E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-16-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Overview	5
2.0	PIC17C4X Device Varieties	7
3.0	Architectural Overview	9
4.0	Reset	15
5.0	Interrupts	21
6.0	Memory Organization	29
7.0	Table Reads and Table Writes	43
8.0	Hardware Multiplier	49
9.0	I/O Ports	53
10.0	Overview of Timer Resources	65
11.0	Timer0	67
12.0	Timer1, Timer2, Timer3, PWMs and Captures	71
13.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	83
14.0	Special Features of the CPU	99
15.0	Instruction Set Summary	107
16.0	Development Support	143
17.0	PIC17C42 Electrical Characteristics	147
18.0	PIC17C42 DC and AC Characteristics	163
19.0	PIC17CR42/42A/43/R43/44 Electrical Characteristics	175
20.0	PIC17CR42/42A/43/R43/44 DC and AC Characteristics	193
21.0	Packaging Information	205
Appen	dix A: Modifications	211
Appen	dix B: Compatibility	211
Appen	dix C: What's New	212
Appen	dix D: What's Changed	212
Appen	dix E: PIC16/17 Microcontrollers	213
Appen	dix F: Errata for PIC17C42 Silicon	223
Index.		226
PIC17	C4X Product Identification System	237

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC17C43, PIC17C43, PIC17C44 are described in this section.

Applicable Devices 42 R42 42A 43 R43 44

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error from the previous version of the PIC17C4X Data Sheet (Literature Number DS30412B), please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

To assist you in the use of this document, Appendix C contains a list of new information in this data sheet, while Appendix D contains information that has changed

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC17C4X can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC17C4X uses a modified Harvard architecture. This architecture has the program and data accessed from separate memories. So the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC17C4X opcodes are 16-bits wide, enabling single word instructions. The full 16-bit wide program memory bus fetches a 16-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions execute in a single cycle (121 ns @ 33 MHz), except for program branches and two special instructions that transfer data between program and data memory.

The PIC17C4X can address up to 64K x 16 of program memory space.

The **PIC17C42** and **PIC17C42A** integrate 2K x 16 of EPROM program memory on-chip, while the **PIC17CR42** has 2K x 16 of ROM program memory on-chip.

The **PIC17C43** integrates 4K x 16 of EPROM program memory, while the **PIC17CR43** has 4K x 16 of ROM program memory.

The **PIC17C44** integrates 8K x 16 EPROM program memory.

Program execution can be internal only (microcontroller or protected microcontroller mode), external only (microprocessor mode) or both (extended microcontroller mode). Extended microcontroller mode does not allow code protection.

The PIC17CXX can directly or indirectly address its register files or data memory. All special function registers, including the Program Counter (PC) and Working Register (WREG), are mapped in the data memory. The PIC17CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC17CXX simple yet efficient. In addition, the learning curve is reduced significantly.

One of the PIC17CXX family architectural enhancements from the PIC16CXX family allows two file registers to be used in some two operand instructions. This allows data to be moved directly between two registers without going through the WREG register. This increases performance and decreases program memory usage. The PIC17CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature.

The WREG register is an 8-bit working register used for ALU operations.

All PIC17C4X devices (except the PIC17C42) have an 8 x 8 hardware multiplier. This multiplier generates a 16-bit result in a single cycle.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Although the ALU does not perform signed arithmetic, the Overflow bit (OV) can be used to implement signed math. Signed arithmetic is comprised of a magnitude and a sign bit. The overflow bit indicates if the magnitude overflows and causes the sign bit to change state. Signed math can have greater than 7-bit values (magnitude), if more than one byte is used. The use of the overflow bit only operates on bit6 (MSb of magnitude) and bit7 (sign bit) of the value in the ALU. That is, the overflow bit is not useful if trying to implement signed math where the magnitude, for example, is 11-bits. If the signed math values are greater than 7-bits (15-, 24or 31-bit), the algorithm must ensure that the low order bytes ignore the overflow status bit.

Care should be taken when adding and subtracting signed numbers to ensure that the correct operation is executed. Example 3-1 shows an item that must be taken into account when doing signed arithmetic on an ALU which operates as an unsigned machine.

EXAMPLE 3-1: SIGNED MATH

Hex Value	Signed Value Math	Unsigned Value Math			
FFh	-127	255			
<u>+ 01h</u>	<u>+ 1</u>	<u>+ 1</u>			
= ?	= -126 (FEh)	= 0 (00h);			
		Carry bit = 1			

Signed math requires the result in REG to be FEh (-126). This would be accomplished by subtracting one as opposed to adding one.

Simplified block diagrams are shown in Figure 3-1 and Figure 3-2. The descriptions of the device pins are listed in Table 3-1.

© 1996 Microchip Technology Inc.

Name	DIP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description	
OSC1/CLKIN	19	21	37		ST	Oscillator input in crystal/resonator or RC oscillator mode. External clock input in external clock mode.	
OSC2/CLKOUT	20	22	38	0	_	Oscillator output. Connects to crystal or resonator in crysta oscillator mode. In RC oscillator or external clock modes OSC2 pin outputs CLKOUT which has one fourth the fre- guency of OSC1 and denotes the instruction cycle rate.	
MCLR/Vpp	32	35	7	I/P	ST	Master clear (reset) input/Programming Voltage (VPP) input. This is the active low reset input to the chip.	
						PORTA is a bi-directional I/O Port except for RA0 and RA1 which are input only.	
RA0/INT	26	28	44	I	ST	RA0/INT can also be selected as an external interrupt input. Interrupt can be configured to be on positive or negative edge.	
RA1/T0CKI	25	27	43	I	ST	RA1/T0CKI can also be selected as an external interrupt input, and the interrupt can be configured to be on posi- tive or negative edge. RA1/T0CKI can also be selected to be the clock input to the Timer0 timer/counter.	
RA2	24	26	42	I/O	ST	High voltage, high current, open drain input/output port pins.	
RA3	23	25	41	I/O	ST	High voltage, high current, open drain input/output port pins.	
RA4/RX/DT	22	24	40	I/O	ST	RA4/RX/DT can also be selected as the USART (SCI) Asynchronous Receive or USART (SCI) Synchronous Data.	
RA5/TX/CK	21	23	39	I/O	ST	RA5/TX/CK can also be selected as the USART (SCI) Asynchronous Transmit or USART (SCI) Synchronous Clock.	
						PORTB is a bi-directional I/O Port with software configurable weak pull-ups.	
RB0/CAP1	11	13	29	I/O	ST	RB0/CAP1 can also be the CAP1 input pin.	
RB1/CAP2	12	14	30	I/O	ST	RB1/CAP2 can also be the CAP2 input pin.	
RB2/PWM1	13	15	31	I/O	ST	RB2/PWM1 can also be the PWM1 output pin.	
RB3/PWM2	14	16	32	I/O	ST	RB3/PWM2 can also be the PWM2 output pin.	
RB4/TCLK12	15	17	33	I/O	ST	RB4/TCLK12 can also be the external clock input to	
RB5/TCLK3	16	18	34	I/O	ST	Timer1 and Timer2. RB5/TCLK3 can also be the external clock input to Timer3	
RB6	17	19	35	1/0	ST	Timero.	
RB7	18	20	36	1/0	ST		
						PORTC is a bi-directional I/O Port.	
RC0/AD0	2	3	19	I/O	TTL	This is also the lower half of the 16-bit wide system bus	
RC1/AD1	3	4	20	I/O	TTL	in microprocessor mode or extended microcontroller	
RC2/AD2	4	5	21	I/O	TTL	mode. In multiplexed system bus configuration, these	
RC3/AD3	5	6	22	I/O	TTL	pins are address output as well as data input or output.	
RC4/AD4	6	7	23	I/O	TTL		
RC5/AD5	7	8	24	I/O	TTL		
RC6/AD6	8	9	25	I/O	TTL		
RC7/AD7	9	10	26	I/O	TTL		

TABLE 3-1:PINOUT DESCRIPTIONS

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input.

