exa</u>	mple:	HERE CPFSGT REG NGREATER : GREATER :				
Before Instru					Before Instru	-	·			
PC Address = HERE WREG = ? REG = ?			PC WREG		dress (HERE)					
After Instruct If REG PC If REG PC	After Instruction If REG = WREG; PC = Address (EQUAL) If REG ≠ WREG;			After Instruc If REG PC If REG PC	> Wi = Ad ≤ Wi	REG; Idress (GREAT REG; Idress (NGREZ				

NEGV	v	Negate W							
Syntax	x:	[<i>label</i>] NEGW f,s							
Opera	nds:	0 ≤ F ≤ 255 s ∈ [0,1]							
Opera	tion:	$\frac{\overline{WREG} + 1 \rightarrow (f);}{\overline{WREG} + 1 \rightarrow s}$							
Status	Affected:	OV, C, DC, Z	OV, C, DC, Z						
Encod	ling:	0010 110s ffff ffff							
Descri	iption:	WREG is negated using two's comple- ment. If 's' is 0 the result is placed in WREG and data memory location 'f'. If 's' is 1 the result is placed only in data memory location 'f'.							
Words	:	1							
Cycles	S:	1							
Q Cyc	le Activity:								
	Q1	Q2 Q3 Q4							
	Decode	Read Execute Write register 'f' and other specified register							
<u>Exam</u>	ole:	NEGW REG, 0							
B	efore Instru WREG REG	ction = 0011 1010 [0x3A], = 1010 1011 [0xAB]							
A	fter Instruct WREG REG	ion = 1100 0111 [0xC6] = 1100 0111 [0xC6]							

NOF	0	No Operation						
Synt	ax:	[label]	NOP					
Ope	rands:	None	None					
Ope	ration:	No opera	No operation					
Stat	us Affected:	None						
Enco	oding:	0000	0000	000	0	0000		
Des	cription:	No operation.						
Wor	ds:	1	1					
Cycl	es:	1						
Q Cycle Activity:								
	Q1	Q2	Q3 Q			Q4		
	Decode	NOP	Exect	Execute		NOP		

Example:

None.

SLEEP	Enter SL	Enter SLEEP mode					
Syntax:	[label] S	[label] SLEEP					
Operands:	None	None					
Operation:							
Status Affected:	TO, PD						
Encoding:	0000	0000	000	0	0011		
Description:	cleared. Th set. Watch are cleare The proce	The power down status bit (PD) is cleared. The time-out status bit (TO) is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		(Q4		
Decode	Read register PCLATH	Execu	te	N	OP		
Example:	SLEEP						
Before Instru TO = PD = After Instruct	? ?						
TO = PD = † If WDT causes	1† 0	nie hit ie	clear	be			

† If WDT causes wake-up, this bit is cleared

SUE	BLW	S	Subtract WREG from Literal							
Synt	tax:	[labe	/] :	SUBLW	k				
Ope	rands:	0	$0 \le k \le 255$							
Ope	ration:	k	$k - (WREG) \rightarrow (WREG)$							
Stat	us Affected:	C	DV, C	, D	C, Z					
Enc	oding:	Γ	101	1	0010	kkł	k	kkkk		
Des	Description:			WREG is subtracted from the eight bit literal 'k'. The result is placed in WREG.						
Words:										
Cycles:										
QC	ycle Activity:									
	Q1				Q3			Q4		
	Decode	-	Read eral 'k	۲'	Execu	ite		Vrite to WREG		
Exa	<u>mple 1</u> :	S	UBLW	1 (Ox02					
	Before Instru WREG C After Instruct WREG	= =	ר 1 ? 1							
<u>Exa</u>	C Z mple <u>2</u> :	=	1 0	; re	esult is po	ositive				
	Before Instru WREG C	ictior = =	ר 2 ?							
<u>Exa</u>	After Instruct WREG C Z mple <u>3</u> :	tion = = =	0 1 ; result is zero 1							
	Before Instru WREG C	ictior = =	ר 3 ?							
	After Instruct WREG C Z	tion = = =	FF 0 1		's comple esult is ne		·			

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (fuzzyTECH[®]–MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLABTM Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

