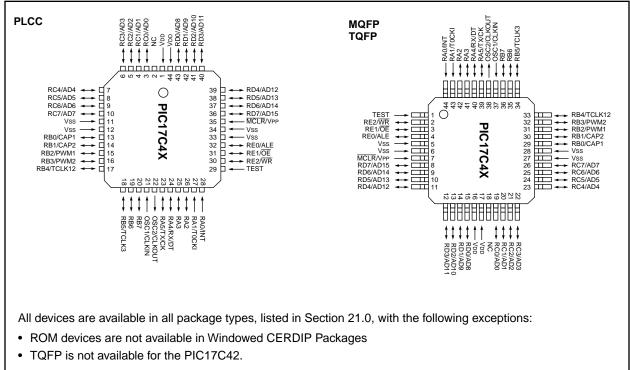


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42at-33i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams Cont.'d

TABLE 1-1: PIC17CXX FAMILY OF DEVICES

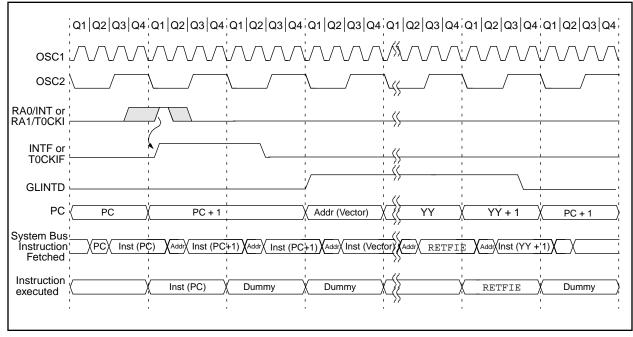
Features	PIC17C42	PIC17CR42	PIC17C42A	PIC17C43	PIC17CR43	PIC17C44	
Maximum Frequency of O	25 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	
Operating Voltage Range	4.5 - 5.5V	2.5 - 6.0V					
Program Memory x16	(EPROM)	2K	-	2K 4K		-	8K
	(ROM)	-	2K	-	-	4K	-
Data Memory (bytes)		232	232	232	454	454	454
Hardware Multiplier (8 x 8)	-	Yes	Yes	Yes	Yes	Yes
Timer0 (16-bit + 8-bit post	scaler)	Yes	Yes	Yes	Yes	Yes	Yes
Timer1 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer2 (8-bit)		Yes	Yes	Yes	Yes	Yes Yes	
Timer3 (16-bit)		Yes	Yes	Yes	Yes Yes		Yes
Capture inputs (16-bit)	2	2	2	2	2	2	
PWM outputs (up to 10-bit	t)	2	2	2	2	2	2
USART/SCI		Yes	Yes	Yes	Yes	Yes Yes	
Power-on Reset		Yes	Yes	Yes	Yes Yes		Yes
Watchdog Timer		Yes	Yes	Yes	Yes	Yes	Yes
External Interrupts		Yes	Yes	Yes	Yes	Yes	Yes
Interrupt Sources		11	11	11	11	11	11
Program Memory Code P	rotect	Yes	Yes	Yes	Yes	Yes	Yes
I/O Pins		33	33	33	33	33	33
I/O High Current Capabil-	Source	25 mA					
ity	Sink	25 mA ⁽¹⁾					
Package Types		40-pin DIP					
		44-pin PLCC					
		44-pin MQFP					
			44-pin TQFP				

Note 1: Pins RA2 and RA3 can sink up to 60 mA.

5.5 RA0/INT Interrupt

The external interrupt on the RA0/INT pin is edge triggered. Either the rising edge, if INTEDG bit (T0STA<7>) is set, or the falling edge, if INTEDG bit is clear. When a valid edge appears on the RA0/INT pin, the INTF bit (INTSTA<4>) is set. This interrupt can be disabled by clearing the INTE control bit (INTSTA<0>). The INT interrupt can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.6 TMR0 Interrupt


An overflow (FFFFh \rightarrow 0000h) in TMR0 will set the T0IF (INTSTA<5>) bit. The interrupt can be enabled/ disabled by setting/clearing the T0IE control bit (INTSTA<1>). For operation of the Timer0 module, see Section 11.0.

5.7 TOCKI Interrupt

The external interrupt on the RA1/T0CKI pin is edge triggered. Either the rising edge, if the T0SE bit (T0STA<6>) is set, or the falling edge, if the T0SE bit is clear. When a valid edge appears on the RA1/T0CKI pin, the T0CKIF bit (INTSTA<6>) is set. This interrupt can be disabled by clearing the T0CKIE control bit (INTSTA<2>). The T0CKI interrupt can wake up the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.8 Peripheral Interrupt

The peripheral interrupt flag indicates that at least one of the peripheral interrupts occurred (PEIF is set). The PEIF bit is a read only bit, and is a bit wise OR of all the flag bits in the PIR register AND'ed with the corresponding enable bits in the PIE register. Some of the peripheral interrupts can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

FIGURE 5-5: INT PIN / TOCKI PIN INTERRUPT TIMING

NOTES:

