

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	<u> </u>
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42at-33e-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g.GOTO) then two cycles are required to complete the instruction (Example 3-2).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Example 8-4 shows the sequence to do an 16 x 16 signed multiply. Equation 8-2 shows the algorithm that used. The 32-bit result is stored in four registers RES3:RES0. To account for the sign bits of the arguments, each argument pairs most significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 8-2:	16 x 16 SIGNED
	MULTIPLICATION
	ALGORITHM

RES3:RES0

- = ARG1H:ARG1L * ARG2H:ARG2L
- - (-1 * ARG1H<7> * ARG2H:ARG2L * 2¹⁶)

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY

		ROUTI	N	E
	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
				PRODH:PRODL
	MOVPF	PRODH, RES1		
		PRODL, RESO		
;		- ,		
	MOVFP	ARG1H, WREG		
				ARG1H * ARG2H ->
	110201	into bii	;	
	MOVPF	PRODH, RES3		TRODUCTRODE
		PRODL, RES2		
;	110 11 1	TRODE, REDZ	'	
'	MOVFP	ARG1L, WREG		
				ARG1L * ARG2H ->
	HOLMI	1110211	;	
	MOVFP	PRODL, WREG		TRODITITRODE
				Add cross
			;	products
		WREG, F	;	
	ADDWFC	RES3, F	;	
;	NOTED			
		ARG1H, WREG	'	
	MULWF	ARG2L		ARG1H * ARG2L ->
			,	PRODH:PRODL
	MOMED			
		PRODL, WREG		Add among
	ADDWF	RES1, F		
		PRODH, WREG		products
			;	
	CLRF	WREG, F	;	
	ADDWFC	RES3, F	;	
;				
		ARG2H, 7	'	ARG2H:ARG2L neg?
				no, check ARG1
	MOVFP	ARG1L, WREG		
		RES2	;	
	MOVFP	ARG1H, WREG	;	
	SUBWFB	RES3		
;				
SIC	GN_ARG1			
				ARG1H:ARG1L neg?
	GOTO	CONT_CODE		no, done
		ARG2L, WREG		
	SUBWF	RES2	;	
	MOVFP	ARG2H, WREG	;	
	SUBWFB	RES3		
;				
COI	NT_CODE			
	:			

FIGURE 9-5: BLOCK DIAGRAM OF RB3 AND RB2 PORT PINS

9.5 I/O Programming Considerations

9.5.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. For example, the BCF and BSF instructions read the register into the CPU, execute the bit operation, and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g. bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading a port reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (BCF, BSF, BTG, etc.) on a port, the value of the port pins is read, the desired operation is performed with this value, and the value is then written to the port latch.

Example 9-5 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 9-5: READ MODIFY WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORT settings: PORTB<7:4> Inputs PORTB<3:0> Outputs ; ; PORTB<7:6> have pull-ups and are ; not connected to other circuitry ; PORT latch PORT pins ; ; _____ _____ ; PORTB, 7 BCF 01pp pppp 11pp pppp BCF PORTB, 6 10pp pppp 11pp pppp ; BCF DDRB, 7 10pp pppp 11pp pppp BCF DDRB, 6 10pp pppp 10pp pppp ; ; Note that the user may have expected the ; pin values to be 00pp pppp. The 2nd BCF ; caused RB7 to be latched as the pin value ; (High).

Note: A pin actively outputting a Low or High should not be driven from external devices in order to change the level on this pin (i.e. "wired-or", "wired-and"). The resulting high output currents may damage the device.

9.5.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 9-9). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before executing the instruction that reads the values on that I/O port. Otherwise, the previous state of that pin may be read into the CPU rather than the "new" state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 9-9: SUCCESSIVE I/O OPERATION

Instruction fetched	Q1 Q2 Q3 Q4 PC MOVWF PORTB write to PORTB	PC + 1	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 <u>PC+2</u> <u>PC+3</u> NOP NOP	Note: This example shows a write to PORTB followed by a read from PORTB. Note that: data setup time = (0.25 Tcy - TPD) where TcY = instruction cycle. TPD = propagation delay
RB7:RB0			X	Therefore, at higher clock frequencies, a write followed by a
			Port pin sampled here	read may be problematic.
Instruction executed		MOVWF PORTB write to PORTB	MOVF PORTB,W NOP	
			· · · · ·	

11.0 TIMER0

The Timer0 module consists of a 16-bit timer/counter, TMR0. The high byte is TMR0H and the low byte is TMR0L. A software programmable 8-bit prescaler makes an effective 24-bit overflow timer. The clock source is also software programmable as either the internal instruction clock or the RA1/T0CKI pin. The control bits for this module are in register T0STA (Figure 11-1).

R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	U - 0	
INTEDG bit7								
bit 7: INTEDG: RA0/INT Pin Interrupt Edge Select bit This bit selects the edge upon which the interrupt is detected 1 = Rising edge of RA0/INT pin generates interrupt 0 = Falling edge of RA0/INT pin generates interrupt								
bit 6:	 6: TOSE: Timer0 Clock Input Edge Select bit This bit selects the edge upon which TMR0 will increment <u>When TOCS = 0</u> 1 = Rising edge of RA1/T0CKI pin increments TMR0 and/or generates a T0CKIF interrupt 0 = Falling edge of RA1/T0CKI pin increments TMR0 and/or generates a T0CKIF interrupt <u>When T0CS = 1</u> Don't care 							
bit 5:	TOCS : Timer0 Clock Source Select bit This bit selects the clock source for TMR0. 1 = Internal instruction clock cycle (TcY) 0 = T0CKI pin							
bit 4-1:	PS3:PS0 : T These bits				R0.			
	PS3:PS0	Pre	scale Valu	е				
	0000 1:1 0001 1:2 0010 1:4 0011 1:8 0100 1:16 0101 1:32 0110 1:64 0111 1:128 1xxx 1:256							
bit 0:	Unimplem	ented : Rea	id as '0'					

FIGURE 11-1: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

© 1996 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0		0000 000-	0000 000-
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	PEIF TOCKIF TOIF INTE PEIE TOCKIE TOIE INTE 0000 0000 0000 0000							0000 0000	
0Bh, Unbanked	TMR0L TMR0 register; low byte xxxx uuuu										
0Ch, Unbanked	TMR0H	TMR0 reg	TMR0 register; high byte xxxx xxxx uuuu uuuu								

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

12.1.3 USING PULSE WIDTH MODULATION (PWM) OUTPUTS WITH TMR1 AND TMR2

Two high speed pulse width modulation (PWM) outputs are provided. The PWM1 output uses Timer1 as its time-base, while PWM2 may be software configured to use either Timer1 or Timer2 as the time-base. The PWM outputs are on the RB2/PWM1 and RB3/PWM2 pins.

Each PWM output has a maximum resolution of 10-bits. At 10-bit resolution, the PWM output frequency is 24.4 kHz (@ 25 MHz clock) and at 8-bit resolution the PWM output frequency is 97.7 kHz. The duty cycle of the output can vary from 0% to 100%.

Figure 12-5 shows a simplified block diagram of the PWM module. The duty cycle register is double buffered for glitch free operation. Figure 12-6 shows how a glitch could occur if the duty cycle registers were not double buffered.

The user needs to set the PWM1ON bit (TCON2<4>) to enable the PWM1 output. When the PWM1ON bit is set, the RB2/PWM1 pin is configured as PWM1 output and forced as an output irrespective of the data direction bit (DDRB<2>). When the PWM1ON bit is clear, the pin behaves as a port pin and its direction is controlled by its data direction bit (DDRB<2>). Similarly, the PWM2ON (TCON2<5>) bit controls the configuration of the RB3/PWM2 pin.

FIGURE 12-5: SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 12-6: PWM OUTPUT

14.4 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction. This clears the Watchdog Timer and postscaler (if enabled). The \overrightarrow{PD} bit is cleared and the \overrightarrow{TO} bit is set (in the CPUSTA register). In SLEEP mode, the oscillator driver is turned off. The I/O ports maintain their status (driving high, low, or hi-impedance).

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC). A WDT time-out RESET does not drive the $\overline{\text{MCLR}}/\text{VPP}$ pin low.

14.4.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- A POR reset
- External reset input on MCLR/VPP pin
- WDT Reset (if WDT was enabled)
- Interrupt from RA0/INT pin, RB port change, T0CKI interrupt, or some Peripheral Interrupts

The following peripheral interrupts can wake-up from SLEEP:

- · Capture1 interrupt
- Capture2 interrupt
- USART synchronous slave transmit interrupt
- · USART synchronous slave receive interrupt

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

Any reset event will cause a device reset. Any interrupt event is considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the CPUSTA register can be used to determine the cause of device reset. The

 \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GLINTD bit. If the GLINTD bit is set (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GLINTD bit is clear (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt vector address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GLINTD is set), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from sleep. The TO bit is set, and the PD bit is cleared.

The WDT is cleared when the device wake from SLEEP, regardless of the source of wake-up.

14.4.1.1 WAKE-UP DELAY

When the oscillator type is configured in XT or LF mode, the Oscillator Start-up Timer (OST) is activated on wake-up. The OST will keep the device in reset for 1024Tosc. This needs to be taken into account when considering the interrupt response time when coming out of SLEEP.

FIGURE 14-9: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4
OSC1						$\frown \frown \frown$	
CLKOUT(4)		/		Tost(2)	\/ \/		
INT					I I		
(RA0/INT pin)	ı ı		: (1		<u>1 </u>
INTF flag			<u>`</u>		I		Interrupt Latency (2)
GLINTD bit	1 11		· ·		I		·
	i i		Processor		1		1 I
INSTRUCTION	FLOW		in SLEEP		1 1		I I I I
PC	C PC	PC+1		+2	× 0004	h	× <u>0005h</u>
Instruction (fetched	Inst (PC) = SLEEP	Inst (PC+1)			Inst (PC	+2)	
Instruction {	Inst (PC-1)	SLEEP			Inst (PC	+1)	Dummy Cycle
Note 1: XT or LF oscillator mode assumed. 2: Tost = 1024Tosc (drawing not to scale). This delay will not be there for RC osc mode. 3: When GLINTD = 0 processor jumps to interrupt routine after wake-up. If GLINTD = 1, execution will continue in line. 4: CLKOUT is not available in these osc modes, but shown here for timing reference.							

ADD	WFC	ADD WRE	G and C	Carry bit	to f				
Synt	ax:	[<i>label</i>] A[[label] ADDWFC f,d						
Operands:		0 ≤ f ≤ 255 d ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$						
Ope	ration:	(WREG) +	- (f) + C -	\rightarrow (dest)					
Statu	us Affected:	OV, C, DC	, Z						
Enco	oding:	0001	000d	ffff	ffff				
Desc	cription:	Add WREG memory loc placed in W placed in da	ation 'f'. If REG. If 'c	'd' is 0, the	e result is result is				
Word	ds:	1							
Cycl	es:	1	1						
QC	cle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Execut		rite to tination				
<u>Exar</u>	<u>mple</u> :	ADDWFC	REG	0					
	Before Instru Carry bit REG WREG After Instruct Carry bit REG WREG	= 1 = 0x02 = 0x4D							

ANDLW	And Lite	And Literal with WREG						
Syntax:	[label] A	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 25$	55						
Operation:	(WREG)	.AND. (k) $ ightarrow$	(WREG)					
Status Affected:	Z							
Encoding:	1011	0101 kk	kk kkkk					
Description:			re AND'ed with sult is placed in					
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read literal 'k'	Execute	Write to WREG					
Example:	ANDLW	0x5F						
Before Instru WREG	uction = 0xA3							
After Instruc WREG	tion = 0x03							

DECF	Decreme	nt f		DECFSZ	Decrement f,	skip if 0		
Syntax:	[label]	DECF f,d		Syntax:	[label] DEC	[label] DECFSZ f,d		
Operands:	0 ≤ f ≤ 258 d ∈ [0,1]	5		Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$			
Operation:	(f) – 1 \rightarrow (dest)		Operation:	(f) – 1 \rightarrow (dest			
Status Affected:	OV, C, DC	;, Z			skip if result =	0		
Encoding:	0000	011d ff	ff ffff	Status Affected	l: None			
Description:	Decrement	register 'f'. If '	d' is 0 the	Encoding:	0001 011	Ld fff	f ffff	
		ored in WREG		Description:	mented. If 'd' is	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in		
Words:	1				WREG. If 'd' is 1 back in register		t is placed	
Cycles:	1				If the result is 0,		instruction.	
Q Cycle Activity:					which is already	/ fetched,	is discarded,	
Q1	Q2	Q3	Q4		and an NOP is e ing it a two-cycle			
Decode	Read register 'f'	Execute	Write to destination	Words:	1			
Example:	DECF	CNT, 1		Cycles:	1(2)			
Before Instru		- ,		Q Cycle Activit	y:			
CNT	= 0x01			Q1	Q2	Q3	Q4	
Z	= 0			Decode		xecute	Write to	
After Instruc	tion				register 'f'		destination	
CNT	= 0x00			Example:			CNT, 1	
Z	= 1				GC CONTINUE	OTO	LOOP	
				Defers inc				
				Before Ins	liucion			

PC	=	Address (HERE)
After Instruct	ion	
CNT	=	CNT - 1
If CNT	=	0;
PC	=	Address (CONTINUE)
If CNT	≠	0;
PC	=	Address (HERE+1)

TABLRD	Table R	ead	
Example1:	TABLRD	1, 1,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0xAA
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR			0xA357
MEMORY	(TBLPTR)	=	0x5678
Example2:	TABLRD	0, 0,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0x55
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234

TABLWT	Table Write
Syntax:	[label] TABLWT t,i,f
Operands:	0 ≤ f ≤ 255 i ∈ [0,1] t ∈ [0,1]
Operation:	$f \in [0, 1]$ If $f = 0$,
e per au e m	$f \rightarrow TBLATL;$
	If t = 1, f \rightarrow TBLATH;
	TBLAT \rightarrow Prog Mem (TBLPTF
	If i = 1, TBLPTR + 1 \rightarrow TBLPTR
Status Affected:	None
Encoding:	1010 11ti ffff ffff
Description:	1. Load value in 'f' into 16-bit table
	latch (TBLAT) If t = 0: load into low byte;
	If t = 1: load into high byte
	2. The contents of TBLAT is written to the program memory location
	pointed to by TBLPTR
	If TBLPTR points to external program memory location, then
	the instruction takes two-cycle
	If TBLPTR points to an internal
	EPROM location, then the instruction is terminated when
	an interrupt is received.
	LR/VPP pin must be at the programmir for successful programming of intern
If MCLR	/VPP = VDD
	gramming sequence of internal memore executed, but will not be successf
(althoug	h the internal memory location may b
disturbe	-7
	 The TBLPTR can be automati- cally incremented
	If i = 0; TBLPTR is not
	incremented
Words:	
	incremented If i = 1; TBLPTR is incremented
Cycles:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip
Words: Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4
Cycles: Q Cycle Activity:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4 Read Execute Write
Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4

NOTES:

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	100 *	_		ns	
31	Twdt	Watchdog Timer Time-out Period (Prescale = 1)	5 *	12	25 *	ms	
32	Tost	Oscillation Start-up Timer Period		1024 Tosc §		ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	40 *	96	200 *	ms	
35	TmcL2adI	MCLR to System Interface bus (AD15:AD0) invalid	_	—	100 *	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 17-9: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid		_	65	ns	
121	TckRF	Clock out rise time and fall time (Master Mode)	_	10	35	ns	
122	TdtRF	Data out rise time and fall time		10	35	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 17-10: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-11: MEMORY INTERFACE WRITE REQUIREMENTS (NOT SUPPORTED IN PIC17LC4X DEVICES)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 10		_	ns	
151	TalL2adI	ALE↓ to address out invalid (address hold time)	0	_	—	ns	
152	TadV2wrL	Data out valid to $\overline{WR} \downarrow$ (data setup time)	0.25Tcy - 40	_	_	ns	
153	TwrH2adl	WR↑ to data out invalid (data hold time)	_	0.25Tcy §	_	ns	
154	TwrL	WR pulse width	—	0.25Tcy §	—	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

				Clock	Memory	ory		Peripł	Peripherals	\vdash	Features
				FLOULOUT LINE		\backslash		\backslash	6		
			10 10 10 T	And the solo			\backslash	10783			-7016).
		Uenberg		A HOU	S ano		je e		200	SUR	Aces -
	Tell	HON BROC NOCOLINATION	40,	ow isuit noted	ROULOS OW IBUIL	RULAILI COLLOS	Relief		enor suit	ai Se	asternor to state asternor
PIC16C554	20	512	80	TMR0			ю	13	2.5-6.0		18-pin DIP, SOIC; 20-pin SSOP
PIC16C556	20	¥	80	TMR0	1	I	e	13	2.5-6.0	Ι	18-pin DIP, SOIC; 20-pin SSOP
PIC16C558	20	2K	128	TMR0	I	I	e	13	2.5-6.0	Ι	18-pin DIP, SOIC; 20-pin SSOP
PIC16C620	20	512	80	TMR0	2	Yes	4	13	2.5-6.0	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C621	20	ź	80	TMR0	2	Yes	4	13	2.5-6.0	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C622	20	2K	128	TMR0	2	Yes	4	13	2.5-6.0	Yes	18-pin DIP, SOIC; 20-pin SSOP
All PIC16/17 Fan	/17 Far	nily devic	es have	Power-on	Reset,	selecta	able W	atchdo	g Timer, s	electal	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O

current capability. All PIC16C6XXX Family devices use serial programming with clock pin RB6 and data pin RB7.

DS30412C-page 215

Delay From External Clock Edge	68
Development Support	
Development Tools	
Device Drawings	
44-Lead Plastic Surface Mount (MQFP	
10x10 mm Body 1.6/0.15 mm Lead Form)	
DIGIT BORROW	9
Digit Carry (DC)	9
Duty Cycle	75

Ε

Electrical Characteristics
PIC17C42
Absolute Maximum Ratings147
Capture Timing159
CLKOUT and I/O Timing 156
DC Characteristics149
External Clock Timing155
Memory Interface Read Timing 162
Memory Interface Write Timing
PWM Timing159
RESET, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer157
Timer0 Clock Timings158
Timer1, Timer2 and Timer3 Clock Timing 158
USART Module, Synchronous Receive160
USART Module, Synchronous Transmission 160
PIC17C43/44
Absolute Maximum Ratings175
Capture Timing188
CLKOUT and I/O Timing 185
DC Characteristics177
External Clock Timing184
Memory Interface Read Timing 191
Memory Interface Write Timing
Parameter Measurement Information183
RESET, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer Timing
Timer0 Clock Timing187
Timer1, Timer2 and Timer3 Clock Timing 187
Timing Parameter Symbology182
USART Module Synchronous Receive
Timing189
USART Module Synchronous Transmission
Timing189
EPROM Memory Access Time Order Suffix
Extended Microcontroller
Extended Microcontroller Mode31
External Memory Interface
External Program Memory Waveforms

F

Family of Devices	6
PIC14000	
PIC16C5X	
PIC16CXXX	215
PIC16C6X	216
PIC16C7X	
PIC16C8X	218
PIC16C9XX	
PIC17CXX	
FERR	
FOSC0	

FOSC1	
FS0	36
FS1	36
FS2	36
FS3	36
FSR0	34, 40
FSR1	
Fuzzy Logic Dev. System (fuzzyTECH [®] -MP)	143, 145

G

General Format for Instructions 108
General Purpose RAM
General Purpose RAM Bank 42
General Purpose Register (GPR) 32
GLINTD 25, 37, 78, 105
GOTO
GPR (General Purpose Register) 32
Graphs
ЮН vs. VOH, VDD = 3V 170, 200
ЮН vs. VOH, VDD = 5V 171, 201
IOL vs. VOL, VDD = 3V 171, 201
IOL vs. VOL, VDD = 5V 172, 202
Maximum IDD vs. Frequency
(External Clock 125°C to -40°C) 167, 197
Maximum IPD vs. VDD Watchdog Disabled 168, 198
Maximum IPD vs. VDD Watchdog Enabled 169, 199
RC Oscillator Frequency vs.
VDD (Cext = 100 pF) 164, 194
RC Oscillator Frequency vs.
VDD (Cext = 22 pF) 164, 194
RC Oscillator Frequency vs.
VDD (Cext = 300 pF)
Transconductance of LF Oscillator vs.VDD 166, 196
Transconductance of XT Oscillator vs. VDD 166, 196
Typical IDD vs. Frequency
(External Clock 25°C)
Typical IPD vs. VDD Watchdog Disabled 25°C . 168, 198
Typical IPD vs. VDD Watchdog Enabled 25°C 169, 199
Typical RC Oscillator vs. Temperature
VTH (Input Threshold Voltage) of I/O Pins vs.
VDD
VTH (Input Threshold Voltage) of OSC1 Input
(In XT, HS, and LP Modes) vs. VDD 173, 203
VTH, VIL of MCLR, TOCKI and OSC1
(In RC Mode) vs. VDD
WDT Timer Time-Out Period vs. VDD 170, 200

Н

Hardware Multiplier	 49
i la aware manipher	 -0

L

I/O Ports	
Bi-directional	64
I/O Ports	53
Programming Considerations	64
Read-Modify-Write Instructions	64
Successive Operations	64
INCF	123
INCFSNZ	124
INCFSZ	123
INDF0	34, 40
INDF1	34, 40

MP-C C Compiler	145
MPSIM Software Simulator	
MULLW	129
Multiply Examples	
16 x 16 Routine	50
16 x 16 Signed Routine	51
8 x 8 Routine	49
8 x 8 Signed Routine	49
MULWF	129

Ν

NEGW)
NOP 130	`
NOP	'

0

OERR	
Opcode Field Descriptions	
OSC Selection	
Oscillator	
Configuration	
Crystal	
External Clock	
External Crystal Circuit	
External Parallel Resonant Crystal Circuit	
External Series Resonant Crystal Circuit	
RC	
RC Frequencies	165, 195
Oscillator Start-up Time (Figure)	
Oscillator Start-up Timer (OST)	15, 99
OST	
OV	
Overflow (OV)	9

Ρ

Package Marking Information	
Packaging Information	
Parameter Measurement Information	
PC (Program Counter)	
PCH	
PCL	34, 41, 108
PCLATH	
PD	
PEIE	
PEIF	
Peripheral Bank	
Peripheral Interrupt Enable	23
Peripheral Interrupt Request (PIR)	24
PICDEM-1 Low-Cost PIC16/17 Demo Board	143, 144
PICDEM-2 Low-Cost PIC16CXX Demo Board	143, 144
PICDEM-3 Low-Cost PIC16C9XXX Demo Boar	
PICMASTER® RT In-Circuit Emulator	
PICSTART [®] Low-Cost Development System	
PIE	34, 92, 96, 98
Pin Compatible Devices	
PIR	34, 92, 96, 98
PM0	
PM1	
POP	
POR	
PORTA	19, 34, 53
PORTB	19, 34, 55
PORTC	19, 34, 58

PORTD			
PORTE	19,	34,	62
Power-down Mode		1	05
Power-on Reset (POR)		15,	99
Power-up Timer (PWRT)			
PR1			
PR2			
PR3/CA1H			
PR3/CA1L			
PR3H/CA1H			
PR3L/CA1L			
Prescaler Assignments			
PRO MATE [®] Universal Programmer		····· 1	42
PRODH			
PRODL			
Program Counter (PC)		•••••	41
Program Memory			
External Access Waveforms			
External Connection Diagram			
Мар			29
Modes			
Extended Microcontroller			29
Microcontroller			29
Microprocessor			29
Protected Microcontroller			29
Operation			29
Organization			29
Transfers from Data Memory			43
Protected Microcontroller			
PS0			
PS1			
PS2			
PS3			
PUSH			
PW1DCH			
PW1DCL			
PW2DCH			
PW2DCL			
PW2DCL			
Duty Cycle			
External Clock Source			
Frequency vs. Resolution			
Interrupts		•••••	10
Max Resolution/Frequency for External			
Clock Input			
Output			
Periods			-
PWM1			
PWM1ON			
PWM2			72
PWM2ON		72,	75
PWRT		15,	99

R

RA1/T0CKI pin	
RBIE	
RBIF	
RBPU	
RC Oscillator	
RC Oscillator Frequencies	
RCIE	
RCIF	
RCREG	19, 34, 91, 92, 96, 97
RCSTA	
Reading 16-bit Value	
0	

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.