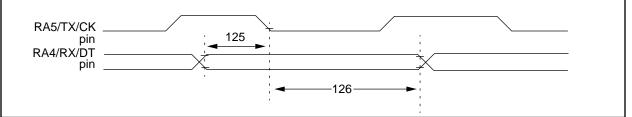
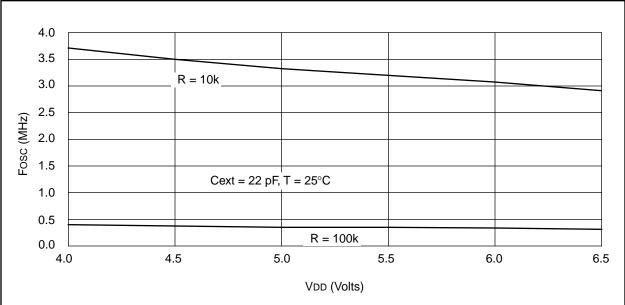


TABLE 17-9: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

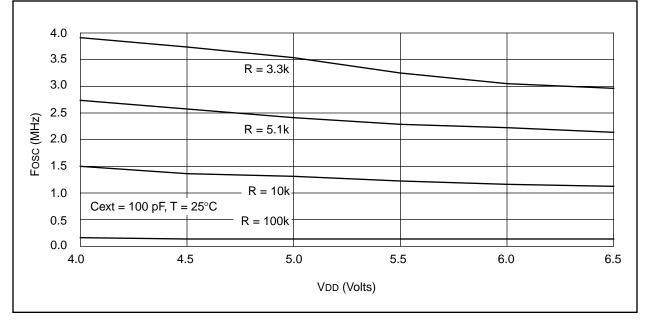
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid		_	65	ns	
121	TckRF	Clock out rise time and fall time (Master Mode)	_	10	35	ns	
122	TdtRF	Data out rise time and fall time		10	35	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING


TABLE 17-10: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—	_	ns	


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 18-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

19.0 PIC17CR42/42A/43/R43/44 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

5	
Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0.6V to +14V
Voltage on RA2 and RA3 with respect to Vss	0.6V to +14V
Voltage on all other pins with respect to Vss	0.6V to VDD + 0.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin(s) - total	250 mA
Maximum current into VDD pin(s) - total	200 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VG	OH) X IOH} + Σ (VOL X IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Applicable Devices 42 R42 42A 43 R43 44

19.3 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial) PIC17LCR42/42A/43/R43/44-08 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

			Operating	oltago \/r	0°C		≤ +70°C for commercial cribed in Section 19.1
Parameter	1			ollage vi	D lange a		
No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \le VDD \le 5.5V$
			Vss	_	0.2Vdd	V	$2.5V \le VDD \le 4.5V$
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V	
D032		MCLR, OSC1 (in EC and RC mode)	Vss	-	0.2Vdd	V	Note1
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	_	V	
		Input High Voltage					
	VIH	I/O ports					
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
			1 + 0.2VDD	-	Vdd	V	$2.5V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	V	
D042		MCLR	0.8Vdd	_	Vdd	V	Note1
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	_	V	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15Vdd *	-	-	V	
		Input Leakage Current (Notes 2, 3)					
D060	lı∟	I/O ports (except RA2, RA3)	_	_	±1	μA	Vss ≤ VPIN ≤ VDD, I/O Pin at hi-impedance PORTB weak pull-ups disabled
D061		MCLR	_	-	±2	μA	VPIN = Vss or VPIN = VDD
D062		RA2, RA3			±2	μΑ	$Vss \le Vra2$, $Vra3 \le 12V$
D063		OSC1, TEST (EC, RC modes)	-	_	±1	μΑ	$Vss \le VPIN \le VDD$
D063B		OSC1, TEST (XT, LF modes)	-	-	VPIN	μA	RF ≥ 1 MΩ, see Figure 14.2
D064		MCLR	-	-	10	μA	VMCLR = VPP = 12V (when not programming)
D070	IPURB	PORTB weak pull-up current	60	200	400	μA	VPIN = VSS, $\overline{\text{RBPU}} = 0$ 4.5V \leq VDD \leq 6.0V

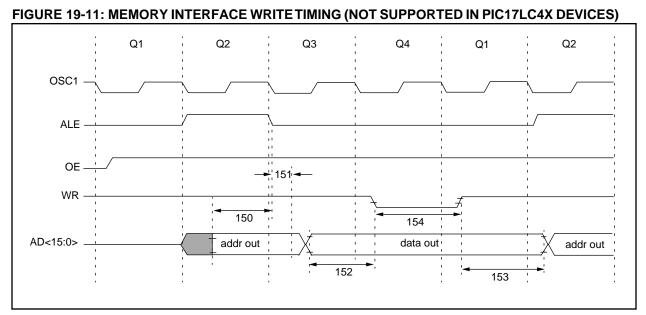
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as coming out of the pin.


3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-11: MEMORY INTERFACE WRITE REQUIREMENTS (NOT SUPPORTED IN PIC17LC4X DEVICES)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 10		_	ns	
151	TalL2adI	ALE↓ to address out invalid (address hold time)	0	_	—	ns	
152	TadV2wrL	Data out valid to $\overline{WR} \downarrow$ (data setup time)	0.25Tcy - 40	_	_	ns	
153	TwrH2adl	WR↑ to data out invalid (data hold time)	_	0.25Tcy §	_	ns	
154	TwrL	WR pulse width	—	0.25Tcy §	—	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

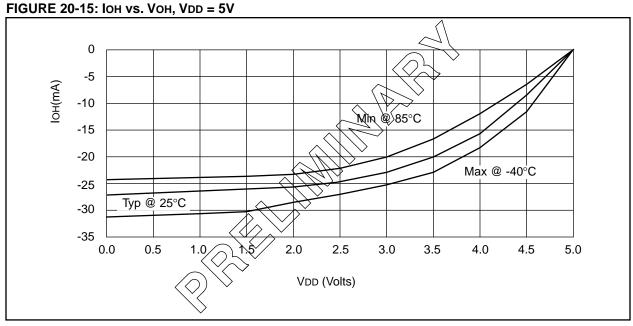
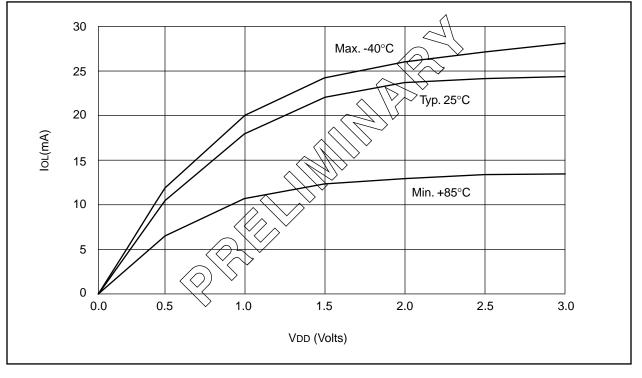
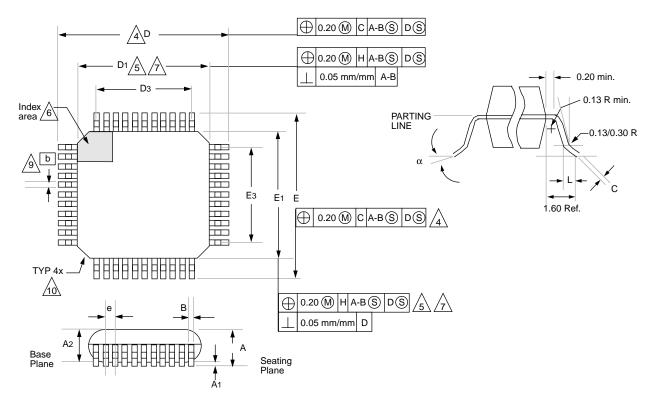




FIGURE 20-16: IOL vs. VOL, VDD = 3V

Package Group: Plastic MQFP							
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Мах	Notes	
α	0°	7 °		0°	7 °		
А	2.000	2.350		0.078	0.093		
A1	0.050	0.250		0.002	0.010		
A2	1.950	2.100		0.768	0.083		
b	0.300	0.450	Typical	0.011	0.018	Typical	
С	0.150	0.180		0.006	0.007		
D	12.950	13.450		0.510	0.530		
D1	9.900	10.100		0.390	0.398		
D3	8.000	8.000	Reference	0.315	0.315	Reference	
E	12.950	13.450		0.510	0.530		
E1	9.900	10.100		0.390	0.398		
E3	8.000	8.000	Reference	0.315	0.315	Reference	
е	0.800	0.800		0.031	0.032		
L	0.730	1.030		0.028	0.041		
Ν	44	44		44	44		
CP	0.102	_		0.004	_		

E.2 PIC16C5X Family of Devices

				0	Clock Mer	Memory	Perip	Peripherals	Features
				CAN USE	Course will a course of the co				
		1081	to TOUSDI			(s)		., N SOL	454
	Tely	Ununs	MOL VY	- MAA MO	BOW SOUND SUNT		SUID OI	o sequent	Seberged
PIC16C52	4	384		25	TMRO	12	2.5-6.25	33	18-pin DIP, SOIC
PIC16C54	20	512	I	25	TMRO	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C54A	20	512	I	25	TMRO	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR54A	20		512	25	TMRO	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C55	20	512	I	24	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C56	20	ź	I	25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C57	20	2K		72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16CR57B	20	I	2K	72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C58A	20	2K		73	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR58A	20	Ι	2K	73	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
All PIC16/17		devices	s have	Power-Or	n Reset, selectabl	e Watch	ndog Timer, s	selectab	-amily devices have Power-On Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

DS30412C-page 214

Figure 6-12:	Program Counter using The CALL and
Figure 6-13:	GOTO Instructions
Figure 7-1:	TLWT Instruction Operation43
Figure 7-2:	TABLWT Instruction Operation
Figure 7-3:	TLRD Instruction Operation
Figure 7-4:	TABLRD Instruction Operation
Figure 7-5:	TABLWT Write Timing
Figure 7-6:	(External Memory) 46 Consecutive TABLWT Write Timing
	(External Memory)47
Figure 7-7:	TABLRD Timing48
Figure 7-8:	TABLRD Timing (Consecutive TABLRD
0	Instructions)
Figure 9-1:	RA0 and RA1 Block Diagram53
Figure 9-2:	RA2 and RA3 Block Diagram
Figure 9-3:	RA4 and RA5 Block Diagram54
Figure 9-4:	Block Diagram of RB<7:4> and RB<1:0> Port Pins
Figure 9-5:	Block Diagram of RB3 and RB2 Port Pins56
0	
Figure 9-6:	Block Diagram of RC<7:0> Port Pins
Figure 9-7:	PORTD Block Diagram
	(in I/O Port Mode)60
Figure 9-8:	PORTE Block Diagram
	(in I/O Port Mode)
Figure 9-9:	Successive I/O Operation
Figure 11-1:	T0STA Register (Address: 05h,
rigulo II I.	Unbanked)
Figure 11-2:	Timer0 Module Block Diagram
0	
Figure 11-3:	TMR0 Timing with External Clock
	(Increment on Falling Edge)68
Figure 11-4:	TMR0 Timing: Write High or Low Byte 69
Figure 11-5:	TMR0 Read/Write in Timer Mode70
Figure 12-1:	TCON1 Register (Address: 16h, Bank 3) 71
Figure 12-2:	TCON2 Register (Address: 17h, Bank 3) 72
Figure 12-3:	Timer1 and Timer2 in Two 8-bit
•	Timer/Counter Mode73
Figure 12-4:	TMR1 and TMR2 in 16-bit Timer/Counter
0.0	Mode74
Figure 12-5:	Simplified PWM Block Diagram75
Figure 12-6:	PWM Output
Figure 12-7:	Timer3 with One Capture and One
rigule 12-7.	Period Register Block Diagram
Figure 12-8:	Timer3 with Two Capture Registers
-	Block Diagram
Figure 12-9:	TMR1, TMR2, and TMR3 Operation in
	External Clock Mode80
Figure 12-10:	TMR1, TMR2, and TMR3 Operation in
	Timer Mode81
Figure 13-1:	TXSTA Register (Address: 15h, Bank 0) 83
Figure 13-2:	RCSTA Register (Address: 13h, Bank 0) 84
Figure 13-3:	USART Transmit
Figure 13-4:	USART Receive85
Figure 13-5:	
Figure 13-5: Figure 13-6:	Acynchronouic Mactor Transmission 00
	Asynchronous Master Transmission
riguie 10-0.	Asynchronous Master Transmission
-	Asynchronous Master Transmission (Back to Back)
Figure 13-7:	Asynchronous Master Transmission (Back to Back)
Figure 13-7: Figure 13-8:	Asynchronous Master Transmission (Back to Back)
Figure 13-7:	Asynchronous Master Transmission (Back to Back)
Figure 13-7: Figure 13-8:	Asynchronous Master Transmission (Back to Back)
Figure 13-7: Figure 13-8: Figure 13-9:	Asynchronous Master Transmission (Back to Back)
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10:	Asynchronous Master Transmission (Back to Back)
Figure 13-7: Figure 13-8: Figure 13-9:	Asynchronous Master Transmission (Back to Back)
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11:	Asynchronous Master Transmission (Back to Back)
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11: Figure 14-1:	Asynchronous Master Transmission (Back to Back)
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11:	Asynchronous Master Transmission (Back to Back)

Figure 14-3:	Crystal Operation, Overtone Crystals	
	(XT OSC Configuration)	101
Figure 14-4:	External Clock Input Operation	
	(EC OSC Configuration)	101
Figure 14-5:	External Parallel Resonant Crystal	
	Oscillator Circuit	102
Figure 14-6:	External Series Resonant Crystal	
	Oscillator Circuit	102
Figure 14-7:	RC Oscillator Mode	
Figure 14-8:	Watchdog Timer Block Diagram	104
Figure 14-9:	Wake-up From Sleep Through Interrupt	105
Figure 15-1:	General Format for Instructions	108
Figure 15-2:	Q Cycle Activity	
Figure 17-1:	Parameter Measurement Information	
Figure 17-2:	External Clock Timing	155
Figure 17-3:	CLKOUT and I/O Timing	
Figure 17-4:	Reset, Watchdog Timer,	
	Oscillator Start-Up Timer and	
	Power-Up Timer Timing	157
Figure 17-5:	Timer0 Clock Timings	
Figure 17-6:	Timer1, Timer2, And Timer3 Clock	100
Figure 17-0.	Timings	150
Figure 17-7:	Capture Timings	
Figure 17-8:	PWM Timings	159
Figure 17-9:	USART Module: Synchronous	
	Transmission (Master/Slave) Timing	160
Figure 17-10	, ,	
	(Master/Slave) Timing	
Figure 17-11		
Figure 17-12	: Memory Interface Read Timing	162
Figure 18-1:	Typical RC Oscillator Frequency	
	vs. Temperature	163
Figure 18-2:	Typical RC Oscillator Frequency	
•	vs. VDD	164
Figure 18-3:	Typical RC Oscillator Frequency	
0	vs. VDD	164
Figure 18-4:	Typical RC Oscillator Frequency	
0	vs. VDD	165
Figure 18-5:	Transconductance (gm) of LF Oscillator	
J	vs. VDD	166
Figure 18-6:	Transconductance (gm) of XT Oscillator	
	vs. VDD	166
Figure 18-7:	Typical IDD vs. Frequency (External	100
rigulo lo l.	Clock 25°C)	167
Figure 18-8:	Maximum IDD vs. Frequency (External	107
Figure 10-0.		167
Figure 19 0.	Clock 125°C to -40°C)	107
Figure 18-9:	Typical IPD vs. VDD Watchdog	400
E:	Disabled 25°C	100
Figure 18-10		400
	Disabled	168
Figure 18-11		
	Enabled 25°C	169
Figure 18-12	: Maximum IPD vs. VDD Watchdog	
	Enabled	
Figure 18-13	: WDT Timer Time-Out Period vs. VDD	170
Figure 18-14	: IOH vs. VOH, VDD = 3V	170
Figure 18-15	: IOH vs. VOH, VDD = 5V	171
Figure 18-16		
Figure 18-17		
Figure 18-18		
3	I/O Pins (TTL) vs. VDD	172
Figure 18-19		
. igaio 10-19	VDD	173
Figure 18-20		113
- iguie 10-20	· · · · · · · · · · · · · · · · · · ·	172
Figure 10.4	Input (In XT and LF Modes) vs. VDD	
Figure 19-1:	Parameter Measurement Information	103