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	; FSR0 = 20	h
	BCF	ALUSTA, FS1	; Increment	FSR
	BSF	ALUSTA, FSO	; after acc	ess
	BCF	ALUSTA, C	; C = 0	
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	; Addr(FSR)	= 0
	CPFSEQ	FSR0	; FSRO = EN	ID_RAM+1?
	GOTO	LP	; NO, clear	next
	:		; YES, All	RAM is
	:		; cleared	

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

7.1 <u>Table Writes to Internal Memory</u>

A table write operation to internal memory causes a long write operation. The long write is necessary for programming the internal EPROM. Instruction execution is halted while in a long write cycle. The long write will be terminated by any enabled interrupt. To ensure that the EPROM location has been well programmed, a minimum programming time is required (see specification #D114). Having only one interrupt enabled to terminate the long write ensures that no unintentional interrupts will prematurely terminate the long write.

The sequence of events for programming an internal program memory location should be:

- 1. Disable all interrupt sources, except the source to terminate EPROM program write.
- 2. Raise MCLR/VPP pin to the programming voltage.
- 3. Clear the WDT.
- 4. Do the table write. The interrupt will terminate the long write.
- 5. Verify the memory location (table read).
 - **Note:** Programming requirements must be met. See timing specification in electrical specifications for the desired device. Violating these specifications (including temperature) may result in EPROM locations that are not fully programmed and may lose their state over time.

7.1.1 TERMINATING LONG WRITES

An interrupt source or reset are the only events that terminate a long write operation. Terminating the long write from an interrupt source requires that the interrupt enable and flag bits are set. The GLINTD bit only enables the vectoring to the interrupt address.

If the TOCKI, RA0/INT, or TMR0 interrupt source is used to terminate the long write; the interrupt flag, of the highest priority enabled interrupt, will terminate the long write and automatically be cleared.

- **Note 1:** If an interrupt is pending, the TABLWT is aborted (an NOP is executed). The highest priority pending interrupt, from the TOCKI, RA0/INT, or TMR0 sources that is enabled, has its flag cleared.
- **Note 2:** If the interrupt is not being used for the program write timing, the interrupt should be disabled. This will ensure that the interrupt is not lost, nor will it terminate the long write prematurely.

If a peripheral interrupt source is used to terminate the long write, the interrupt enable and flag bits must be set. The interrupt flag will not be automatically cleared upon the vectoring to the interrupt vector address.

If the GLINTD bit is cleared prior to the long write, when the long write is terminated, the program will branch to the interrupt vector.

If the GLINTD bit is set prior to the long write, when the long write is terminated, the program will not vector to the interrupt address.

Interrupt Source	GLINTD	Enable Bit	Flag Bit	Action
RA0/INT, TMR0, T0CKI	0	1	1	Terminate long table write (to internal program memory), branch to interrupt vector (branch clears flag bit).
	0	1	0	None
	1	0	x	None
	1	1	1	Terminate table write, do not branch to interrupt vector (flag is automatically cleared).
Peripheral	0	1	1	Terminate table write, branch to interrupt vector.
	0	1	0	None
	1	0	x	None
	1	1	1	Terminate table write, do not branch to interrupt vector (flag is set).

TABLE 7-1: INTERRUPT - TABLE WRITE INTERACTION

9.2 PORTB and DDRB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is DDRB. A '1' in DDRB configures the corresponding port pin as an input. A '0' in the DDRB register configures the corresponding port pin as an output. Reading PORTB reads the status of the pins, whereas writing to it will write to the port latch.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the $\overline{\text{RBPU}}$ (PORTA<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are enabled on any reset.

PORTB also has an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB0 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB0) are compared with the value in the PORTB data latch. The "mismatch" outputs of RB7:RB0 are OR'ed together to generate the PORTB Interrupt Flag RBIF (PIR<7>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt by:

- a) Read-Write PORTB (such as; MOVPF PORTB, PORTB). This will end mismatch condition.
- b) Then, clear the RBIF bit.

A mismatch condition will continue to set the RBIF bit. Reading then writing PORTB will end the mismatch condition, and allow the RBIF bit to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on this port, allows easy interface to a key pad and make it possible for wake-up on key-depression. For an example, refer to AN552 in the *Embedded Control Handbook*.

The interrupt on change feature is recommended for wake-up on operations where PORTB is only used for the interrupt on change feature and key depression operation.

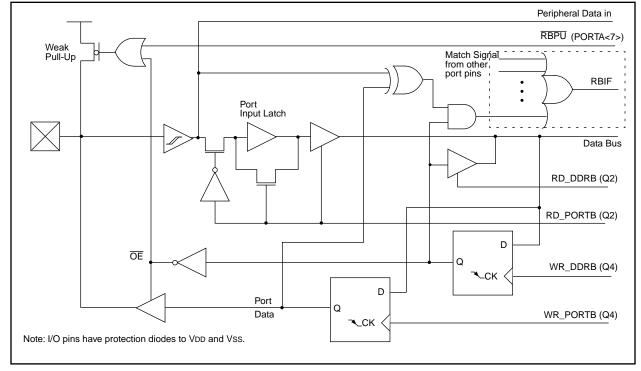


FIGURE 9-4: BLOCK DIAGRAM OF RB<7:4> AND RB<1:0> PORT PINS

TABLE 9-5: PORTC FUNCTIONS

Name	Bit	Buffer Type	Function
RC0/AD0	bit0	TTL	Input/Output or system bus address/data pin.
RC1/AD1	bit1	TTL	Input/Output or system bus address/data pin.
RC2/AD2	bit2	TTL	Input/Output or system bus address/data pin.
RC3/AD3	bit3	TTL	Input/Output or system bus address/data pin.
RC4/AD4	bit4	TTL	Input/Output or system bus address/data pin.
RC5/AD5	bit5	TTL	Input/Output or system bus address/data pin.
RC6/AD6	bit6	TTL	Input/Output or system bus address/data pin.
RC7/AD7	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-6: REGISTERS/BITS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)	
11h, Bank 1	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu	
10h, Bank 1	DDRC	Data dired	ction registe	1111 1111	1111 1111							

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

9.5 I/O Programming Considerations

9.5.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. For example, the BCF and BSF instructions read the register into the CPU, execute the bit operation, and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g. bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

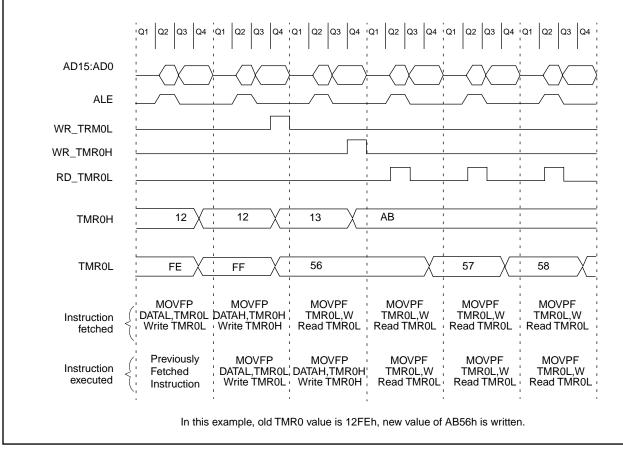
Reading a port reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (BCF, BSF, BTG, etc.) on a port, the value of the port pins is read, the desired operation is performed with this value, and the value is then written to the port latch.

Example 9-5 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 9-5: READ MODIFY WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORT settings: PORTB<7:4> Inputs PORTB<3:0> Outputs ; ; PORTB<7:6> have pull-ups and are ; not connected to other circuitry ; PORT latch PORT pins ; ; _____ _____ ; PORTB, 7 BCF 01pp pppp 11pp pppp BCF PORTB, 6 10pp pppp 11pp pppp ; BCF DDRB, 7 10pp pppp 11pp pppp BCF DDRB, 6 10pp pppp 10pp pppp ; ; Note that the user may have expected the ; pin values to be 00pp pppp. The 2nd BCF ; caused RB7 to be latched as the pin value ; (High).

Note: A pin actively outputting a Low or High should not be driven from external devices in order to change the level on this pin (i.e. "wired-or", "wired-and"). The resulting high output currents may damage the device.


9.5.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 9-9). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before executing the instruction that reads the values on that I/O port. Otherwise, the previous state of that pin may be read into the CPU rather than the "new" state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 9-9: SUCCESSIVE I/O OPERATION

Instruction fetched	Q1 Q2 Q3 Q4 PC MOVWF PORTB write to PORTB	PC + 1	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 <u>PC+2</u> <u>PC+3</u> NOP NOP	Note: This example shows a write to PORTB followed by a read from PORTB. Note that: data setup time = (0.25 Tcy - TPD) where TcY = instruction cycle. TPD = propagation delay
RB7:RB0			X	Therefore, at higher clock frequencies, a write followed by a
			Port pin sampled here	read may be problematic.
Instruction executed		MOVWF PORTB write to PORTB	MOVF PORTB,W NOP	
			· · · · ·	

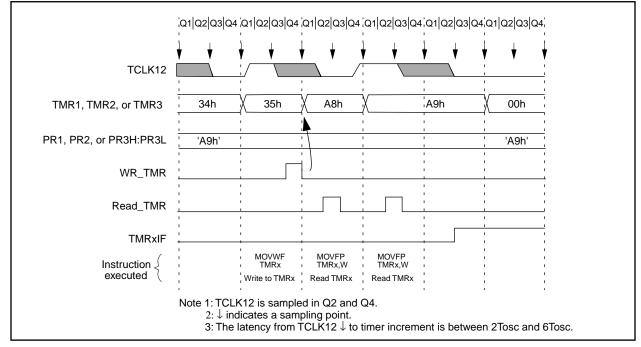
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 1 Bit 0 Power-on other		Value on all other resets (Note1)		
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0		0000 000-	0000 000-		
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq		
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000		
0Bh, Unbanked	TMR0L	TMR0 reg	ister; low byt		xxxx xxxx	uuuu uuuu							
0Ch, Unbanked	TMR0H	TMR0 reg	TMR0 register; high byte xxxx xxxx uuuu uuuu										

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

12.2.3 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 12-9 shows the timing diagram when operating from an external clock.

12.2.4 READING/WRITING TIMER3


Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method to read or write the timer is to stop the timer, perform any read or write operation, and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 free-running, care must be taken. For writing to the 16-bit TMR3, Example 12-2 may be used. For reading the 16-bit TMR3, Example 12-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 12-2: WRITING TO TMR3

BSF CPUSTA, GLINTD ;Disable interrupt MOVFP RAM_L, TMR3L ; MOVFP RAM_H, TMR3H ; BCF CPUSTA, GLINTD ;Done,enable interrupt

EXAMPLE 12-3: READING FROM TMR3

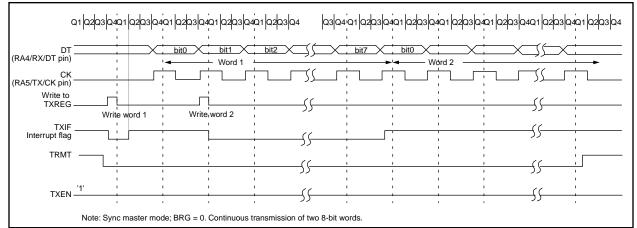
MOVPF TMR3L, TMPLO ;read low t MOVPF TMR3H, TMPHI ;read high MOVFP TMPLO, WREG ;tmplo -> w	tmr0
CPFSLT TMR3L, WREG ;tmr0l < wr	eg?
RETURN ;no then re	eturn
MOVPF TMR3L, TMPLO ;read low t	.mr0
MOVPF TMR3H, TMPHI ;read high	tmr0
RETURN ; return	

FIGURE 12-9: TMR1, TMR2, AND TMR3 OPERATION IN EXTERNAL CLOCK MODE

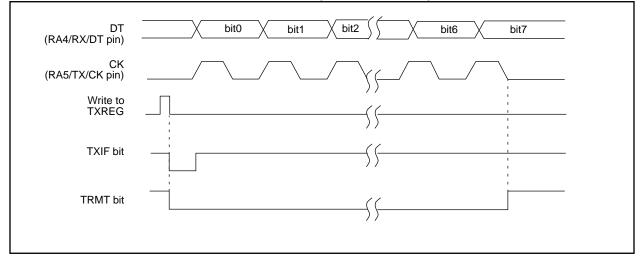
PIC17C4X

BAUD RATE	BAUD SPBRG		Fosc = 2	DSC = 25 MHz SPBRG value		_		SPBRG value	Fosc = 1	SPBRG value		
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	_	NA	_	_	NA	_	_	NA		_
1.2	NA	_	_	NA	_	_	NA	_	_	NA	_	_
2.4	NA	_	_	NA	_	_	NA	_	_	NA	—	_
9.6	NA	—	—	NA	—	—	NA	—	—	NA	—	—
19.2	NA	_	—	NA	—	—	19.53	+1.73	255	19.23	+0.16	207
76.8	77.10	+0.39	106	77.16	+0.47	80	76.92	+0.16	64	76.92	+0.16	51
96	95.93	-0.07	85	96.15	+0.16	64	96.15	+0.16	51	95.24	-0.79	41
300	294.64	-1.79	27	297.62	-0.79	20	294.1	-1.96	16	307.69	+2.56	12
500	485.29	-2.94	16	480.77	-3.85	12	500	0	9	500	0	7
HIGH	8250	_	0	6250	_	0	5000	_	0	4000	_	0
LOW	32.22	_	255	24.41	_	255	19.53	_	255	15.625	_	255

BAUD	Fosc = 10 M	Hz	SPBRG	FOSC = 7.159	MHz	SPBRG	FOSC = 5.068	MHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	NA	_	_	NA	_	_	NA	_	_
1.2	NA	_	_	NA	_	_	NA	_	_
2.4	NA	_	_	NA	_	_	NA	_	_
9.6	9.766	+1.73	255	9.622	+0.23	185	9.6	0	131
19.2	19.23	+0.16	129	19.24	+0.23	92	19.2	0	65
76.8	75.76	-1.36	32	77.82	+1.32	22	79.2	+3.13	15
96	96.15	+0.16	25	94.20	-1.88	18	97.48	+1.54	12
300	312.5	+4.17	7	298.3	-0.57	5	316.8	+5.60	3
500	500	0	4	NA	_	_	NA	_	_
HIGH	2500	_	0	1789.8	_	0	1267	_	0
LOW	9.766	—	255	6.991	—	255	4.950	—	255
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	Z	SPBRG	Fosc = 32.76	8 kHz	SPBRG
RATE									
(K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
(K) 0.3	KBAUD NA	%ERROR		KBAUD NA	%ERROR		KBAUD 0.303	%ERROR +1.14	
	-	%ERROR — —			%ERROR — +0.16				(decimal)
0.3	NA	%ERROR 		NA	_	(decimal)	0.303	+1.14	(decimal) 26
0.3	NA NA	%ERROR — — — +0.23		NA 1.202	 +0.16	(decimal) — 207	0.303 1.170	+1.14	(decimal) 26
0.3 1.2 2.4	NA NA NA	 	(decimal) 	NA 1.202 2.404		(decimal) — 207 103	0.303 1.170 NA	+1.14	(decimal) 26
0.3 1.2 2.4 9.6	NA NA NA 9.622	 +0.23	(decimal) — — 92	NA 1.202 2.404 9.615	+0.16 +0.16 +0.16	(decimal) — 207 103 25	0.303 1.170 NA NA	+1.14	(decimal) 26
0.3 1.2 2.4 9.6 19.2	NA NA NA 9.622 19.04	 +0.23 -0.83	(decimal) — — 92 46	NA 1.202 2.404 9.615 19.24		(decimal) 	0.303 1.170 NA NA NA	+1.14	(decimal) 26
0.3 1.2 2.4 9.6 19.2 76.8	NA NA 9.622 19.04 74.57		(decimal) 92 46 11	NA 1.202 2.404 9.615 19.24 83.34		(decimal) 	0.303 1.170 NA NA NA NA	+1.14	(decimal) 26
0.3 1.2 2.4 9.6 19.2 76.8 96	NA NA 9.622 19.04 74.57 99.43		(decimal) — — 92 46 11 8	NA 1.202 2.404 9.615 19.24 83.34 NA		(decimal) 	0.303 1.170 NA NA NA NA NA	+1.14	(decimal) 26
0.3 1.2 2.4 9.6 19.2 76.8 96 300	NA NA 9.622 19.04 74.57 99.43 298.3		(decimal) — — 92 46 11 8	NA 1.202 2.404 9.615 19.24 83.34 NA NA		(decimal) 	0.303 1.170 NA NA NA NA NA NA	+1.14	(decimal) 26


TABLE 13-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—		TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register				•	•	xxxx xxxx	uuuu uuuu


Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

FIGURE 13-9: SYNCHRONOUS TRANSMISSION

FIGURE 13-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

14.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC17CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- OSC selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code protection

The PIC17CXX has a Watchdog Timer which can be shut off only through EPROM bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 96 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external reset, Watchdog Timer Reset or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LF crystal option saves power. Configuration bits are used to select various options. This configuration word has the format shown in Figure 14-1.

<u>R/P - 1</u> PM2 ⁽¹⁾	U - x	U - x	U - x	U - x	U - x	<u>U - x</u>	U - x	
				_			— —	
oit15-7							bit0	
U - x	R/P - 1	U - x	R/P - 1	R/P - 1	R/P - 1	R/P - 1	R/P - 1	
_	PM1	_	PM0	WDTPS1		FOSC1	FOSC0	R = Readable bit
oit15-7		1		11		1	bit0	P = Programmable bit
								U = Unimplemented - n = Value for Erased Device
								(x = unknown)
oit 15-9:	Unimpler	nented : R	ead as a	'1'				
	-				ot hito			
JIL 15,6,	4: PMZ, PM 111 = Mic			Mode Sele				
	110 = Mic							
	101 = Ext			ler mode				
				controller m	ode			
oit 7, 5:	Unimpler	•						
nit 3-2.	WDTPS1	WDTPS0		stscaler Se	elect bits			
511 0 2.	11 = WD							
	10 = WD							
	01 = WD	T enabled	, postscal	er = 64				
	00 = WD	T disabled	, 16-bit o	verflow time	er			
oit 1-0:	FOSC1:F	OSCO. Os	cillator S	elect bits				
	11 = EC (
	10 = XT c	oscillator						
	01 = RC (oscillator						
	00 = LF o	scillator						
	This bit do							

FIGURE 14-1: CONFIGURATION WORD

^{© 1996} Microchip Technology Inc.

TABLE 15-2: PIC17CXX INSTRUCTION SET

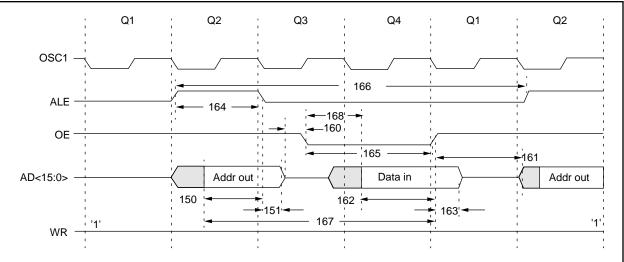
Mnemonic,		Description	Cycles	16-bit Opcoo	le	Status	Notes	
Operands				MSb	LSb	Affected		
BYTE-ORIE		TILE REGISTER OPERATIONS	•				•	
ADDWF	f,d	ADD WREG to f	1	0000 111d ffff	ffff	OV,C,DC,Z		
ADDWFC	f,d	ADD WREG and Carry bit to f	1	0001 000d ffff	ffff	OV,C,DC,Z		
ANDWF	f,d	AND WREG with f	1	0000 101d ffff	ffff	Z		
CLRF	f,s	Clear f, or Clear f and Clear WREG	1	0010 100s ffff	ffff	None	3	
COMF	f,d	Complement f	1	0001 001d ffff	ffff	Z		
CPFSEQ	f	Compare f with WREG, skip if f = WREG	1 (2)	0011 0001 ffff	ffff	None	6,8	
CPFSGT	f	Compare f with WREG, skip if f > WREG	1 (2)	0011 0010 ffff	ffff	None	2,6,8	
CPFSLT	f	Compare f with WREG, skip if f < WREG	1 (2)	0011 0000 ffff	ffff	None	2,6,8	
DAW	f,s	Decimal Adjust WREG Register	1	0010 111s ffff	ffff	C	3	
DECF	f,d	Decrement f	1	0000 011d ffff	ffff	OV,C,DC,Z		
DECFSZ	f,d	Decrement f, skip if 0	1 (2)	0001 011d ffff	ffff	None	6,8	
DCFSNZ	f,d	Decrement f, skip if not 0	1 (2)	0010 011d ffff	ffff	None	6,8	
INCF	f,d	Increment f	1	0001 010d ffff	ffff	OV,C,DC,Z		
INCFSZ	f,d	Increment f, skip if 0	1 (2)	0001 111d ffff	ffff	None	6,8	
INFSNZ	f,d	Increment f, skip if not 0	1 (2)	0010 010d ffff	ffff	None	6,8	
IORWF	f,d	Inclusive OR WREG with f	1	0000 100d ffff	ffff	Z		
MOVFP	f,p	Move f to p	1	011p pppp ffff	ffff	None		
MOVPF	p,f	Move p to f	1	010p pppp ffff	ffff	Z		
MOVWF	f	Move WREG to f	1	0000 0001 ffff	ffff	None		
MULWF	f	Multiply WREG with f	1	0011 0100 ffff	ffff	None	9	
NEGW	f,s	Negate WREG	1	0010 110s ffff	ffff	OV,C,DC,Z	1,3	
NOP	—	No Operation	1	0000 0000 0000	0000	None		
RLCF	f,d	Rotate left f through Carry	1	0001 101d ffff	ffff	С		
RLNCF	f,d	Rotate left f (no carry)	1	0010 001d ffff	ffff	None		
RRCF	f,d	Rotate right f through Carry	1	0001 100d ffff	ffff	C		
RRNCF	f,d	Rotate right f (no carry)	1	0010 000d ffff	ffff	None		
SETF	f,s	Set f	1	0010 101s ffff	ffff	None	3	
SUBWF	f,d	Subtract WREG from f	1	0000 010d ffff	ffff	OV,C,DC,Z	1	
SUBWFB	f,d	Subtract WREG from f with Borrow	1	0000 001d ffff	ffff	OV,C,DC,Z	1	
SWAPF	f,d	Swap f	1	0001 110d ffff	ffff	None		
TABLRD	t,i,f	Table Read	2 (3)	1010 10ti ffff	ffff	None	7	

Legend: Refer to Table 15-1 for opcode field descriptions.

- Note 1: 2's Complement method.
 - 2: Unsigned arithmetic.

3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.

- 4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL)
- 5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.
- 6: Two-cycle instruction when condition is true, else single cycle instruction.
- 7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
- 8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead an NOP is executed.
- 9: These instructions are not available on the PIC17C42.


PIC17C4X

BTF	SS	Bit Test,	skip if Se	t					
Synt	tax:	[<i>label</i>] E	[label] BTFSS f,b						
Ope	rands:		$0 \le f \le 127$						
		0≤b<7							
Ope	ration:	skip if (f<	b>) = 1						
Stat	us Affected:	None							
Enc	oding:	1001	0bbb	ffff	ffff				
Description:		instruction If bit 'b' is f fetched du cution, is c	If bit 'b' in register 'f' is 1 then the next instruction is skipped. If bit 'b' is 1, then the next instruction fetched during the current instruction exe- cution, is discarded and an NOP is exe- cuted instead, making this a two-cycle instruction						
Wor	ds:	1							
Cycl	les:	1(2)							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Execu	ite	NOP				
lf sk	ip:			· · ·					
	Q1	Q2	Q3		Q4				
	Forced NOP	NOP	Execu	ıte	NOP				
<u>Exa</u>	<u>mple</u> :	HERE FALSE TRUE	BTFSS : :	FLAG,1					
	Before Instru PC		ddress (HE	RE)					
	After Instructi If FLAG<7 PC If FLAG<7 PC	> = 0; = ac > = 1;	ddress (FA						

BTG	Bit Togg	Bit Toggle f							
Syntax:	[label]	[<i>label</i>] BTG f,b							
Operands:	0 ≤ f ≤ 25 0 ≤ b < 7								
Operation:	$(\overline{f} < b >) \rightarrow$	→ (f)							
Status Affected	: None								
Encoding:	0011	1bbb	ffff	ffff					
Description:	Bit 'b' in d inverted.	ata memory	location '	f' is					
Words:	1								
Cycles:	1								
Q Cycle Activity	/ :								
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Execut	• ·	/rite ster 'f'					
Example:	BTG	PORTC,	4						
Before Inst PORT		0101 [0x7 5	5]						
After Instru		0101 [0x6 5	-1						

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-12: MEMORY INTERFACE READ TIMING

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 30		_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	5*		_	ns	
160	TadZ2oeL	AD<15:0> high impedance to $\overline{OE}\downarrow$	0*	_	—	ns	
161	ToeH2adD	OE↑ to AD<15:0> driven	0.25Tcy - 15	_	_	ns	
162	TadV2oeH	Data in valid before OE↑ (data setup time)	35	_	_	ns	
163	ToeH2adl	OE to data in invalid (data hold time)	0	_	_	ns	
164	TalH	ALE pulse width	—	0.25Tcy §	—	ns	
165	ToeL	OE pulse width	0.5Tcy - 35 §	_	_	ns	
166	TalH2alH	ALE [↑] to ALE [↑] (cycle time)	—	TCY §	—	ns	
167	Tacc	Address access time	—	_	0.75 Tcy-40	ns	
168	Тое	Output enable access time (OE low to Data Valid)	-	_	0.5 TCY - 60	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification guaranteed by design.

Applicable Devices	42	R42	42A	43	R43	44

DC CHARA	CTERI	STICS	Standard Operating Conditions (unless otherwise stated) Operating temperature						
			_				≤ +40°C		
			Operating v	oltage VD	D range a	as desc	ribed in Section 19.1		
Parameter									
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions		
		Internal Program Memory Programming Specs (Note 4)							
D110	VPP	Voltage on MCLR/VPP pin	12.75	_	13.25	V	Note 5		
D111	Vddp	Supply voltage during	4.75	5.0	5.25	V			
D112	IPP	Current into MCLR/VPP pin	_	25 ‡	50 ‡	mA			
D113	Iddp	Supply current during programming	-	-	30 ‡	mA			
D114	TPROG	Programming pulse width	10	100	1000	μs	Terminated via internal/ external interrupt or a rese		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

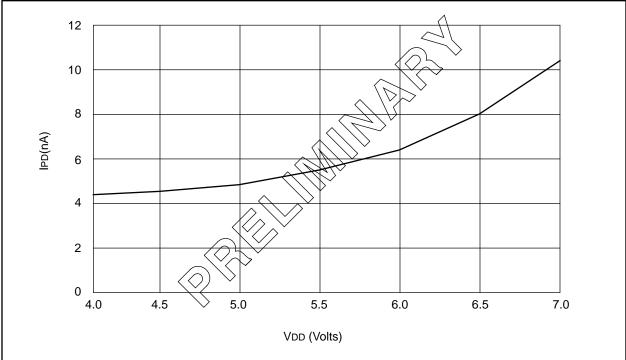
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.


6: For TTL buffers, the better of the two specifications may be used.

Note: When using the Table Write for internal programming, the device temperature must be less than 40°C.

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

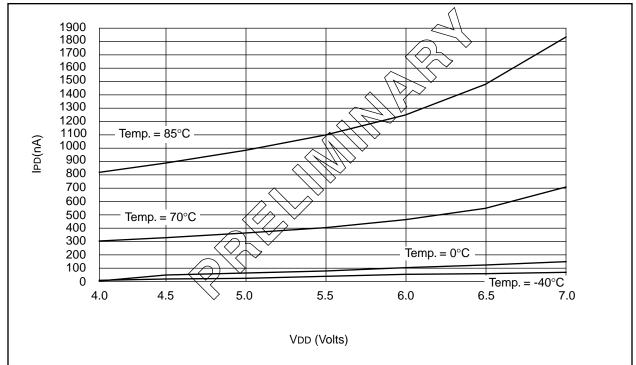


FIGURE 20-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

PIC17C4X

Figure 19-2:	External Clock Timing 184
Figure 19-3:	CLKOUT and I/O Timing 185
Figure 19-4:	Reset, Watchdog Timer,
riguio 10 4.	Oscillator Start-Up Timer, and
	Power-Up Timer Timing
Figure 19-5:	Timer0 Clock Timings 187
Figure 19-6:	Timer1, Timer2, and Timer3 Clock
	Timings 187
Figure 19-7:	Capture Timings 188
Figure 19-8:	PWM Timings
Figure 19-9:	USART Module: Synchronous
rigule 13-3.	
E'	Transmission (Master/Slave) Timing 189
Figure 19-10:	USART Module: Synchronous
	Receive (Master/Slave) Timing 189
Figure 19-11:	Memory Interface Write Timing
	(Not Supported in PIC17LC4X Devices) 190
Figure 19-12:	Memory Interface Read Timing
J	(Not Supported in PIC17LC4X Devices) 191
Figure 20-1:	Typical RC Oscillator Frequency vs.
rigule 20-1.	
F : 00.0	Temperature
Figure 20-2:	Typical RC Oscillator Frequency
	vs. VDD
Figure 20-3:	Typical RC Oscillator Frequency
	vs. VDD
Figure 20-4:	Typical RC Oscillator Frequency
J	vs. VDD
Figure 20-5:	Transconductance (gm) of LF Oscillator
i igule 20-5.	
	vs. VDD
Figure 20-6:	Transconductance (gm) of XT Oscillator
	vs. VDD196
Figure 20-7:	Typical IDD vs. Frequency (External
	Clock 25°C) 197
Figure 20-8:	Maximum IDD vs. Frequency (External
J	Clock 125°C to -40°C) 197
Figure 20-9:	Typical IPD vs. VDD Watchdog
riguie 20 5.	
Einung 00 40.	Disabled 25°C
Figure 20-10:	Maximum IPD vs. VDD Watchdog
	Disabled198
Figure 20-11:	Typical IPD vs. VDD Watchdog
	Enabled 25°C 199
Figure 20-12:	Maximum IPD vs. VDD Watchdog
0	Enabled199
Figure 20-13:	WDT Timer Time-Out Period vs. VDD 200
Figure 20-14:	IOH vs. VOH, $VDD = 3V$
Figure 20-15:	IOH vs. VOH, VDD = 5V
Figure 20-16:	IOL vs. VOL, VDD = 3V
Figure 20-17:	IOL vs. VOL, VDD = 5V
Figure 20-18:	Vтн (Input Threshold Voltage) of
	I/O Pins (TTL) vs. VDD
Figure 20-19:	VTH, VIL of I/O Pins (Schmitt Trigger)
g <u>-</u> 00.	vs. VDD
Figure 20-20:	VTH (Input Threshold Voltage) of OSC1
i iyule 20-20.	
	Input (In XT and LF Modes) vs. VDD 203
LIST OF TAE	21 ES
Table 1-1:	PIC17CXX Family of Devices 6
Table 3-1:	Pinout Descriptions12
Table 4-1:	Time-Out in Various Situations
Table 4-2:	STATUS Bits and Their Significance

Mode Memory Access 30

Initialization Conditions For Special

Table 6-2:	EPROM Memory Access Time
	Ordering Suffix
Table 6-3:	Special Function Registers34
Table 7-1:	Interrupt - Table Write Interaction45
Table 8-1:	Performance Comparison49
Table 9-1:	PORTA Functions
Table 9-2:	Registers/Bits Associated with PORTA54
Table 9-3:	PORTB Functions
Table 9-4: Table 9-5:	PORTC Functions
Table 9-5: Table 9-6:	Registers/Bits Associated with PORTC59
Table 9-0. Table 9-7:	PORTD Functions
Table 9-8:	Registers/Bits Associated with PORTD61
Table 9-9:	PORTE Functions
Table 9-10:	Registers/Bits Associated with PORTE63
Table 11-1:	Registers/Bits Associated with Timer070
Table 12-1:	Turning On 16-bit Timer74
Table 12-2:	Summary of Timer1 and Timer2
	Registers
Table 12-3:	PWM Frequency vs. Resolution at
	25 MHz
Table 12-4:	Registers/Bits Associated with PWM77
Table 12-5:	Registers Associated with Capture79
Table 12-6:	Summary of TMR1, TMR2, and TMR3
	Registers81
Table 13-1:	Baud Rate Formula86
Table 13-2:	Registers Associated with Baud Rate
	Generator86
Table 13-3:	Baud Rates for Synchronous Mode87
Table 13-4:	Baud Rates for Asynchronous Mode88
Table 13-5:	Registers Associated with Asynchronous
	Transmission90
Table 13-6:	Registers Associated with Asynchronous
	Reception92
Table 13-7:	Registers Associated with Synchronous
	Master Transmission
Table 13-8:	Registers Associated with Synchronous
T 40.0	Master Reception
Table 13-9:	Registers Associated with Synchronous
Table 40.40	Slave Transmission
Table 13-10:	Registers Associated with Synchronous
Table 14-1:	Slave Reception
Table 14-1. Table 14-2:	Capacitor Selection for Ceramic
	Resonators
Table 14-3:	Capacitor Selection for Crystal
Table 14-5.	OscillatoR
Table 14-4:	Registers/Bits Associated with the
	Watchdog Timer
Table 15-1:	Opcode Field Descriptions
Table 15-2:	PIC17CXX Instruction Set110
Table 16-1:	development tools from microchip146
Table 17-1:	Cross Reference of Device Specs for
	Oscillator Configurations and Frequencies
	of Operation (Commercial Devices)148
Table 17-2:	External Clock Timing Requirements155
Table 17-3:	CLKOUT and I/O Timing Requirements156
Table 17-4:	Reset, Watchdog Timer,
	Oscillator Start-Up Timer and
	Power-Up Timer Requirements157
Table 17-5:	Timer0 Clock Requirements158
Table 17-6:	Timer1, Timer2, and Timer3 Clock
	Requirements158
Table 17-7:	Capture Requirements
Table 17-8:	PWM Requirements159

Table 4-3:

Table 4-4:

Table 5-1:

Table 6-1: