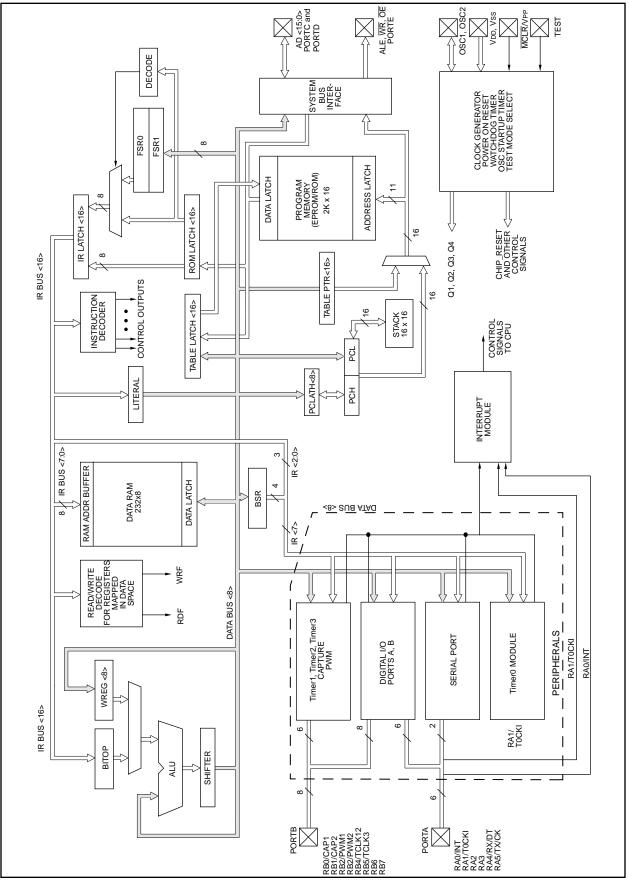


Welcome to E-XFL.COM

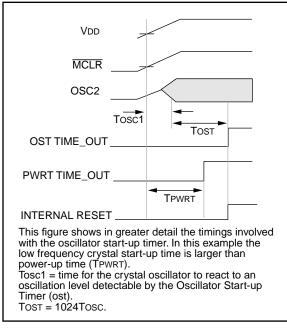
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

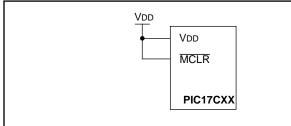
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

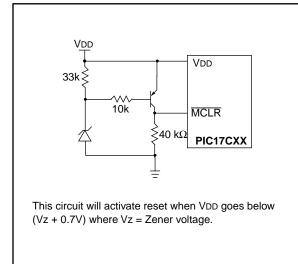

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42at-25e-pq


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong




FIGURE 4-5: OSCILLATOR START-UPTIME

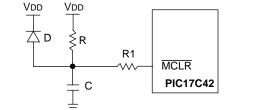

FIGURE 4-6: USING ON-CHIP POR

FIGURE 4-7: BROWN-OUT PROTECTION CIRCUIT 1

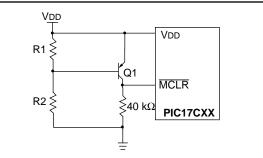


FIGURE 4-8: PIC17C42 EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: An external Power-on Reset circuit is required only if VDD power-up time is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: R < 40 k Ω is recommended to ensure that the voltage drop across R does not exceed 0.2V (max. leakage current spec. on the \overline{MCLR}/VPP pin is 5 μ A). A larger voltage drop will degrade VIH level on the \overline{MCLR}/VPP pin.
 - 3: $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or (Electrical Overstress) EOS.

FIGURE 4-9: BROWN-OUT PROTECTION CIRCUIT 2

This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

NOTES:

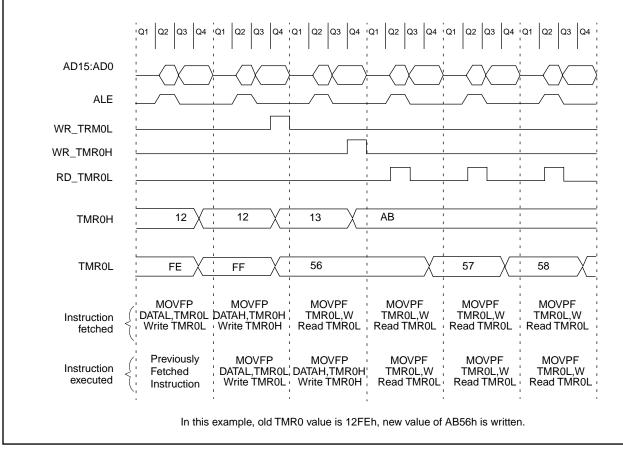
Example 8-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in 4 registers RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

=

- ARG1H:ARG1L * ARG2H:ARG2L RES3:RES0 =
 - (ARG1H * ARG2H * 2¹⁶) +

(ARG1H * ARG2L * 2⁸) +


(ARG1L * ARG2H * 2⁸) (ARG1L * ARG2L)

+

EXAMPLE 8-3: 16 x 16 MULTIPLY ROUTINE

			; ARG1L * ARG2L - ; PRODH:PRODL	>
;		PRODH, RES1 PRODL, RES0	;	
,			; ARG1H * ARG2H - ; PRODH:PRODL	>
;		PRODH, RES3 PRODL, RES2		
-	MOVFP MULWF		; ARG1L * ARG2H - ; PRODH:PRODL	>
	ADDWF MOVFP ADDWFC		; Add cross ; products ;	
;	ADDWFC	RES3, F ARG1H, WREG	;	
	MULWF	ARG2L	; ARG1H * ARG2L - ; PRODH:PRODL	>
	ADDWF MOVFP ADDWFC CLRF		; Add cross ; products ; ;	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0		0000 000-	0000 000-
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
0Bh, Unbanked TMR0L TMR0 register; low byte										xxxx xxxx	uuuu uuuu
0Ch, Unbanked TMR0H TMR0 register; high byte										xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

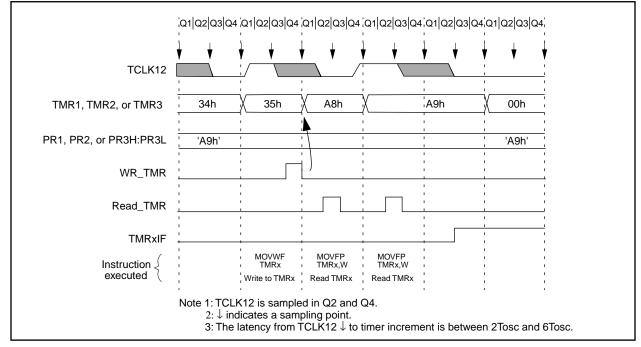
FIGURE 12-2: TCON2 REGISTER (ADDRESS: 17h, BANK 3)

R - 0	R - 0 R/W - 0
	F CA10VF PWM20N PWM10N CA1/PR3 TMR30N TMR20N TMR10N R = Readable bit
bit7	bit0 W = Writable bit
	-n = Value at POR reset
bit 7:	 CA2OVF: Capture2 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (CA2H:CA2L) before the next capture event occurred. The capture register retains the oldest unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the Timer3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture2 register 0 = No overflow occurred on Capture2 register
bit 6:	CA1OVF : Capture1 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (PR3H/CA2H:PR3L/CA2L) before the next capture event occurred. The capture register retains the old- est unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the TMR3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture1 register 0 = No overflow occurred on Capture1 register
bit 5:	PWM2ON : PWM2 On bit 1 = PWM2 is enabled (The RB3/PWM2 pin ignores the state of the DDRB<3> bit) 0 = PWM2 is disabled (The RB3/PWM2 pin uses the state of the DDRB<3> bit for data direction)
bit 4:	PWM1ON : PWM1 On bit 1 = PWM1 is enabled (The RB2/PWM1 pin ignores the state of the DDRB<2> bit) 0 = PWM1 is disabled (The RB2/PWM1 pin uses the state of the DDRB<2> bit for data direction)
bit 3:	CA1/PR3 : CA1/PR3 Register Mode Select bit 1 = Enables Capture1 (PR3H/CA1H:PR3L/CA1L is the Capture1 register. Timer3 runs without a period register) 0 = Enables the Period register (PR3H/CA1H:PR3L/CA1L is the Period register for Timer3)
bit 2:	TMR3ON: Timer3 On bit 1 = Starts Timer3 0 = Stops Timer3
bit 1:	TMR2ON : Timer2 On bit This bit controls the incrementing of the Timer2 register. When Timer2:Timer1 form the 16-bit timer (T16 is set), TMR2ON must be set. This allows the MSB of the timer to increment. 1 = Starts Timer2 (Must be enabled if the T16 bit (TCON1<3>) is set) 0 = Stops Timer2
bit 0:	TMR1ON: Timer1 On bit <u>When T16 is set (in 16-bit Timer Mode)</u> 1 = Starts 16-bit Timer2:Timer1 0 = Stops 16-bit Timer2:Timer1
	<u>When T16 is clear (in 8-bit Timer Mode)</u> 1 = Starts 8-bit Timer1 0 = Stops 8-bit Timer1
	•

12.2.3 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 12-9 shows the timing diagram when operating from an external clock.

12.2.4 READING/WRITING TIMER3


Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method to read or write the timer is to stop the timer, perform any read or write operation, and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 free-running, care must be taken. For writing to the 16-bit TMR3, Example 12-2 may be used. For reading the 16-bit TMR3, Example 12-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 12-2: WRITING TO TMR3

BSF CPUSTA, GLINTD ;Disable interrupt MOVFP RAM_L, TMR3L ; MOVFP RAM_H, TMR3H ; BCF CPUSTA, GLINTD ;Done,enable interrupt

EXAMPLE 12-3: READING FROM TMR3

MOVPF TMR3L, TMPLO ;read low t MOVPF TMR3H, TMPHI ;read high MOVFP TMPLO, WREG ;tmplo -> w	tmr0
CPFSLT TMR3L, WREG ;tmr0l < wr	eg?
RETURN ;no then re	eturn
MOVPF TMR3L, TMPLO ;read low t	.mr0
MOVPF TMR3H, TMPHI ;read high	tmr0
RETURN ; return	

FIGURE 12-9: TMR1, TMR2, AND TMR3 OPERATION IN EXTERNAL CLOCK MODE

13.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. Table 13-1 shows the formula for computation of the baud rate for different USART modes. These only apply when the USART is in synchronous master mode (internal clock) and asynchronous mode.

Given the desired baud rate and Fosc, the nearest integer value between 0 and 255 can be calculated using the formula below. The error in baud rate can then be determined.

TABLE 13-1: BAUD RATE FORMULA

SYNC	Mode	Baud Rate
0	Asynchronous	Fosc/(64(X+1))
1	Synchronous	Fosc/(4(X+1))

X = value in SPBRG (0 to 255)

Example 13-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 SYNC = 0

EXAMPLE 13-1: CALCULATING BAUD RATE ERROR

Desired Baud rate=Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

X = 25.042 = 25

Calculated Baud Rate=16000000 / (64 (25 + 1))

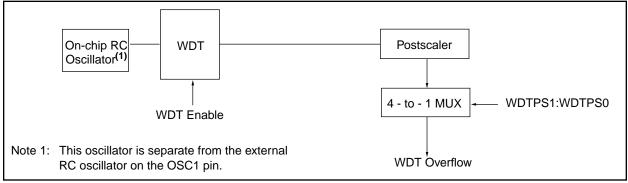
= 9615

- Error = <u>(Calculated Baud Rate Desired Baud Rate)</u> Desired Baud Rate
 - = (9615 9600) / 9600
 - = 0.16%

Writing a new value to the SPBRG, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 13-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register									xxxx xxxx	uuuu uuuu	


Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used by the Baud Rate Generator. $Note 1: Other (non power-up) resets include: external reset through <math>\overline{MCLR}$ and Watchdog Timer Reset.

BAUD	Fosc = 3	3 MHz	SPBRG	Fosc = 25 MHz		SPBRG			SPBRG	Fosc = 1	SPBRG	
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	NA	_	—	NA	_		NA	_	_	NA	_	-
1.2	NA	_	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548	-0.54	53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09	-0.54	26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.12	+7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	_
300	257.81	-14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	-
500	515.62	+3.13	0	NA	_	_	NA	_	_	NA	_	-
HIGH	515.62	_	0	_	_	0	312.5	_	0	250	_	0
LOW	2.014	—	255	1.53	—	255	1.221	—	255	0.977	_	255

TABLE 13-4: BAUD RATES FOR ASYNCHRONOUS MODE

BAUD RATE	Fosc = 10 MH	Iz	SPBRG value	Fosc = 7.159) MHz	SPBRG value	FOSC = 5.068	8 MHz	SPBRG value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	_	NA	_	_	0.31	+3.13	255
1.2	1.202	+0.16	129	1.203	_0.23	92	1.2	0	65
2.4	2.404	+0.16	64	2.380	-0.83	46	2.4	0	32
9.6	9.766	+1.73	15	9.322	-2.90	11	9.9	-3.13	7
19.2	19.53	+1.73	7	18.64	-2.90	5	19.8	+3.13	3
76.8	78.13	+1.73	1	NA	_	—	79.2	+3.13	0
96	NA	—	—	NA	—	—	NA	—	—
300	NA	_	—	NA	_	—	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	156.3	_	0	111.9	_	0	79.2	_	0
LOW	0.610	—	255	0.437	—	255	0.309	_	2 55
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	z	SPBRG	FOSC = 32.76	8 kHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.190	-0.83	46	1.202	+0.16	12	NA	—	—
2.4	2.432	+1.32	22	2.232	-6.99	6	NA	—	—
9.6	9.322	-2.90	5	NA	_	_	NA	_	_
19.2	18.64	-2.90	2	NA	—	—	NA	—	—
76.8	NA	—	—	NA	—	—	NA	—	—
96	NA	_	_	NA	_	_	NA	_	_
300	NA	—	—	NA	—	—	NA	—	—
500	NA	—	—	NA	—	—	NA	—	—
HIGH	55.93	_	0	15.63	_	0	0.512	_	0
l mon									

FIGURE 14-8: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-4: REGISTERS/BITS ASSOCIATED WITH THE WATCHDOG TIMER

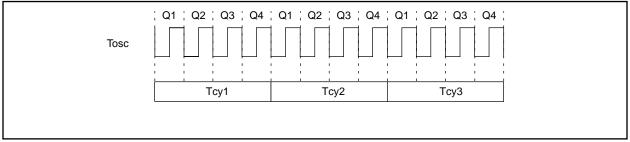
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
—	Config	-	PM1	-	PM0	WDTPS1	WDTPS0	FOSC1	FOSC0	(Note 2)	(Note 2)
06h, Unbanked	CPUSTA			STKAV	GLINTD	TO	PD		—	11 11	11 qq

Legend: - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by the WDT.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

2: This value will be as the device was programmed, or if unprogrammed, will read as all '1's.

15.2 <u>Q Cycle Activity</u>


Each instruction cycle (Tcy) is comprised of four Q cycles (Q1-Q4). The Q cycles provide the timing/designation for the Decode, Read, Execute, Write etc., of each instruction cycle. The following diagram shows the relationship of the Q cycles to the instruction cycle.

The 4 Q cycles that make up an instruction cycle (Tcy) can be generalized as:

- Q1: Instruction Decode Cycle or forced NOP
- Q2: Instruction Read Cycle or NOP
- Q3: Instruction Execute
- Q4: Instruction Write Cycle or NOP

Each instruction will show the detailed Q cycle operation for the instruction.

FIGURE 15-2: Q CYCLE ACTIVITY

CPFS	SLT		Compare f with WREG, skip if f < WREG								
Synta	ax:	[label]	[label] CPFSLT f								
Opera	ands:	$0 \le f \le 25$	$0 \le f \le 255$								
Opera	ation:	skip if (f) <	(f) – (WREG), skip if (f) < (WREG) (unsigned comparison)								
Statu	s Affected:	None									
Enco	ding:	0011	0000 ffi	ff ffff							
Desc	ription:	location 'f' performing If the conte WREG, the discarded	Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If the contents of 'f' < the contents of WREG, then the fetched instruction is discarded and an NOP is executed instead making this a two-cycle instruc- tion								
Word	s:	1									
Cycle	es:	1 (2)	1 (2)								
Q Cy	cle Activity:										
	Q1	Q2	Q3	Q4							
	Decode	Read register 'f'	Execute	NOP							
lf skip	o:										
-	Q1	Q2	Q3	Q4							
	Forced NOP	NOP	Execute	NOP							
<u>Exarr</u>	nple:	HERE NLESS LESS	CPFSLT REG : :								
E	Before Instru PC W		ddress (HERE)								
After Instruction If REG < WREG; PC = Address (LESS) If REG ≥ WREG; PC = Address (NLESS)											

DAW		Decimal	Adjust WRE	G Register					
Syntax	K:	[<i>label</i>] D	AW f,s						
Opera	nds:	$0 \le f \le 25$ s $\in [0,1]$	$0 \le f \le 255$ $s \in [0,1]$						
Opera	tion:	WREG	$ \begin{array}{l} \mbox{If [WREG<3:0>>9].OR. [DC = 1] then} \\ \mbox{WREG<3:0>+6 \rightarrow f<3:0>, s<3:0>;} \\ \mbox{else} \\ \mbox{WREG<3:0>\rightarrow f<3:0>, s<3:0>;} \end{array} $						
		WREG		f<7:4>, s<7:4>					
Status	Affected:	C	$<7:4> \rightarrow f<7:$	4>, S<7:4>					
Encod		0010	111s ff	ff ffff					
Descri	U		DAW adjusts the eight bit value in						
		BCD forma packed BC s = 0: R(m W	tion of two variables (each in packed BCD format) and produces a correct packed BCD result. s = 0: Result is placed in Data memory location 'f' and WREG.						
			s = 1: Result is placed in Data memory location 'f'.						
Words	:	1							
Cycles:		1							
Q Cyc	le Activity:		02 02 04						
	Q1 Decode	Q2 Read	Q3 Execute	Q4 Write					
	Decode	register 'f'	Execute	register 'f' and other specified register					
Exam	ole1:	DAW RE	G1, 0						
B	 efore Instru	iction							
	WREG REG1 C DC	= 0xA5 = ?? = 0 = 0							
At <u>Exam</u> p	fter Instruct WREG REG1 C DC DC <u>Dle 2</u> :	ion = 0x05 = 0x05 = 1 = 0							
В	efore Instru								
	WREG REG1 C	= 0xCE = ?? = 0							

U	-	0
DC	=	0
After Instruc	tion	
WREG	=	0x24
REG1	=	0x24
С	=	1
DC	=	0

MOVLR	Move Literal to high nibble in BSR							
Syntax:	[<i>label</i>] MOVLR k							
Operands:	$0 \le k \le 15$							
Operation:	$k \rightarrow (BSR < 7:4>)$	$k \rightarrow (BSR < 7:4>)$						
Status Affected:	None							
Encoding:	1011 101x kkkk uuuu							
Description:	The 4-bit literal 'k' is loaded into the most significant 4-bits of the Bank Select Register (BSR). Only the high 4-bits of the Bank Select Register are affected. The lower half of the BSR is unchanged. The assembler will encode the "u" fields as 0.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2 Q3 Q4							
Decode	Read literal Execute Write 'k:u' literal 'k' to BSR<7:4>							
Example:	MOVLR 5							
Before Instru BSR regis After Instructi BSR regis	ion							
Note: This i	instruction is not available in th C42 device.	e						

MOVLW	Move Lite	Move Literal to WREG							
Syntax:	[label]	MOVLW	/ k						
Operands:	$0 \le k \le 25$	$0 \le k \le 255$							
Operation:	$k \rightarrow (WR)$	EG)							
Status Affected:	None								
Encoding:	1011	0000	kkkł	k kkkk					
Description:	The eight b WREG.	The eight bit literal 'k' is loaded into WREG.							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	3	Q4					
Decode	Read literal 'k'	Execu	ute	Write to WREG					
Example:	MOVLW	0x5A							
After Instruct	ion								

WREG = 0x5A

SUBWF	Sub	trac	t WREG	from	h f			
Syntax:	[lab	el]	SUBWF	f,d			-	
Operands:	-	0 ≤ f ≤ 255 d ∈ [0,1]						
Operation:	(f) –	(W)	\rightarrow (dest)				
Status Affected:	OV,	C, D	C, Z				(
Encoding:	00	00	010d	fff	f	ffff	:	
Description:	com resu	pleme It is si	VREG fro ent metho tored in W tored bac	d). If ' /REG	d' is . If 'c	0 the I' is 1 the	l	
Words:	1							
Cycles:	1						,	
Q Cycle Activity:								
Q1	Qź		Q3	3		Q4		
Decode	Rea registe		Execu	ute		Vrite to stination		
			DECI	1	ue	Sunation		
Example 1:	SUB	NE	REG1,	T				
Before Instru REG1 WREG C	iction = 3 = 2 = ?						<u> </u>	
After Instruc REG1 WREG C Z	tion = 1 = 2 = 1 = 0	;	result is p	oositiv	e			
Example 2:								
Before Instru REG1 WREG C	uction = 2 = 2 = ?						<u> </u>	
After Instruc REG1 WREG C Z	tion = 0 = 2 = 1 = 1	;	result is z	zero				
Example 3:								
Before Instru REG1 WREG C	uction = 1 = 2 = ?						ļ	
After Instruc REG1 WREG C Z	tion = FI = 2 = 0 = 0		result is r	negativ	ve			

SUBWFB	•••••	Subtract WREG from f with						
Syntax:		Borrow [label] SUBWFB f,d						
Operands:	-	-	J 1,u					
Operands.	d ∈ [($0 \le f \le 255$ $d \in [0,1]$						
Operation:	(f) — ($(f)-(W)-\overline{C}\to(dest)$						
Status Affected	I: OV, C	OV, C, DC, Z						
Encoding:	000	0000 001d ffff ffff						
Description:	(borro ment storec	act WREG ar w) from regis method). If 'd I in WREG. If I back in regi	ter 'f' (2's ' is 0 the 'd' is 1 th	s comple- result is				
Words:	1							
Cycles:	1	1						
Q Cycle Activity	y:							
Q1	Q2	Q	3	Q4				
Decode	Read register			Write to estination				
Example 1:	SUBWI	FB REG1,	1					
Before Inst	truction							
REG1 WREG C	= 0x1 = 0x0 = 1		1001) 1101)					
After Instru	uction							
REG1 WREG C	= 1	D (0000	1011) 1101) t is posit	ve				
Z	= 0							
Example2:	SUBWF1	B REG1,0						
Before Insi REG1 WREG C	= 0x1	(1011) 1010)					
After Instru	uction							
REG1 WREG	= 0x1	•	1011)					
C Z	i = 0x0 = 1 = 1		; result is zero					
Example3:	SUBWFI	B REG1,1						
Before Inst REG1 WREG C	= 0x0		0011) 1101)					
After Instru REG1 WREG C Z	= 0xF)E (0000	0100) 1101) t is nega	[2's comp] tive				

Droduct	** MDI ADTM		MD-Drivo/Mov		*** DICMACTED®/				DIC CTADT® DI
	Integrated	Compiler	Applications	Explorer/Edition	PICMASTER-CE	Low-Cost	II Universal	Ultra Low-Cost	Low-Cost
	Development Environment		Code Generator	Fuzzy Logic Dev. Tool	In-Circuit Emulator	In-Circuit Emulator	Microchip Programmer	Dev. Kit	Universal Dev. Kit
PIC12C508, 509	SW007002	SW006005	1	I	EM167015/ EM167101	1	DV007003	1	DV003001
PIC14000	SW007002	SW006005	I	I	EM147001/ EM147101	1	DV007003	I	DV003001
PIC16C52, 54, 54A, 55, 56, 57, 58A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167015/ EM167101	EM167201	DV007003	DV162003	DV003001
PIC16C554, 556, 558	SW007002	SW006005	1	DV005001/ DV005002	EM167033/ EM167113	1	DV007003	I	DV003001
PIC16C61	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167021/ N/A	EM167205	DV007003	DV162003	DV003001
PIC16C62, 62A, 64, 64A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167025/ EM167103	EM167203	DV007003	DV162002	DV003001
PIC16C620, 621, 622	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167023/ EM167109	EM167202	DV007003	DV162003	DV003001
PIC16C63, 65, 65A, 73, 73A, 74, 74A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167025/ EM167103	EM167204	DV007003	DV162002	DV003001
PIC16C642, 662*	SW007002	SW006005	1	I	EM167035/ EM167105	1	DV007003	DV162002	DV003001
PIC16C71	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167027/ EM167105	EM167205	DV007003	DV162003	DV003001
PIC16C710, 711	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167027/ EM167105	1	DV007003	DV162003	DV003001
PIC16C72	SW007002	SW006005	SW006006	I	EM167025/ EM167103	1	DV007003	DV162002	DV003001
PIC16F83	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107	1	DV007003	DV162003	DV003001
PIC16C84	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107	EM167206	DV007003	DV162003	DV003001
PIC16F84	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107		DV007003	DV162003	DV003001
PIC16C923, 924*	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167031/ EM167111		DV007003	I	DV003001
PIC17C42, 42A, 43, 44	SW007002	SW006005	SW006006	DV005001/ DV005002	EM177007/ EM177107	1	DV007003	I	DV003001
*Contact Microchip Technology for availability date **MPLAB Integrated Development Environment includes MPLAB-SIM Simulator and MPASM Assembler	innology for avails velopment Enviro	ability date inment includes	s MPLAB-SIM Sir	mulator and	***All PICMASTER and PICMASTER-CE ordering part numbers above include PRO MATE II programmer ****PRO MATE socket modules are ordered separately. See development systems ordering guide for specific ordering part numbers	and PICMAST rogrammer at modules are or specific orde	II PICMASTER and PICMASTER-CE ordering par PRO MATE II programmer RO MATE socket modules are ordered separately. ordering guide for specific ordering part numbers	***All PICMASTER and PICMASTER-CE ordering part numbers above include PRO MATE II programmer **PRO MATE socket modules are ordered separately. See development system ordering guide for specific ordering part numbers	lude stems
Product	TRUEGAUGI	TRUEGAUGE® Development Kit		SEEVAL® Designers Kit	Hopping Code Security Programmer Kit	Security Prog		Hopping Code Security Eval/Demo Kit	ity Eval/Demo Kit
All 2 wire and 3 wire Serial EEPROM's		N/A		DV243001		N/A		N/A	
MTA11200B		DV114001		N/A		N/A		N/A	
HCS200, 300, 301 *		N/A		N/A	-	PG306001		DM303001	001

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

17.1 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature Operating temperature									
						-40°C			
		1	1			0°C	\leq TA \leq +70°C for commercial		
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage	4.5	_	5.5	V			
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	-	V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details		
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060*	_	_	mV/ms	See section on Power-on Reset for details		
D010	IDD	Supply Current	_	3	6	mA	Fosc = 4 MHz (Note 4)		
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz		
D012			-	11	24 *	mA	Fosc = 16 MHz		
D013			-	19	38	mA	Fosc = 25 MHz		
D014			-	95	150	μA	Fosc = 32 kHz WDT enabled (EC osc configuration)		
D020	IPD	Power-down Current	_	10	40	μA	VDD = 5.5V, WDT enabled		
D021		(Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads need to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \cdot R)$. For capacitive loads, The current can be estimated (for an individual I/O pin) as (CL $\cdot VDD$) $\cdot f$

CL = Total capacitive load on the I/O pin; f = average frequency on the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 42 R42 42A 43 R43 44

DC CHARA	CTERI	STICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +40^{\circ}C$ Operating voltage VDD range as described in Section 17.1							
Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units				
		Internal Program Memory Programming Specs (Note 4)								
D110 D111	Vpp Vddp	Voltage on MCLR/VPP pin Supply voltage during programming	12.75 4.75	_ 5.0	13.25 5.25	V V	Note 5			
D112 D113	Ipp Iddp	Current into MCLR/VPP pin Supply current during programming		25 ‡ _	50 ‡ 30 ‡	mA mA				
D114		Programming pulse width	10	100	1000	μs	Terminated via internal/exter- nal interrupt or a reset			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

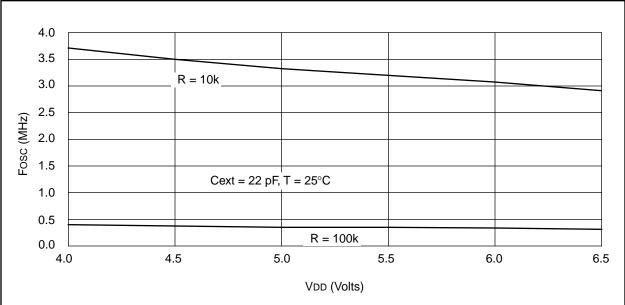
t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

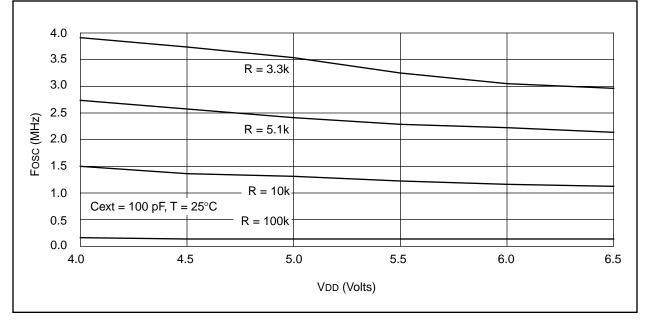
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

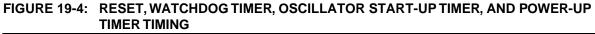
4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).


5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.


Note: When using the Table Write for internal programming, the device temperature must be less than 40°C.

Applicable Devices 42 R42 42A 43 R43 44


FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

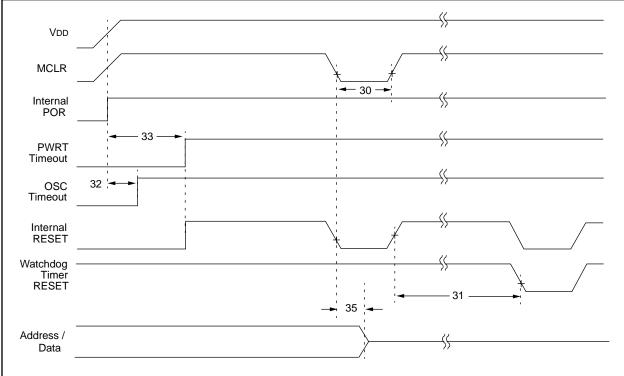


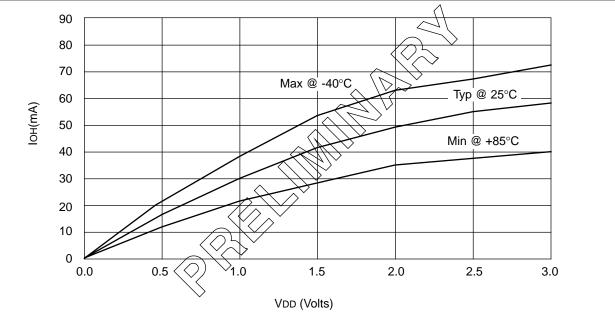
FIGURE 18-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

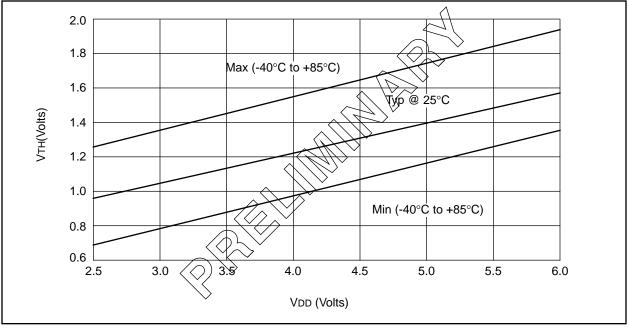
TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)		100 *	_	_	ns	VDD = 5V
31	Twdt	Watchdog Timer Time-ou (Prescale = 1)	t Period	5 *	12	25 *	ms	VDD = 5V
32	Tost	Oscillation Start-up Time	r Period	_	1024Tosc§	_	ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period		40 *	96	200 *	ms	VDD = 5V
35	TmcL2adl	MCLR to System Inter- face bus (AD15:AD0>) PIC17CR42/42A/ 43/R43/44		—	_	100 *	ns	
		invalid	PIC17LCR42/ 42A/43/R43/44	—	_	120 *	ns	

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.


§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-17: IOL vs. VOL, VDD = 5V

FIGURE 20-18: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS (TTL) VS. VDD