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
10h 11h	PORTA DDRB	DDRC PORTC	TMR1 TMR2	PW1DCL PW2DCL
10h 11h 12h	PORTA DDRB PORTB	DDRC PORTC DDRD	TMR1 TMR2 TMR3L	PW1DCL PW2DCL PW1DCH
10h 11h 12h 13h	PORTA DDRB PORTB RCSTA	DDRC PORTC DDRD PORTD	TMR1 TMR2 TMR3L TMR3H	PW1DCL PW2DCL PW1DCH PW2DCH
10h 11h 12h 13h 14h	PORTA DDRB PORTB RCSTA RCREG	DDRC PORTC DDRD PORTD DDRE	TMR1 TMR2 TMR3L TMR3H PR1	PW1DCL PW2DCL PW1DCH PW2DCH CA2L
10h 11h 12h 13h 14h 15h	PORTA DDRB PORTB RCSTA RCREG TXSTA	DDRC PORTC DDRD PORTD DDRE PORTE	TMR1 TMR2 TMR3L TMR3H PR1 PR2	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H
10h 11h 12h 13h 14h 15h 16h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
10h 11h 12h 13h 14h 15h 16h 17h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose RAM	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose RAM	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2

FIGURE 6-5: PIC17C42 REGISTER FILE MAP

Note 1: SFR file locations 10h - 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.

FIGURE 6-6: PIC17CR42/42A/43/R43/44 REGISTER FILE MAP

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
11h	DDRB	PORTC	TMR2	PW2DCL
12h	PORTB	DDRD	TMR3L	PW1DCH
13h	RCSTA	PORTD	TMR3H	PW2DCH
14h	RCREG	DDRE	PR1	CA2L
15h	TXSTA	PORTE	PR2	CA2H
16h	TXREG	PIR	PR3L/CA1L	TCON1
17h	SPBRG	PIE	PR3H/CA1H	TCON2
18h	PRODL			
19h	PRODH			
1Ah				
1Fh			1	
20h	General Purpose RAM (2)	General Purpose RAM ⁽²⁾		
FFh				

- Note 1: SFR file locations 10h 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.
 - 2: General Purpose Registers (GPR) locations 20h - FFh and 120h - 1FFh are banked. All other GPRs ignore the Bank Select Register (BSR) bits.

9.2 PORTB and DDRB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is DDRB. A '1' in DDRB configures the corresponding port pin as an input. A '0' in the DDRB register configures the corresponding port pin as an output. Reading PORTB reads the status of the pins, whereas writing to it will write to the port latch.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the $\overline{\text{RBPU}}$ (PORTA<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are enabled on any reset.

PORTB also has an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB0 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB0) are compared with the value in the PORTB data latch. The "mismatch" outputs of RB7:RB0 are OR'ed together to generate the PORTB Interrupt Flag RBIF (PIR<7>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt by:

- a) Read-Write PORTB (such as; MOVPF PORTB, PORTB). This will end mismatch condition.
- b) Then, clear the RBIF bit.

A mismatch condition will continue to set the RBIF bit. Reading then writing PORTB will end the mismatch condition, and allow the RBIF bit to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on this port, allows easy interface to a key pad and make it possible for wake-up on key-depression. For an example, refer to AN552 in the *Embedded Control Handbook*.

The interrupt on change feature is recommended for wake-up on operations where PORTB is only used for the interrupt on change feature and key depression operation.

FIGURE 9-4: BLOCK DIAGRAM OF RB<7:4> AND RB<1:0> PORT PINS

10.0 OVERVIEW OF TIMER RESOURCES

The PIC17C4X has four timer modules. Each module can generate an interrupt to indicate that an event has occurred. These timers are called:

- Timer0 16-bit timer with programmable 8-bit
- prescaler
- Timer1 8-bit timer
- Timer2 8-bit timer
- Timer3 16-bit timer

For enhanced time-base functionality, two input Captures and two Pulse Width Modulation (PWM) outputs are possible. The PWMs use the TMR1 and TMR2 resources and the input Captures use the TMR3 resource.

10.1 <u>Timer0 Overview</u>

The Timer0 module is a simple 16-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock.

The Timer0 module also has a programmable prescaler option. The PS3:PS0 bits (T0STA<4:1>) determine the prescaler value. TMR0 can increment at the following rates: 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256.

When TImer0's clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

10.2 <u>Timer1 Overview</u>

The TImer0 module is an 8-bit timer/counter with an 8bit period register (PR1). When the TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the Timer2 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR1 register is the LSB and TMR2 is the MSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.3 <u>Timer2 Overview</u>

The TMR2 module is an 8-bit timer/counter with an 8bit period register (PR2). When the TMR2 value rolls over from the period match value to 0h, the TMR2IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the TMR1 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR2 register is the MSB and TMR1 is the LSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.4 <u>Timer3 Overview</u>

The TImer3 module is a 16-bit timer/counter with a 16bit period register. When the TMR3H:TMR3L value rolls over to 0h, the TMR3IF bit is set and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB5/TCLK3 pin.

When operating in the dual capture mode, the period registers become the second 16-bit capture register.

10.5 Role of the Timer/Counters

The timer modules are general purpose, but have dedicated resources associated with them. Tlmer1 and Timer2 are the time-bases for the two Pulse Width Modulation (PWM) outputs, while Timer3 is the timebase for the two input captures.

© 1996 Microchip Technology Inc.

11.3 Read/Write Consideration for TMR0

Although TMR0 is a 16-bit timer/counter, only 8-bits at a time can be read or written during a single instruction cycle. Care must be taken during any read or write.

11.3.1 READING 16-BIT VALUE

The problem in reading the entire 16-bit value is that after reading the low (or high) byte, its value may change from FFh to 00h.

Example 11-1 shows a 16-bit read. To ensure a proper read, interrupts must be disabled during this routine.

EXAMPLE 11-1: 16-BIT READ

MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMROL		;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0

11.3.2 WRITING A 16-BIT VALUE TO TMR0

Since writing to either TMR0L or TMR0H will effectively inhibit increment of that half of the TMR0 in the next cycle (following write), but not inhibit increment of the other half, the user must write to TMR0L first and TMR0H next in two consecutive instructions, as shown in Example 11-2. The interrupt must be disabled. Any write to either TMR0L or TMR0H clears the prescaler.

EXAMPLE 11-2: 16-BIT WRITE

BSF CPUSTA, GLINTD ; Disable interrupt MOVFP RAM_L, TMROL ; MOVFP RAM_H, TMROH ; BCF CPUSTA, GLINTD ; Done, enable interrupt

11.4 Prescaler Assignments

Timer0 has an 8-bit prescaler. The prescaler assignment is fully under software control; i.e., it can be changed "on the fly" during program execution. When changing the prescaler assignment, clearing the prescaler is recommended before changing assignment. The value of the prescaler is "unknown," and assigning a value that is less then the present value makes it difficult to take this unknown time into account.

FIGURE 11-4: TMR0 TIMING: WRITE HIGH OR LOW BYTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
05h, Unbanked	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	_	0000 000-	0000 000-
06h, Unbanked	CPUSTA	_	—	STKAV	GLINTD	TO	PD	-	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	T0CKIF	TOIF	TOIF INTE PEIE TOCKIE TOIE INTE					0000 0000	0000 0000
0Bh, Unbanked	TMR0L	TMR0 reg	TMR0 register; low byte								uuuu uuuu
0Ch, Unbanked	TMR0H	TMR0 reg	MR0 register; high byte xxxx xxxx uuuu uuuu								

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset. Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-8: ASYNCHRONOUS RECEPTION

TABLE 13-6:	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register									xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous reception. Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

14.4 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction. This clears the Watchdog Timer and postscaler (if enabled). The \overrightarrow{PD} bit is cleared and the \overrightarrow{TO} bit is set (in the CPUSTA register). In SLEEP mode, the oscillator driver is turned off. The I/O ports maintain their status (driving high, low, or hi-impedance).

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC). A WDT time-out RESET does not drive the $\overline{\text{MCLR}}/\text{VPP}$ pin low.

14.4.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- A POR reset
- External reset input on MCLR/VPP pin
- WDT Reset (if WDT was enabled)
- Interrupt from RA0/INT pin, RB port change, T0CKI interrupt, or some Peripheral Interrupts

The following peripheral interrupts can wake-up from SLEEP:

- · Capture1 interrupt
- Capture2 interrupt
- USART synchronous slave transmit interrupt
- · USART synchronous slave receive interrupt

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

Any reset event will cause a device reset. Any interrupt event is considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the CPUSTA register can be used to determine the cause of device reset. The

 \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GLINTD bit. If the GLINTD bit is set (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GLINTD bit is clear (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt vector address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GLINTD is set), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from sleep. The TO bit is set, and the PD bit is cleared.

The WDT is cleared when the device wake from SLEEP, regardless of the source of wake-up.

14.4.1.1 WAKE-UP DELAY

When the oscillator type is configured in XT or LF mode, the Oscillator Start-up Timer (OST) is activated on wake-up. The OST will keep the device in reset for 1024Tosc. This needs to be taken into account when considering the interrupt response time when coming out of SLEEP.

FIGURE 14-9: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4
OSC1						$\frown \frown \frown$	
CLKOUT(4)		/		lost(2)	\/ \/		
INT					I I		
(RA0/INT pin)	ı ı		: (1		<u>1 </u>
INTF flag			<u>`</u>		I		Interrupt Latency (2)
GLINTD bit	1 11		· ·		I		·
	i i		Processor		1		1 I
INSTRUCTION	FLOW		in SLEEP		1 1		I I I I
PC	C PC	PC+1		+2	× 0004	h	× <u>0005h</u>
Instruction (fetched	Inst (PC) = SLEEP	Inst (PC+1)			Inst (PC	+2)	
Instruction {	Inst (PC-1)	SLEEP			Inst (PC	+1)	Dummy Cycle
Note 1: XT or LF o 2: Tost = 102 3: When GLII 4: CLKOUT is	scillator mode assume 4Tosc (drawing not to s NTD = 0 processor jum s not available in these	d. scale). This delay will ops to interrupt routin osc modes, but show	not be there e after wake wn here for ti	for RC osc -up. If GLIN	c mode. ITD = 1, exec ence.	ution will	continue in line.

ANDWF AND WREG with f							
Synt	Syntax: [label] ANDWF f,d						
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$				
Ope	ration:	(WREG) .	AND. (f)	ightarrow (dest)	1		
Stat	us Affected:	Z					
Enco	oding:	0000	101d	ffff	ffff		
Description:		The conten register 'f'. in WREG. I back in reg	its of WR If 'd' is 0 f 'd' is 1 t ister 'f'.	EG are AN the result he result is	D'ed with is stored s stored		
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q	3	Q4		
	Decode	Read register 'f'	Exect	ute V de:	Vrite to stination		
<u>Exa</u>	<u>mple</u> :	ANDWF	REG, 1				
	Before Instru WREG REG	iction = 0x17 = 0xC2					
	After Instruct WREG REG	tion = 0x17 = 0x02					

BCF Bit Clear f						
Synt	Syntax: [label] BCF f,b					
$\begin{array}{ll} \mbox{Operands:} & 0 \leq f \leq 255 \\ & 0 \leq b \leq 7 \end{array}$						
Ope	ration:	$0 \rightarrow (f < b >$	-)			
Stat	us Affected:	None				
Enc	oding:	1000	1bbb	fff	f	ffff
Des	cription:	Bit 'b' in re	gister 'f' is	s clear	ed.	
Wor	ds:	1				
Cycl	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read register 'f'	Execu	ute	re	Write gister 'f'
<u>Exa</u>	<u>mple</u> :	BCF	FLAG_R	EG,	7	
Before Instruction FLAG_REG = 0xC7						
After Instruction FLAG_REG = 0x47						

BTFSS Bit Test, skip if Set							
Synt	ax:	[<i>label</i>] [BTFSS f,b)			
Ope	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Ope	ration:	skip if (f<	b>) = 1				
State	us Affected:	None					
Enco	oding:	1001	0bbb	ffff	ffff		
Desc	cription:	If bit 'b' in in instruction	register 'f' is is skipped.	s 1 then th	e next		
		If bit 'b' is f fetched du cution, is c cuted inste instruction	If bit 'b' is 1, then the next instruction fetched during the current instruction exe- cution, is discarded and an NOP is exe- cuted instead, making this a two-cycle instruction.				
Word	ds:	1					
Cycl	es:	1(2)					
QC	vcle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read register 'f'	Execu	ute	NOP		
lf ski	ip:						
	Q1	Q2	Q3		Q4		
	Forced NOP	NOP	Execu	ute	NOP		
<u>Exar</u>	<u>mple</u> :	HERE FALSE TRUE	BTFSS : :	FLAG,1			
Before Instruction PC = address (HERE)							
	After Instructi If FLAG<1 PC If FLAG<1 PC	on > = 0; = ac > = 1; = ac	ddress (FA ddress (TR	LSE) UE)			

BTG	Bit Toggl	e f			
Syntax:	[<i>label</i>] E	BTG f,b			
Operands:	0 ≤ f ≤ 25 0 ≤ b < 7	0 ≤ f ≤ 255 0 ≤ b < 7			
Operation:	$(\overline{f}) \to$	(f)			
Status Affected:	None				
Encoding:	0011	1bbb	ff	ff	ffff
Description:	n: Bit 'b' in data memory inverted.			ition 'f	' is
Words:	1				
Cycles:	1				
Q Cycle Activity	:				
Q1	Q2	Q3		(ຊ4
Decode	Read register 'f'	Execut	e	W regi	/rite ster 'f'
Example:	BTG	PORTC,	4		
Before Insti PORTC	ruction: = 0111	0101 [0x75	5]		
After Instru PORTC	ction: = 0110	0101 [0x6 5	5]		

CLRWDT Clear Watchdog Timer							
Synt	ax:	[label]	С	LRWD	Т		
Ope	rands:	None	None				
Ope	ration:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ postscaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$					
State	us Affected:	to, PD					
Enco	oding:	0000		0000	000	00	0100
Des	cription:	CLRWDT timer. It a WDT. Sta	inst also atus	truction resets bits TC	resets the pro and I	the v esca PD a	watchdog ler of the re set.
Words:		1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2		Q	3		Q4
	Decode	Read register ALUSTA		Exec	ute		NOP
<u>Exa</u>	<u>mple</u> :	CLRWDT					
	Before Instru WDT cou	ction Inter	=	?			
	After Instruct	ion					
	WDT cou	nter	=	0x00			
		stscaler	=	0			
			=	י 1			
	· -			•			

COMF Complement f					
Syntax:	[label]	COMF	f,d		
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5			
Operation:	$(\overline{f}) \rightarrow (d$	lest)			
Status Affected:	Z				
Encoding:	0001	001d	ffff	ffff	
Description: The contents of register 'f' are comple mented. If 'd' is 0 the result is stored i WREG. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	3	Q4	
Decode	Read register 'f'	Execu	ute re	Write gister 'f'	
Example:	COMF	REG	1,0		
Before Instruction REG1 = 0x13					
After Instruc REG1 WREG	tion = 0x13 = 0xEC				

RLN	Left f (no carry)						
Synt	ax:	[label]	RLNCF f,d				
Ope	rands:	0 ≤ f ≤ 2 d ∈ [0,2	0 ≤ f ≤ 255 d ∈ [0,1]				
Ope	ration:	$f < n > \rightarrow f < 7 > \rightarrow$	$f < n > \rightarrow d < n+1 >;$ $f < 7 > \rightarrow d < 0 >$				
Statu	us Affected:	None					
Enco	oding:	0010	001d ffff f	fff			
Deso	cription:	The contents of register 'f' are rotated one bit to the left. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is stored back in register 'f'.					
Word	ds:	1					
Cycl	es:	1					
QC	cle Activity:						
	Q1	Q2	Q3 Q4				
	Decode	Read register 'f'	Execute Write destina	to tion			
<u>Exar</u>	<u>mple</u> :	RLNCF	REG, 1				
	Before Instruction						
	C REG	= 0 = 1110	1011				
	After Instruct C	tion =					
	REG	= 1101	0111				

RRCF Rotate Right f through Carry						arry	
Syntax:		[label]	RRC	CF f,d			
Operand	ds:	0 ≤ f ≤ 2 d ∈ [0,1	55]				
Operatio	on:	$f < n > \rightarrow$ $f < 0 > \rightarrow$ $C \rightarrow d < 2$	d <n-1: C; 7></n-1: 	>;			
Status A	Affected:	С					
Encodin	g:	0001	100	d ff	ff	ffff	
Descript	tion:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.				rotated e Carry ced in blaced	
\A/= = -l= -							
vvoras:		1					
Cycles:	A	1					
Q Cycle	Activity:	00		00		04	
	Decode	Read register 'f	E	xecute	V de:	Vrite to stination	
Example	<u>ə</u> :	RRCF	RRCF REG1,0				
Bef	ore Instru	iction					
	REG1 C	= 1110 = 0	0110				
Afte	er Instruct REG1 WREG C	tion = 1110 = 0111 = 0	0110 0011				

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 17-9: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	_	_	65	ns	
121	TckRF	Clock out rise time and fall time (Master Mode)	_	10	35	ns	
122	TdtRF	Data out rise time and fall time	_	10	35	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 17-10: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 42 R42 42A 43 R43 44

21.3 44-Lead Plastic Leaded Chip Carrier (Square)

Package Group: Plastic Leaded Chip Carrier (PLCC)							
		Millimeters		Inches			
Symbol	Min	Max	Notes	Min	Мах	Notes	
Α	4.191	4.572		0.165	0.180		
A1	2.413	2.921		0.095	0.115		
D	17.399	17.653		0.685	0.695		
D1	16.510	16.663		0.650	0.656		
D2	15.494	16.002		0.610	0.630		
D3	12.700	12.700	Reference	0.500	0.500	Reference	
E	17.399	17.653		0.685	0.695		
E1	16.510	16.663		0.650	0.656		
E2	15.494	16.002		0.610	0.630		
E3	12.700	12.700	Reference	0.500	0.500	Reference	
N	44	44		44	44		
CP	_	0.102		_	0.004		
LT	0.203	0.381		0.008	0.015		

21 5	44-Lead Plastic Surface Mount ((TOFP 10x10 mm Body	(10/010 mm Lead Form)
Z 1.J	H-Leau I lastic Suilace Mount		

Package Group: Plastic TQFP							
		Millimeters		Inches			
Symbol	Min	Мах	Notes	Min	Мах	Notes	
A	1.00	1.20		0.039	0.047		
A1	0.05	0.15		0.002	0.006		
A2	0.95	1.05		0.037	0.041		
D	11.75	12.25		0.463	0.482		
D1	9.90	10.10		0.390	0.398		
E	11.75	12.25		0.463	0.482		
E1	9.90	10.10		0.390	0.398		
L	0.45	0.75		0.018	0.030		
е	0.80 BSC			0.031	0.031 BSC		
b	0.30	0.45		0.012	0.018		
b1	0.30	0.40		0.012	0.016		
С	0.09	0.20		0.004	0.008		
c1	0.09	0.16		0.004	0.006		
N	44	44		44	44		
Θ	0°	7°		0°	7 °		

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.

3: This outline conforms to JEDEC MS-026.

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSS and MCLR pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509	8-pin
PIC16C54, PIC16C54A, PIC16CR54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C61, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622, PIC16C710, PIC16C71, PIC16C711, PIC16F83, PIC16CR83, PIC16C84, PIC16F84A, PIC16CR84	18-pin 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73, PIC16C73A	28-pin
PIC16C64, PIC16CR64, PIC16C64A, PIC16C65, PIC16C65A, PIC16C74, PIC16C74A	40-pin
PIC17C42, PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin

TABLE E-1: PIN COMPATIBLE DEVICES

Figure 19-2:	External Clock Timing 184				
Figure 19-3:	CLKOUT and I/O Timing 185				
Figure 19-4:	Reset, Watchdog Timer.				
J	Oscillator Start-Up Timer, and				
	Power-I In Timer Timing 186				
Figure 19-5	Timer() Clock Timings 187				
Figure 19-5.	Timer1 Timer2 and Timer2 Clock				
Figure 19-0.	Timinan 197				
E: 40 T	107				
Figure 19-7:	Capture Timings				
Figure 19-8:	PWM Timings 188				
Figure 19-9:	USART Module: Synchronous				
	Transmission (Master/Slave) Timing 189				
Figure 19-10:	USART Module: Synchronous				
	Receive (Master/Slave) Timing 189				
Figure 19-11:	Memory Interface Write Timing				
0	(Not Supported in PIC17LC4X Devices) 190				
Figure 19-12:	Memory Interface Read Timing				
rigulo lo l2.	(Not Supported in PIC17I C4X Devices) 191				
Figure 20-1.	Typical RC Oscillator Frequency vs				
rigule 20-1.	Tomporoturo 102				
E					
Figure 20-2:	Typical RC Oscillator Frequency				
	vs. VDD				
Figure 20-3:	Typical RC Oscillator Frequency				
	vs. VDD194				
Figure 20-4:	Typical RC Oscillator Frequency				
	vs. VDD 195				
Figure 20-5:	Transconductance (gm) of LF Oscillator				
-	vs. VDD				
Figure 20-6:	Transconductance (gm) of XT Oscillator				
J	vs. VDD 196				
Figure 20-7	Typical Ipp vs. Frequency (External				
ga.o _o	Clock 25°C) 197				
Figure 20-8.	Maximum IDD vs. Frequency (External				
1 igule 20-0.	Clock 125° C to 40° C)				
	Clock 125 C to -40 C) 197				
Figure 20-9:	Disabled 25°C				
F : 00.40	Disabled 25°C 198				
Figure 20-10:	Maximum IPD vs. VDD watchdog				
	Disabled 198				
Figure 20-11:	Typical IPD vs. VDD Watchdog				
	Enabled 25°C 199				
Figure 20-12:	Maximum IPD vs. VDD Watchdog				
	Enabled 199				
Figure 20-13:	WDT Timer Time-Out Period vs. VDD 200				
Figure 20-14:	ЮН vs. VOH. VDD = 3V				
Figure 20-15:	IOH VS. VOH. VDD = 5V 201				
Figure 20-16	$ O \vee S \vee O = 3 \vee 201$				
Figure 20-17:	$101 \text{ vs. } \sqrt{01} \sqrt{00} = 5 \sqrt{01} 0$				
Figure 20-17.	VTH (Input Throshold Voltago) of				
Figure 20-16.					
E	1/O FILIS (TTL) VS. VDD				
Figure 20-19:	VTH, VIL of I/O PINS (Schmitt Trigger)				
F : 00.05	vs. vDD				
Figure 20-20:	VTH (Input Threshold Voltage) of OSC1				
	Input (In XT and LF Modes) vs. VDD 203				
LIST OF TAE					
Table 1-1:	PIC17CXX Family of Devices 6				
Table 3-1:	Pinout Descriptions12				
Table 4-1:	Time-Out in Various Situations				
Table 4-2:	STATUS Bits and Their Significance				

Mode Memory Access 30

Initialization Conditions For Special

Table 6-2:	EPROM Memory Access Time
	Ordering Suffix
Table 6-3:	Special Function Registers34
Table 7-1:	Interrupt - Table Write Interaction45
Table 8-1:	Performance Comparison49
Table 9-1:	PORTA Functions
Table 9-2:	Registers/Bits Associated with PORTA54
Table 9-3:	PORTB Functions
Table 9-4:	Registers/Bits Associated with PORTB57
Table 9-5.	PORTC FUNCTIONS
Table 9-0.	POPTD Functions
Table 9-7.	Registers/Bits Associated with PORTD 61
Table 9-0.	PORTE Functions 63
Table 9-10 [.]	Registers/Bits Associated with PORTE 63
Table 11-1	Registers/Bits Associated with Timer0 70
Table 12-1	Turning On 16-bit Timer 74
Table 12-2:	Summary of Timer1 and Timer2
	Registers
Table 12-3:	PWM Frequency vs. Resolution at
	25 MHz
Table 12-4:	Registers/Bits Associated with PWM77
Table 12-5:	Registers Associated with Capture79
Table 12-6:	Summary of TMR1, TMR2, and TMR3
	Registers81
Table 13-1:	Baud Rate Formula86
Table 13-2:	Registers Associated with Baud Rate
	Generator86
Table 13-3:	Baud Rates for Synchronous Mode87
Table 13-4:	Baud Rates for Asynchronous Mode88
Table 13-5:	Registers Associated with Asynchronous
	Transmission90
Table 13-6:	Registers Associated with Asynchronous
	Reception92
Table 13-7:	Registers Associated with Synchronous
	Master Transmission94
Table 13-8:	Registers Associated with Synchronous
T 40.0	Master Reception
Table 13-9:	Registers Associated with Synchronous
Table 40.40	Slave Transmission
Table 13-10:	Registers Associated with Synchronous
Table 14 1:	Slave Reception
Table 14-1.	Consister Selection for Coromia
	Posopators 101
Table 14-3	Capacitor Selection for Crystal
Table 14-5.	OscillatoR 101
Table 14-4	Registers/Bits Associated with the
	Watchdog Timer 104
Table 15-1:	Opcode Field Descriptions
Table 15-2:	PIC17CXX Instruction Set
Table 16-1:	development tools from microchip146
Table 17-1:	Cross Reference of Device Specs for
	Oscillator Configurations and Frequencies
	of Operation (Commercial Devices)148
Table 17-2:	External Clock Timing Requirements155
Table 17-3:	CLKOUT and I/O Timing Requirements156
Table 17-4:	Reset, Watchdog Timer,
	Oscillator Start-Up Timer and
	Power-Up Timer Requirements157
Table 17-5:	Timer0 Clock Requirements158
Table 17-6:	Timer1, Timer2, and Timer3 Clock
	Requirements158
Table 17-7:	Capture Requirements
Table 17-8:	PWM Requirements159

Table 4-3:

Table 4-4:

Table 5-1:

Table 6-1: