

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	OTP
EEPROM Size	
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c42at-33i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC17CXX FAMILY OF DEVICES

Features		PIC17C42	PIC17CR42	PIC17C42A	PIC17C43	PIC17CR43	PIC17C44
Maximum Frequency of O	peration	25 MHz	33 MHz				
Operating Voltage Range		4.5 - 5.5V	2.5 - 6.0V				
Program Memory x16	(EPROM)	2K	-	2K	4K	-	8K
	(ROM)	-	2K	-	-	4K	-
Data Memory (bytes)		232	232	232	454	454	454
Hardware Multiplier (8 x 8)		-	Yes	Yes	Yes	Yes	Yes
Timer0 (16-bit + 8-bit post	scaler)	Yes	Yes	Yes	Yes	Yes	Yes
Timer1 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer2 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer3 (16-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Capture inputs (16-bit)		2	2	2	2	2	2
PWM outputs (up to 10-bit	t)	2	2	2	2	2	2
USART/SCI		Yes	Yes	Yes	Yes	Yes	Yes
Power-on Reset		Yes	Yes	Yes	Yes	Yes	Yes
Watchdog Timer		Yes	Yes	Yes	Yes	Yes	Yes
External Interrupts		Yes	Yes	Yes	Yes	Yes	Yes
Interrupt Sources		11	11	11	11	11	11
Program Memory Code P	rotect	Yes	Yes	Yes	Yes	Yes	Yes
I/O Pins		33	33	33	33	33	33
I/O High Current Capabil-	Source	25 mA					
ity	Sink	25 mA ⁽¹⁾					
Package Types		40-pin DIP					
		44-pin PLCC					
		44-pin MQFP					
			44-pin TQFP				

Note 1: Pins RA2 and RA3 can sink up to 60 mA.

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
1				
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	Bank 0 PORTA	Bank 1 ⁽¹⁾ DDRC	Bank 2 ⁽¹⁾ TMR1	Bank 3 ⁽¹⁾ PW1DCL
10h 11h				
	PORTA	DDRC	TMR1	PW1DCL
11h	PORTA DDRB	DDRC PORTC	TMR1 TMR2	PW1DCL PW2DCL
11h 12h	PORTA DDRB PORTB	DDRC PORTC DDRD	TMR1 TMR2 TMR3L	PW1DCL PW2DCL PW1DCH
11h 12h 13h	PORTA DDRB PORTB RCSTA	DDRC PORTC DDRD PORTD	TMR1 TMR2 TMR3L TMR3H	PW1DCL PW2DCL PW1DCH PW2DCH
11h 12h 13h 14h	PORTA DDRB PORTB RCSTA RCREG	DDRC PORTC DDRD PORTD DDRE	TMR1 TMR2 TMR3L TMR3H PR1	PW1DCL PW2DCL PW1DCH PW2DCH CA2L
11h 12h 13h 14h 15h	PORTA DDRB PORTB RCSTA RCREG TXSTA	DDRC PORTC DDRD PORTD DDRE PORTE	TMR1 TMR2 TMR3L TMR3H PR1 PR2	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H
11h 12h 13h 14h 15h 16h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1

FIGURE 6-5: PIC17C42 REGISTER FILE MAP

Note 1: SFR file locations 10h - 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.

FIGURE 6-6: PIC17CR42/42A/43/R43/44 REGISTER FILE MAP

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
11h	DDRB	PORTC	TMR2	PW2DCL
12h	PORTB	DDRD	TMR3L	PW1DCH
13h	RCSTA	PORTD	TMR3H	PW2DCH
14h	RCREG	DDRE	PR1	CA2L
15h	TXSTA	PORTE	PR2	CA2H
16h	TXREG	PIR	PR3L/CA1L	TCON1
17h	SPBRG	PIE	PR3H/CA1H	TCON2
18h	PRODL			
19h	PRODH			
1Ah				
1Fh			1	
20h	General	General		
	Purpose	Purpose		
	RAM ⁽²⁾	RAM (2)		
FFh				

- Note 1: SFR file locations 10h 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.
 - 2: General Purpose Registers (GPR) locations 20h - FFh and 120h - 1FFh are banked. All other GPRs ignore the Bank Select Register (BSR) bits.

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	; FSR0 = 20	h
	BCF	ALUSTA, FS1	; Increment	FSR
	BSF	ALUSTA, FSO	; after acc	ess
	BCF	ALUSTA, C	; C = 0	
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	; Addr(FSR)	= 0
	CPFSEQ	FSR0	; FSRO = EN	ID_RAM+1?
	GOTO	LP	; NO, clear	next
	:		; YES, All	RAM is
	:		; cleared	

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

9.0 I/O PORTS

The PIC17C4X devices have five I/O ports, PORTA through PORTE. PORTB through PORTE have a corresponding Data Direction Register (DDR), which is used to configure the port pins as inputs or outputs. These five ports are made up of 33 I/O pins. Some of these ports pins are multiplexed with alternate functions.

PORTC, PORTD, and PORTE are multiplexed with the system bus. These pins are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, these pins are general purpose I/O.

PORTA and PORTB are multiplexed with the peripheral features of the device. These peripheral features are:

- Timer modules
- Capture module
- PWM module
- USART/SCI module
- External Interrupt pin

When some of these peripheral modules are turned on, the port pin will automatically configure to the alternate function. The modules that do this are:

- PWM module
- USART/SCI module

When a pin is automatically configured as an output by a peripheral module, the pins data direction (DDR) bit is unknown. After disabling the peripheral module, the user should re-initialize the DDR bit to the desired configuration.

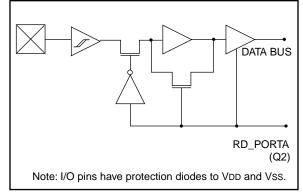
The other peripheral modules (which require an input) must have their data direction bit configured appropriately.

Note: A pin that is a peripheral input, can be configured as an output (DDRx<y> is cleared). The peripheral events will be determined by the action output on the port pin.

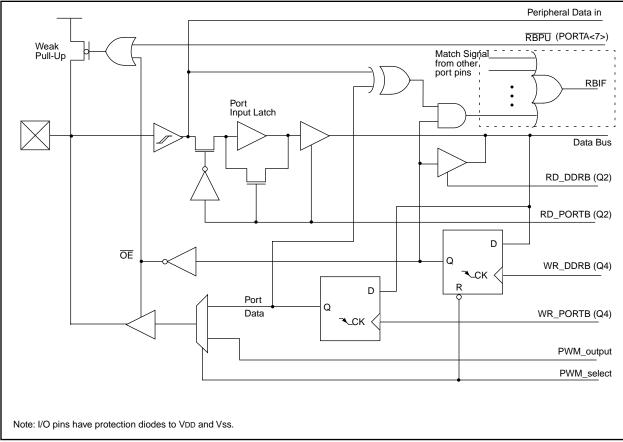
9.1 PORTA Register

PORTA is a 6-bit wide latch. PORTA does not have a corresponding Data Direction Register (DDR).

Reading PORTA reads the status of the pins.


The RA1 pin is multiplexed with TMR0 clock input, and RA4 and RA5 are multiplexed with the USART functions. The control of RA4 and RA5 as outputs is automatically configured by the USART module.

9.1.1 USING RA2, RA3 AS OUTPUTS


The RA2 and RA3 pins are open drain outputs. To use the RA2 or the RA3 pin(s) as output(s), simply write to the PORTA register the desired value. A '0' will cause the pin to drive low, while a '1' will cause the pin to float (hi-impedance). An external pull-up resistor should be used to pull the pin high. Writes to PORTA will not affect the other pins.

Note:	When using the RA2 or RA3 pin(s) as out- put(s), read-modify-write instructions (such as BCF, BSF, BTG) on PORTA are not rec- ommended. Such operations read the port pins, do the desired operation, and then write this value to the data latch. This may inadvertently cause the RA2 or RA3 pins to switch from input to output (or vice-versa). It is recommended to use a shadow regis- ter for PORTA. Do the bit operations on this shadow register and then move it to PORTA.

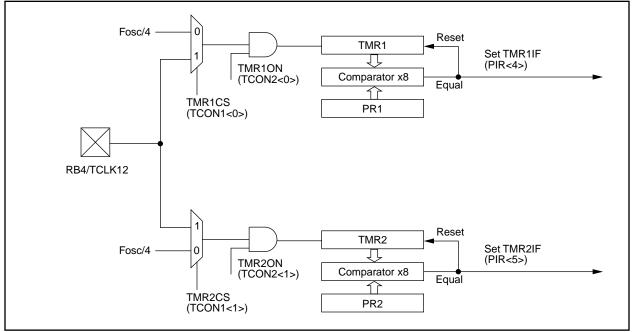
FIGURE 9-1: RA0 AND RA1 BLOCK DIAGRAM

FIGURE 9-5: BLOCK DIAGRAM OF RB3 AND RB2 PORT PINS

12.1 <u>Timer1 and Timer2</u>

12.1.1 TIMER1, TIMER2 IN 8-BIT MODE

Both Timer1 and Timer2 will operate in 8-bit mode when the T16 bit is clear. These two timers can be independently configured to increment from the internal instruction cycle clock or from an external clock source on the RB4/TCLK12 pin. The timer clock source is configured by the TMRxCS bit (x = 1 for Timer1 or = 2 for Timer2). When TMRxCS is clear, the clock source is internal and increments once every instruction cycle (Fosc/4). When TMRxCS is set, the clock source is the RB4/TCLK12 pin, and the timer will increment on every falling edge of the RB4/TCLK12 pin.


The timer increments from 00h until it equals the Period register (PRx). It then resets to 00h at the next increment cycle. The timer interrupt flag is set when the timer is reset. TMR1 and TMR2 have individual interrupt flag bits. The TMR1 interrupt flag bit is latched into TMR1IF, and the TMR2 interrupt flag bit is latched into TMR2IF.

Each timer also has a corresponding interrupt enable bit (TMRxIE). The timer interrupt can be enabled by setting this bit and disabled by clearing this bit. For peripheral interrupts to be enabled, the Peripheral Interrupt Enable bit must be enabled (PEIE is set) and global interrupts must be enabled (GLINTD is cleared).

The timers can be turned on and off under software control. When the Timerx On control bit (TMRxON) is set, the timer increments from the clock source. When TMRxON is cleared, the timer is turned off and cannot cause the timer interrupt flag to be set.

12.1.1.1 EXTERNAL CLOCK INPUT FOR TIMER1 OR TIMER2

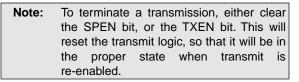
When TMRxCS is set, the clock source is the RB4/TCLK12 pin, and the timer will increment on every falling edge on the RB4/TCLK12 pin. The TCLK12 input is synchronized with internal phase clocks. This causes a delay from the time a falling edge appears on TCLK12 to the time TMR1 or TMR2 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

FIGURE 12-3: TIMER1 AND TIMER2 IN TWO 8-BIT TIMER/COUNTER MODE

13.4 USART Synchronous Slave Mode

The synchronous slave mode differs from the master mode in the fact that the shift clock is supplied externally at the RA5/TX/CK pin (instead of being supplied internally in the master mode). This allows the device to transfer or receive data in the SLEEP mode. The slave mode is entered by clearing the CSRC (TXSTA<7>) bit.

13.4.1 USART SYNCHRONOUS SLAVE TRANSMIT


The operation of the sync master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to TXREG and then the SLEEP instruction executes, the following will occur. The first word will immediately transfer to the TSR and will transmit as the shift clock is supplied. The second word will remain in TXREG. TXIF will not be set. When the first word has been shifted out of TSR, TXREG will transfer the second word to the TSR and the TXIF flag will now be set. If TXIE is enabled, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, then the program will branch to interrupt vector (0020h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting the SYNC and SPEN bits and clearing the CSRC bit.
- 2. Clear the CREN bit.
- 3. If interrupts are desired, then set the TXIE bit.
- 4. If 9-bit transmission is desired, then set the TX9 bit.
- 5. Start transmission by loading data to TXREG.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 7. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the reverse order.

13.4.2 USART SYNCHRONOUS SLAVE RECEPTION

Operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode. Also, SREN is a don't care in slave mode.

If receive is enabled (CREN) prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR will transfer the data to RCREG (setting RCIF) and if the RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0020h).

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting the SYNC and SPEN bits and clearing the CSRC bit.
- 2. If interrupts are desired, then set the RCIE bit.
- 3. If 9-bit reception is desired, then set the RX9 bit.
- 4. To enable reception, set the CREN bit.
- 5. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 6. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading RCREG.
- 8. If any error occurred, clear the error by clearing the CREN bit.

Note: To abort reception, either clear the SPEN bit, the SREN bit (when in single receive mode), or the CREN bit (when in continuous receive mode). This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

14.4.2 MINIMIZING CURRENT CONSUMPTION

To minimize current consumption, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should be at VDD or VSS. The contributions from on-chip pull-ups on PORTB should also be considered, and disabled when possible.

14.5 <u>Code Protection</u>

The code in the program memory can be protected by selecting the microcontroller in code protected mode (PM2:PM0 = '000').

Note:	PM2 d	oes not	exist on th	e PIC17C42. To
	select	code	protected	microcontroller
			10 = 00'.	

In this mode, instructions that are in the on-chip program memory space, can continue to read or write the program memory. An instruction that is executed outside of the internal program memory range will be inhibited from writing to or reading from program memory.

Note: Microchip does not recommend code protecting windowed devices.

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

MOVFP	Move f to	р		MOVLB	Move Lite	eral to low i	nibble in BSR
Syntax:	[<i>label</i>] N	IOVFP f,p		Syntax:	[label]	MOVLB k	
Operands:	0 ≤ f ≤ 255	5		Operands:	$0 \le k \le 15$	5	
	$0 \le p \le 31$			Operation:	k ightarrow (BSR	(<3:0>)	
Operation:	$(f) \to (p)$			Status Affected:	None		
Status Affected:	None			Encoding:	1011	1000 ui	uuu kkkk
Encoding:	011p	pppp ff	ff ffff	Description:	The four bi	t literal 'k' is lo	baded in the
Description:	to data mer can be any	mory location ' where in the 2	nory location 'f' p'. Location 'f' 56 word data 'p' can be 00h		low 4-bits of are affected is unchang	of the Bank Se	
		'f' can be WR	EG (a useful	Words:	1		
	special situ	,	ful for transfer-	Cycles:	1		
			on to a periph-	Q Cycle Activity:			
			transmit buffer	Q1	Q2	Q3	Q4
	indirectly a	ort). Both 'f' an ddressed.	d p can be	Decode	Read	Execute	Write literal
Words:	1				literal 'u:k'		'k' to BSR<3:0>
Cycles:	1			Example:	MOVLB	0x5	
Q Cycle Activity	:			Before Instru	uction		
Q1	Q2	Q3	Q4	BSR reg	ister = 0x	:22	
Decode	Read register 'f'	Execute	Write register 'p'	After Instruc BSR reg		:25	
Example:	MOVFP I	REG1, REG2		Note: For th	ne PIC17C42	2, only the lo	ow four bits of
Before Insti REG1 REG2		33, 11			BSR registe ed. The uppe		sically imple- ead as '0'.
After Instru REG1		33,					

REG2

0x33

=

SLEEP	Enter SI	EEP mod	de		
Syntax:	[label]	SLEEP			
Operands:	None	None			
Operation:	$\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$	/DT; T postsca	ler;		
Status Affected	I: TO, PD				
Encoding:	0000	0000	0000	0011	
Description:	cleared. T set. Watch are cleare The proce	r down stat he time-out ndog Timer nd. essor is put n the oscilla	t status I and its into SL	bit (TO) is prescaler EEP	
Words:	1				
Cycles:	1				
Q Cycle Activit	y:				
Q1	Q2	Q3		Q4	
Decode	Read register PCLATH	Execute	e	NOP	
Example:	SLEEP				
Before Ins TO = PD =	?				
After Instru TO = PD = † If WDT caus	uction 1 † 0 ses wake-up, t	his bit is c	leared		

† If WDT causes wake-up, this bit is cleared

SUE	BLW	S	Subtr	act	WREG	from	ı Lit	teral
Synt	tax:	[[<i>label</i>] SUBLW k					
Ope	rands:	0	$0 \le k \le 255$					
Ope	ration:	k	– (V	VRE	$\Xi G) \rightarrow (N)$	VRE	G)	
Stat	us Affected:	C	OV, C, DC, Z					
Enc	oding:	Γ	101	1	0010	kkł	k	kkkk
Des	cription:	li	WREG is subtracted from the eight bir literal 'k'. The result is placed in WREG.					
Words:		1						
Cycl	les:	1						
QC	ycle Activity:							
	Q1		Q2		Q3			Q4
	Decode	-	Read eral 'k	۲'	Execu	ite		Vrite to WREG
Exa	<u>mple 1</u> :	S	UBLW	1 (Ox02			
	Before Instru WREG C After Instruct WREG	= =	ר 1 ? 1					
<u>Exa</u>	C Z mple <u>2</u> :	=	1 0	; re	esult is po	ositive		
	Before Instru WREG C	ictior = =	ר 2 ?					
<u>Exa</u>	After Instruct WREG C Z mple <u>3</u> :	tion = = =	0 1 1	; re	esult is ze	ero		
	Before Instru WREG C	ictior = =	ר 3 ?					
	After Instruct WREG C Z	tion = = =	FF 0 1		's comple esult is ne		·	

TABLRD	Table R	ead	
Example1:	TABLRD	1, 1,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0xAA
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR			0xA357
MEMORY	(TBLPTR)	=	0x5678
Example2:	TABLRD	0, 0,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0x55
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234

TABLWT	Table Write
Syntax:	[label] TABLWT t,i,f
Operands:	0 ≤ f ≤ 255 i ∈ [0,1] t ∈ [0,1]
Operation:	$f \in [0, 1]$ If $f = 0$,
e per au e m	$f \rightarrow TBLATL;$
	If t = 1, f \rightarrow TBLATH;
	TBLAT \rightarrow Prog Mem (TBLPTF
	If i = 1, TBLPTR + 1 \rightarrow TBLPTR
Status Affected:	None
Encoding:	1010 11ti ffff ffff
Description:	1. Load value in 'f' into 16-bit table
	latch (TBLAT) If t = 0: load into low byte;
	If t = 1: load into high byte
	2. The contents of TBLAT is written to the program memory location
	pointed to by TBLPTR
	If TBLPTR points to external program memory location, then
	the instruction takes two-cycle
	If TBLPTR points to an internal
	EPROM location, then the instruction is terminated when
	an interrupt is received.
	LR/VPP pin must be at the programmir for successful programming of intern
If MCLR	/VPP = VDD
	gramming sequence of internal memore executed, but will not be successf
(althoug	h the internal memory location may b
disturbe	-7
	 The TBLPTR can be automati- cally incremented
	If i = 0; TBLPTR is not
	incremented
Words:	
	incremented If i = 1; TBLPTR is incremented
Cycles:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip
Words: Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4
Cycles: Q Cycle Activity:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4 Read Execute Write
Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4

TABLWT	Table Wr	ite		
Example1:	TABLWT	0, 1,	REG	
Before Instruc	ction			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA356	
MEMORY	(TBLPTR)	=	0xFFFI	F
After Instruction	on (table v	vrite co	mpletio	n)
REG		=	0x53	
TBLATH		=	0x53	
TBLATL		=	0x55	
TBLPTR		=	0xA357	7
MEMORY	(TBLPTR -	1) =	0x5355	5
Example 2:	TABLWT	1, 0,	REG	
Before Instruc	ction			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA356	6
MEMORY	(TBLPTR)	=	0xFFFI	F
After Instruction	on (table v	vrite co	mpletio	n)
REG	,	=	0x53	,
TBLATH		=	0xAA	
TBLATL		=	0x53	
TBLPTR		=	0xA356	6
MEMORY	(TBLPTR)	=	0xAA5	3
	 ר		г	
Program Memory	15		0	Data Memory
				wentory
	1 (5	TBLPTR		

	TBLPTR
· · · · · · · · · · · · · · · · · · ·	
16 bits	TBLAT 8 bits

TLR	D	Table Late	ch Read					
Synt	ax:	[label] T	[label] TLRD t,f					
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ t \in \left[0,1\right] \end{array}$						
Ope	ration:	If t = 0, TBLATL \rightarrow f;						
		If $t = 1$, TBLATH $\rightarrow f$						
Status Affected: None								
Enco	oding:	1010	1010 00tx ffff ffff					
Deso	cription:	(TBLAT) into is unaffecte If t = 1; high	Read data from 16-bit table latch (TBLAT) into file register 'f'. Table Latch is unaffected. If $t = 1$; high byte is read If $t = 0$; low byte is read					
		with TABLR	tion is used ir □ to transfer c ory to data me	lata from pro-				
Word	ds:	1						
Cycl	es:	1						
QC	cle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register TBLATH or TBLATL	Execute	Write register 'f'				
<u>Exar</u>	<u>mple</u> :	TLRD t	, RAM					
	Before Instru	iction						
	t RAM	= 0 = ?						
	TBLAT	= ? = 0x00AF	(TBLATH = (TBLATL =					
	After Instruct	tion						
	RAM TBLAT	= 0xAF = 0x00AF	(TBLATH = (TBLATL =	,				
	Before Instru	iction						
	t RAM	= 1 = ?						
	TBLAT	= ? = 0x00AF	(TBLATH = (TBLATL =	,				
After Instruction								
	RAM TBLAT	= 0x00 = 0x00AF	(TBLATH = (TBLATL =	,				
	Program Memory	15	0	Data Memory				
• - •			. (÷				
	16 bits		BLAT	8 bits				

Applicable Devices 42 R42 42A 43 R43 44

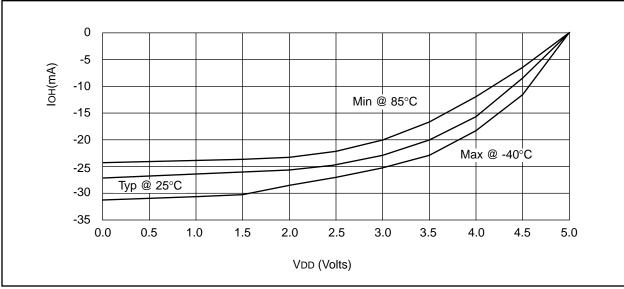
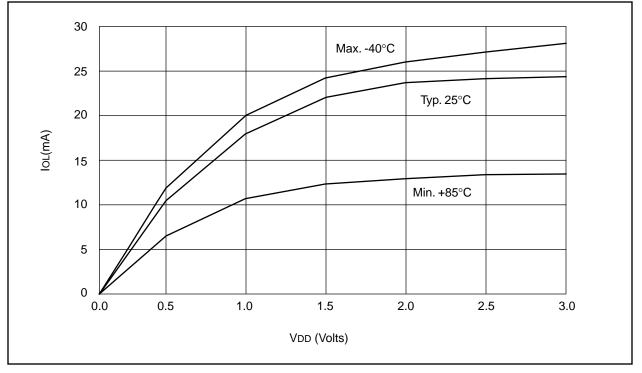
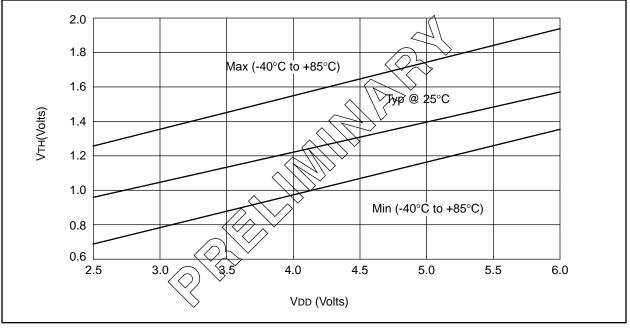



FIGURE 18-16: IOL vs. VOL, VDD = 3V



Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-17: IOL vs. VOL, VDD = 5V

Applicable Devices 42 R42 42A 43 R43 44

			Standard C Operating te			ns (ur	nless otherwise stated)
DC CHARACTERISTICS $-40^{\circ}C \le TA \le +85^{\circ}C$ for indust $0^{\circ}C \le TA \le +70^{\circ}C$ for comm				≤ +85°C for industrial and ≤ +70°C for commercial			
Operating voltage VDD range as described in Section 19.1						ribed in Section 19.1	
Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Output Low Voltage					
D080	VOL	I/O ports (except RA2 and RA3)					IOL = VDD/1.250 mA
			_	_	0.1Vdd	V	$4.5V \le VDD \le 6.0V$
			_	_	0.1Vdd *	V	VDD = 2.5V
D081		with TTL buffer	-	_	0.4	V	IOL = 6 mA, VDD = 4.5V Note 6
D082		RA2 and RA3	_	_	3.0	V	IOL = 60.0 mA, VDD = 6.0V
D083		OSC2/CLKOUT	_	_	0.4	V	IOL = 1 mA, VDD = 4.5V
D084		(RC and EC osc modes)	_	_	0.1Vdd *	V	IOL = VDD/5 mA
							(PIC17LC43/LC44 only)
		Output High Voltage (Note 3)					
D090	Vон	I/O ports (except RA2 and RA3)					IOH = -VDD/2.500 mA
			0.9Vdd	_	-	V	$4.5V \le VDD \le 6.0V$
			0.9Vdd *	-	-	V	VDD = 2.5V
D091		with TTL buffer	2.4	_	_	V	IOH = -6.0 mA, VDD=4.5V Note 6
D092		RA2 and RA3	-	_	12	V	Pulled-up to externally applied voltage
D093		OSC2/CLKOUT	2.4	_	_	v	IOH = -5 mA, VDD = 4.5 V
D094		(RC and EC osc modes)	0.9Vdd *	_	_	V	IOH = -VDD/5 mA
		, , ,					(PIC17LC43/LC44 only)
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2/CLKOUT pin	_	_	25	pF	In EC or RC osc modes when OSC2 pin is outputting CLKOUT. external clock is used to drive OSC1.
D101	Сю	All I/O pins and OSC2 (in RC mode)	_	_	50	pF	
D102	CAD	System Interface Bus (PORTC, PORTD and PORTE)	_	_	50	pF	In Microprocessor or Extended Microcontroller mode

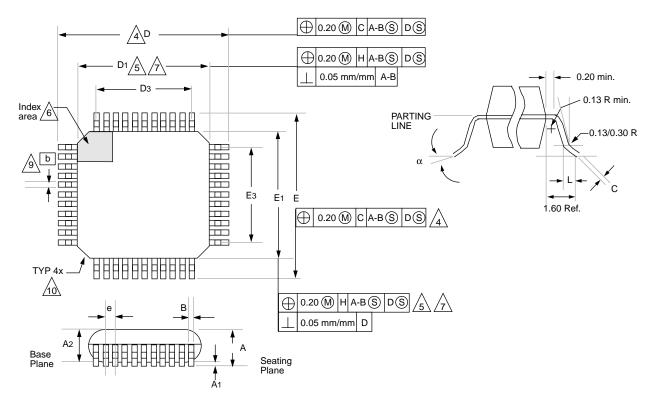
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Package Group: Plastic MQFP							
	Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Мах	Notes	
α	0°	7 °		0°	7 °		
А	2.000	2.350		0.078	0.093		
A1	0.050	0.250		0.002	0.010		
A2	1.950	2.100		0.768	0.083		
b	0.300	0.450	Typical	0.011	0.018	Typical	
С	0.150	0.180		0.006	0.007		
D	12.950	13.450		0.510	0.530		
D1	9.900	10.100		0.390	0.398		
D3	8.000	8.000	Reference	0.315	0.315	Reference	
E	12.950	13.450		0.510	0.530		
E1	9.900	10.100		0.390	0.398		
E3	8.000	8.000	Reference	0.315	0.315	Reference	
е	0.800	0.800		0.031	0.032		
L	0.730	1.030		0.028	0.041		
Ν	44	44		44	44		
CP	0.102	_		0.004	_		