

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42at-25-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Name	DIP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	19	21	37		ST	Oscillator input in crystal/resonator or RC oscillator mode. External clock input in external clock mode.
OSC2/CLKOUT	20	22	38	0		Oscillator output. Connects to crystal or resonator in crystal oscillator mode. In RC oscillator or external clock modes OSC2 pin outputs CLKOUT which has one fourth the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/Vpp	32	35	7	I/P	ST	Master clear (reset) input/Programming Voltage (VPP) input. This is the active low reset input to the chip.
						PORTA is a bi-directional I/O Port except for RA0 and RA1 which are input only.
RA0/INT	26	28	44	I	ST	RA0/INT can also be selected as an external interrupt input. Interrupt can be configured to be on positive or negative edge.
RA1/T0CKI	25	27	43	I	ST	RA1/T0CKI can also be selected as an external interrupt input, and the interrupt can be configured to be on posi- tive or negative edge. RA1/T0CKI can also be selected to be the clock input to the Timer0 timer/counter.
RA2	24	26	42	I/O	ST	High voltage, high current, open drain input/output port pins.
RA3	23	25	41	I/O	ST	High voltage, high current, open drain input/output port pins.
RA4/RX/DT	22	24	40	I/O	ST	RA4/RX/DT can also be selected as the USART (SCI) Asynchronous Receive or USART (SCI) Synchronous Data.
RA5/TX/CK	21	23	39	I/O	ST	RA5/TX/CK can also be selected as the USART (SCI) Asynchronous Transmit or USART (SCI) Synchronous Clock.
						PORTB is a bi-directional I/O Port with software configurable weak pull-ups.
RB0/CAP1	11	13	29	I/O	ST	RB0/CAP1 can also be the CAP1 input pin.
RB1/CAP2	12	14	30	I/O	ST	RB1/CAP2 can also be the CAP2 input pin.
RB2/PWM1	13	15	31	I/O	ST	RB2/PWM1 can also be the PWM1 output pin.
RB3/PWM2	14	16	32	I/O	ST	RB3/PWM2 can also be the PWM2 output pin.
RB4/TCLK12	15	17	33	I/O	ST	RB4/TCLK12 can also be the external clock input to
RB5/TCLK3	16	18	34	I/O	ST	Timer1 and Timer2. RB5/TCLK3 can also be the external clock input to Timer3
RB6	17	19	35	1/0	ST	Timero.
RB7	18	20	36	1/0	ST	
						PORTC is a bi-directional I/O Port.
RC0/AD0	2	3	19	I/O	TTL	This is also the lower half of the 16-bit wide system bus
RC1/AD1	3	4	20	I/O	TTL	in microprocessor mode or extended microcontroller
RC2/AD2	4	5	21	I/O	TTL	mode. In multiplexed system bus configuration, these
RC3/AD3	5	6	22	I/O	TTL	pins are address output as well as data input or output.
RC4/AD4	6	7	23	I/O	TTL	
RC5/AD5	7	8	24	I/O	TTL	
RC6/AD6	8	9	25	I/O	TTL	
RC7/AD7	9	10	26	I/O	TTL	

TABLE 3-1:PINOUT DESCRIPTIONS

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input.

6.2.2.3 TMR0 STATUS/CONTROL REGISTER (T0STA)

This register contains various control bits. Bit7 (INTEDG) is used to control the edge upon which a signal on the RA0/INT pin will set the RB0/INT interrupt flag. The other bits configure the Timer0 prescaler and clock source. (Figure 11-1).

FIGURE 6-9: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W - 0 INTED0 bit7) R/W - 0 R/ G TOSE T	<u>/W - 0 R/W - 0</u> OCS PS3	R/W - 0 PS2	<u>R/W - 0</u> PS1	R/W - 0 PS0	U - 0 — bit0	R = Readable bit W = Writable bit U = Unimplemented, reads as '0'
bit 7:	INTEDG: RA0/ This bit selects 1 = Rising edge 0 = Falling edge	INT Pin Interrupt E the edge upon wh of RA0/INT pin g e of RA0/INT pin g	dge Selec nich the int enerates ir enerates i	t bit errupt is d nterrupt nterrupt	etected.		-n = Value at POR reset
bit 6:	TOSE : Timer0 (This bit selects <u>When TOCS =</u> 1 = Rising edge 0 = Falling edg <u>When TOCS =</u> Don't care	Clock Input Edge S the edge upon wh <u>0</u> e of RA1/T0CKI pin e of RA1/T0CKI pin <u>1</u>	Select bit hich TMR0 n incremer n incremer	will incren hts TMR0 a hts TMR0 a	nent. and/or gene and/or gene	erates a TOC erates a TOC	KIF interrupt KIF interrupt
bit 5:	TOCS : Timer0 This bit selects 1 = Internal ins 0 = TOCKI pin	Clock Source Sele the clock source f truction clock cycle	ct bit or Timer0. e (TCY)				
bit 4-1:	PS3:PS0: Time These bits sele	er0 Prescale Selected the prescale va	tion bits lue for Tim	er0.			
	PS3:PS0	Prescale Value	•				
	0000 0001 0010 010 0100 0101 0110 0111 1xxx	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256					
bit 0:	Unimplemente	ed: Read as '0'					

Example 8-4 shows the sequence to do an 16 x 16 signed multiply. Equation 8-2 shows the algorithm that used. The 32-bit result is stored in four registers RES3:RES0. To account for the sign bits of the arguments, each argument pairs most significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 8-2:	16 x 16 SIGNED
	MULTIPLICATION
	ALGORITHM

RES3:RES0

- = ARG1H:ARG1L * ARG2H:ARG2L
- - (-1 * ARG1H<7> * ARG2H:ARG2L * 2¹⁶)

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY

		NOOTI		-
	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH:PRODL
	MOVPF	PRODH, RES1	;	
	MOVPF	PRODL, RESO	;	
;				
	MOVFP	ARG1H, WREG		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH: PRODL
	MOVPF	PRODH, RES3	;	
	MOVPF	PRODI, RES2	;	
;	110 1 2 2	110002, 11202	·	
	MOVED	ARGIL, WREG		
	MIILWE	ARG2H	;	ARCII. * ARC2H ->
	HO LWP	AIGZII	;	
	MOVED	DRODI. WREC	,	FRODITIFRODE
		DEC1 E	΄.	Add groad
	ADDWF	RESI, F	΄.	Auu CIOSS
	NOVEP	PRODE, WREG	΄.	products
	ADDWFC	RESZ, F	΄.	
	CLRF	WREG, F	,	
	ADDWFC	RES3, F	;	
;				
	MOVFP	ARGIH, WREG	;	
	MULWF	ARG2L	;	ARG1H * ARG2L ->
			;	PRODH:PRODL
	MOVFP	PRODL, WREG	;	
	ADDWF	RESI, F	;	Add cross
	MOVFP	PRODH, WREG	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG, F	;	
	ADDWFC	RES3, F	;	
;				
	BTFSS	ARG2H, 7	;	ARG2H:ARG2L neg?
	GOTO	SIGN_ARG1	;	no, check ARG1
	MOVFP	ARG1L, WREG	;	
	SUBWF	RES2	;	
	MOVFP	ARG1H, WREG	;	
	SUBWFB	RES3		
;				
SIC	GN_ARG1			
	BTFSS	ARG1H, 7	;	ARG1H:ARG1L neg?
	GOTO	CONT_CODE	;	no, done
	MOVFP	ARG2L, WREG	;	
	SUBWF	RES2	;	
	MOVFP	ARG2H, WREG	;	
	SUBWFB	RES3		
;				
COI	NT_CODE			

9.0 I/O PORTS

The PIC17C4X devices have five I/O ports, PORTA through PORTE. PORTB through PORTE have a corresponding Data Direction Register (DDR), which is used to configure the port pins as inputs or outputs. These five ports are made up of 33 I/O pins. Some of these ports pins are multiplexed with alternate functions.

PORTC, PORTD, and PORTE are multiplexed with the system bus. These pins are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, these pins are general purpose I/O.

PORTA and PORTB are multiplexed with the peripheral features of the device. These peripheral features are:

- Timer modules
- Capture module
- PWM module
- USART/SCI module
- External Interrupt pin

When some of these peripheral modules are turned on, the port pin will automatically configure to the alternate function. The modules that do this are:

- PWM module
- USART/SCI module

When a pin is automatically configured as an output by a peripheral module, the pins data direction (DDR) bit is unknown. After disabling the peripheral module, the user should re-initialize the DDR bit to the desired configuration.

The other peripheral modules (which require an input) must have their data direction bit configured appropriately.

Note: A pin that is a peripheral input, can be configured as an output (DDRx<y> is cleared). The peripheral events will be determined by the action output on the port pin.

9.1 PORTA Register

PORTA is a 6-bit wide latch. PORTA does not have a corresponding Data Direction Register (DDR).

Reading PORTA reads the status of the pins.

The RA1 pin is multiplexed with TMR0 clock input, and RA4 and RA5 are multiplexed with the USART functions. The control of RA4 and RA5 as outputs is automatically configured by the USART module.

9.1.1 USING RA2, RA3 AS OUTPUTS

The RA2 and RA3 pins are open drain outputs. To use the RA2 or the RA3 pin(s) as output(s), simply write to the PORTA register the desired value. A '0' will cause the pin to drive low, while a '1' will cause the pin to float (hi-impedance). An external pull-up resistor should be used to pull the pin high. Writes to PORTA will not affect the other pins.

Note:	When using the RA2 or RA3 pin(s) as out- put(s), read-modify-write instructions (such as BCF, BSF, BTG) on PORTA are not rec- ommended. Such operations read the port pins, do the desired operation, and then write this value to the data latch. This may inadvertently cause the RA2 or RA3 pins to switch from input to output (or vice-versa). It is recommended to use a shadow regis- ter for PORTA. Do the bit operations on this shadow register and then move it to PORTA.

FIGURE 9-1: RA0 AND RA1 BLOCK DIAGRAM

12.1.3.3.1 MAX RESOLUTION/FREQUENCY FOR EXTERNAL CLOCK INPUT

The use of an external clock for the PWM time-base (Timer1 or Timer2) limits the PWM output to a maximum resolution of 8-bits. The PWxDCL<7:6> bits must be kept cleared. Use of any other value will distort the PWM output. All resolutions are supported when internal clock mode is selected. The maximum attainable frequency is also lower. This is a result of the timing requirements of an external clock input for a timer (see the Electrical Specification section). The maximum PWM frequency, when the timers clock source is the RB4/TCLK12 pin, is shown in Table 12-3 (standard resolution mode).

12.2 <u>Timer3</u>

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a second 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the timer increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer to increment. When TMR3ON is clear, the timer will not increment or set the TMR3IF bit.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- · One capture and one period register mode
- Dual capture register mode

The PIC17C4X has up to two 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are two capture pins (RB0/CAP1 and RB1/CAP2), one for each capture register. The capture pins are multiplexed with PORTB pins. An event can be:

- · a rising edge
- a falling edge
- every 4th rising edge
- every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture module is truly part of the Timer3 block. Figure 12-7 and Figure 12-8 show the block diagrams for the two modes of operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR1ON	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 reg	ister							XXXX XXXX	uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	ister							XXXX XXXX	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
10h, Bank 3	PW1DCL	DC1	DC0	—	-	—	—	—	_	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	—	_	—	—	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 12-4: REGISTERS/BITS ASSOCIATED WITH PWM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on conditions, shaded cells are not used by PWM.

14.2.4 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.5 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-6 shows how the R/C combination is connected to the PIC17CXX. For Rext values below 2.2 kQ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 $k\Omega$ and 100 $k\Omega$.

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

15.0 INSTRUCTION SET SUMMARY

The PIC17CXX instruction set consists of 58 instructions. Each instruction is a 16-bit word divided into an OPCODE and one or more operands. The opcode specifies the instruction type, while the operand(s) further specify the operation of the instruction. The PIC17CXX instruction set can be grouped into three types:

- byte-oriented
- bit-oriented
- literal and control operations.

These formats are shown in Figure 15-1.

Table 15-1 shows the field descriptions for the opcodes. These descriptions are useful for understanding the opcodes in Table 15-2 and in each specific instruction descriptions.

byte-oriented instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' = '0', the result is placed in the WREG register. If 'd' = '1', the result is placed in the file register specified by the instruction.

bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

literal and control operations, 'k' represents an 8- or 11-bit constant or literal value.

The instruction set is highly orthogonal and is grouped into:

- · byte-oriented operations
- bit-oriented operations
- · literal and control operations

All instructions are executed within one single instruction cycle, unless:

- a conditional test is true
- the program counter is changed as a result of an instruction
- a table read or a table write instruction is executed (in this case, the execution takes two instruction cycles with the second cycle executed as a NOP)

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 25 MHz, the normal instruction execution time is 160 ns. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 320 ns.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (00h to FFh)
р	Peripheral register file address (00h to 1Fh)
i	Table pointer control i = '0' (do not change) i = '1' (increment after instruction execution)
t	Table byte select $t = '0'$ (perform operation on lower byte) t = '1' (perform operation on upper byte literal field, constant data)
WREG	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= '0' or '1') The assembler will generate code with $x = '0'$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select 0 = store result in WREG 1 = store result in file register f Default is d = '1'
u	Unused, encoded as '0'
S	Destination select 0 = store result in file register f and in the WREG 1 = store result in file register f Default is s = '1'
label	Label name
C,DC, Z,OV	ALU status bits Carry, Digit Carry, Zero, Overflow
GLINTD	Global Interrupt Disable bit (CPUSTA<4>)
TBLPTR	Table Pointer (16-bit)
TBLAT	Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL)
TBLATL	Table Latch low byte
TBLATH	Table Latch high byte
TOS	Top of Stack
PC	Program Counter
BSR	Bank Select Register
WDT	Watchdog Timer Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the WREG register or the speci- fied register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
E	In the set of
italics	User defined term (font is courier)

Table 15-2 lists the instructions recognized by the MPASM assembler.

Note 1:	Any	unused o	pcode is	Rese	erved. l	Jse of
	any	reserved	opcode	may	cause	unex-
	pect	ed operati	ion.			

Note 2: The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$\text{PCH} \rightarrow \text{PCLATH}; \text{PCL} \rightarrow \text{dest}$
Write PCL:	$\begin{array}{l} \text{PCLATH} \rightarrow \text{PCH};\\ \text{8-bit destination value} \rightarrow \text{PCL} \end{array}$
Read-Modify-Write:	$PCL \rightarrow ALU$ operand $PCLATH \rightarrow PCH$; 8-bit result $\rightarrow PCL$

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

MOVFP	Move f to	р		MOVLB	Move Lite	eral to low n	ibble in BSR
Syntax:	[<i>label</i>] N	IOVFP f,p		Syntax:	[label]	MOVLB k	
Operands:	$0 \le f \le 255$	5		Operands:	$0 \le k \le 15$		
	$0 \le p \le 31$			Operation:	$k \rightarrow (BSR)$	<3:0>)	
Operation:	$(f) \to (p)$			Status Affected:	None		
Status Affected:	None			Encoding:	1011	1000 uu	uu kkkk
Encoding:	011p	pppp ff:	ff ffff	Description:	The four bit	literal 'k' is lo	aded in the
Description:	Move data to to data mer can be any space (00h to 1Fh.	from data men nory location ' where in the 2 to FFh) while	hory location 'f' p'. Location 'f' 56 word data 'p' can be 00h		Bank Select low 4-bits of are affected is unchange encode the	t Register (BS f the Bank Se d. The upper h ed. The assen "u" fields as 'u	SR). Only the elect Register half of the BSR nbler will 0'.
	Either 'p' or	'f' can be WR	EG (a useful	Words:	1		
	Special situ	ation). articularly use	ful for transfer-	Cycles:	1		
	ring a data	memory locati	on to a periph-	Q Cycle Activity:			
	eral registe	r (such as the	transmit buffer	Q1	Q2	Q3	Q4
	indirectly a	ddressed.	d p can be	Decode	Read	Execute	Write literal
Words:	1				literal u:k		BSR<3:0>
Cycles:	1			Example:	MOVLB	0x5	·
Q Cycle Activity:				Before Instru	uction		
Q1	Q2	Q3	Q4	BSR regi	ister = 0x	22	
Decode	Read register 'f'	Execute	Write register 'p'	After Instruc BSR regi	tion ister = 0x	25	
Example:	MOVFP	REG1, REG2		Note: For th	ne PIC17C42	, only the lo	w four bits of
Before Instru	ction	22		the E mente	BSR registe ed. The uppe	r are phys r nibble is re	ad as '0'.
REG2	= 0x = 0x	33, 11					
After Instruct REG1	ion = 0x	33,					

REG2

0x33

=

NEG	W	Negate W								
Synt	ax:	[<i>label</i>] N	EGW	f,s						
Operands:		0 ≤ F ≤ 25 s ∈ [0,1]	$\begin{array}{l} 0 \leq F \leq 255 \\ s \in \ [0,1] \end{array}$							
Ope	ration:	WREG + 1 WREG + 1	$\frac{\overline{WREG} + 1 \to (f);}{\overline{WREG} + 1 \to s}$							
Statu	us Affected:	OV, C, DC	OV, C, DC, Z							
Enco	oding:	0010	110s	ffff	ffff					
Desc	cription:	WREG is ne ment. If 's' is WREG and 's' is 1 the re memory loc	egated u s 0 the re data me esult is p ation 'f'.	sing two's esult is pla emory loca laced only	comple- ced in tion 'f'. If r in data					
Word	ds:	1	1							
Cycl	es:	1								
QC	cle Activity:									
	Q1	Q2	Q3	3	Q4					
	Decode		_							
		Read register 'f'	Execu	ute re ar sp	Write gister 'f' id other becified egister					
Exar	nple:	Read register 'f' NEGW R	Execu EG,0	ute re ar sp	Write gister 'f' d other becified egister					
<u>Exar</u>	nple: Before Instru	Read register 'f' NEGW R	Exect EG,0	ute re ar sp ru	Write gister 'f' Id other becified egister					
<u>Exar</u>	nple: Before Instru WREG REG	Read register 'f' NEGW R Iction = 0011 1 = 1010 1	Exect EG,0 .010 [0x: .011 [0x/	ute re ar sp rd 3A], AB]	Write gister 'f' do other becified egister					
Exar	nple: Before Instru WREG REG After Instruct	Read register 'f' NEGW R Iction = 0011 1 = 1010 1 tion	Exect EG,0 .010 [0x: .011 [0x/	ute re ar sp ro 3A], AB]	Write gister 'f' id other becified egister					

NOF)	No Operation								
Synt	ax:	[label]] NOP							
Ope	rands:	None	None							
Ope	ration:	No opera	No operation							
State	us Affected:	None	None							
Encoding:		0000	0000	000	00	0000				
Description:		No operation.								
Wor	ds:	1								
Cycles:		1								
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	NOP	Execute			NOP				

Example:

None.

17.3 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created using one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т				
F	Frequency	Т	Time	
Lowerc	case symbols (pp) and their meanings:			
рр				
ad	Address/Data	ost	Oscillator Start-up Timer	
al	ALE	pwrt	Power-up Timer	
сс	Capture1 and Capture2	rb	PORTB	
ck	CLKOUT or clock	rd	RD	
dt	Data in	rw	RD or WR	
in	INT pin	tO	TOCKI	
io	I/O port	t123	TCLK12 and TCLK3	
mc	MCLR	wdt	Watchdog Timer	
oe	ŌĒ	wr	WR	
os	OSC1			
Upperc	case symbols and their meanings:			
S				
D	Driven	L	Low	
E	Edge	P	Period	
F	Fall	R	Rise	
н	High	V	Valid	
	Invalid (Hi-impedance)	Z	Hi-impedance	

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓		15‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↑ to CLKOUT↑	—	15 ‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time	—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time	—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT [↑] to Port out valid	—	_	0.5TCY + 20‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT	0.25TCY + 25 ‡	_	_	ns	Note 1
16	TckH2iol	Port in hold after CLKOUT	0 ‡	_	_	ns	Note 1
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	_	100 ‡	ns	
20	TioR	Port output rise time	—	10‡	35 ‡	ns	
21	TioF	Port output fall time	—	10‡	35 ‡	ns	
22	TinHL	INT pin high or low time	25 *	-	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25 *	_	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

‡ These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where OSC2 output = 4 x Tosc = Tcy.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-12: MAXIMUM IPD vs. VDD WATCHDOG ENABLED

FIGURE 19-7: CAPTURE TIMINGS

TABLE 19-7: CAPTURE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
50	TccL	Capture1 and Capture2 input low time	10 *	—	—	ns	
51	TccH	Capture1 and Capture2 input high time	10 *	—	—	ns	
52	TccP	Capture1 and Capture2 input period	<u>2Tcy</u> § N	—	—	ns	N = prescale value (4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 19-8: PWM TIMINGS

TABLE 19-8: PWM REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
53	TccR	PWM1 and PWM2 output rise time	_	10 *	35 *§	ns	
54	TccF	PWM1 and PWM2 output fall time	—	10 *	35 *§	ns	
* The		maters are abaraterized but not tooted					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 20-17: IOL vs. VOL, VDD = 5V

FIGURE 20-18: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS (TTL) VS. VDD

NOTES:

E.8 PIC17CXX Family of Devices

Features	Storigonistics and stores	40-pin DIP; 44-pin PLCC, MQFP	40-pin DIP; 44-pin PLCC, TQFP, MQFP	and high I/O current capability.				
	Source and the second	55	58	58	58	58	58	rotect
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.5-5.5	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	le code p
	\$407142 107412	33	33	33	33	33	33	electab
als	Tourne star	11	1	1	1	;	11	ner, se
eripher	Total Science in the second	Yes	Yes	Yes	Yes	Yes	Yes	dog Tir
Pe	Stop 4	Ι	Yes	Yes	Yes	Yes	Yes	Natcho
,		Yes	Yes	Yes	Yes	Yes	Yes	ectable \
lome		2	N	N	N	2	2	et, s€
Me	Self Thomas	1, 2 13	3, 2	3, 2	3, 2	3, 2	3 13 13	Res.
Clock	SOONS COUPER LIP	TMR0,TMR TMR2,TMR	TMR0,TMR TMR2,TMR	TMR0,TMR TMR2,TMR	TMR0,TMR TMR2,TMR	TMR0,TMR TMR2,TMR	TMR0,TMR TMR2,TMR	/e Power-or
		232	232	232	454	454	454	ces hav
	5-0-T-24-877 40-2-2-	Ι	I	2K	I	<del>4</del>		ly devi
	Sold Harris	2K	ξ.	I	¥	I	æ	7 Fami
		25	25	25	25	25	25	IC16/1
		PIC17C42	PIC17C42A	PIC17CR42	PIC17C43	PIC17CR43	PIC17C44	AII P