

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K × 16)
Program Memory Type	OTP
EEPROM Size	<u>.</u>
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-16-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

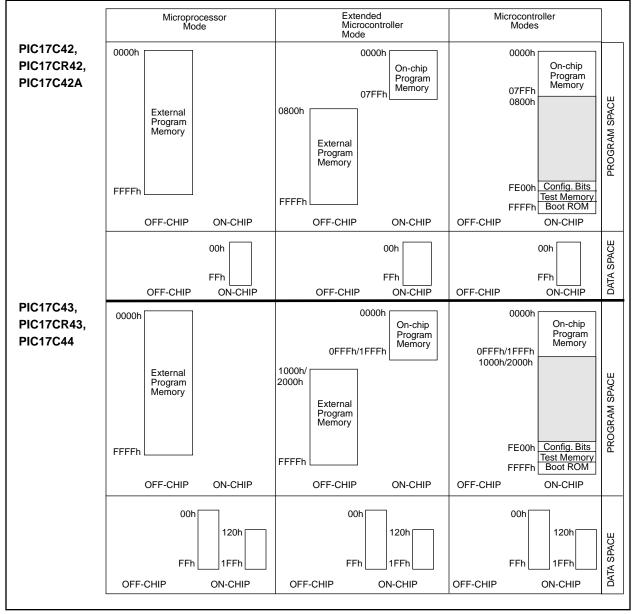
5.3 <u>Peripheral Interrupt Request Register</u> (PIR)

This register contains the individual flag bits for the peripheral interrupts.

Note: These bits will be set by the specified condition, even if the corresponding interrupt enable bit is cleared (interrupt disabled), or the GLINTD bit is set (all interrupts disabled). Before enabling an interrupt, the user may wish to clear the interrupt flag to ensure that the program does not immediately branch to the peripheral interrupt service routine.

FIGURE 5-4: PIR REGISTER (ADDRESS: 16h, BANK 1)

	0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 R-0
RBIF	
bit7	bit0 W = Writable bit -n = Value at POR reset
bit 7:	RBIF : PORTB Interrupt on Change Flag bit 1 = One of the PORTB inputs changed (Software must end the mismatch condition) 0 = None of the PORTB inputs have changed
bit 6:	TMR3IF: Timer3 Interrupt Flag bit If Capture1 is enabled (CA1/PR3 = 1) 1 = Timer3 overflowed 0 = Timer3 did not overflow
	If Capture1 is disabled (CA1/ $\overline{PR3}$ = 0) 1 = Timer3 value has rolled over to 0000h from equalling the period register (PR3H:PR3L) value 0 = Timer3 value has not rolled over to 0000h from equalling the period register (PR3H:PR3L) value
bit 5:	TMR2IF : Timer2 Interrupt Flag bit 1 = Timer2 value has rolled over to 0000h from equalling the period register (PR2) value 0 = Timer2 value has not rolled over to 0000h from equalling the period register (PR2) value
bit 4:	TMR1IF : Timer1 Interrupt Flag bit If Timer1 is in 8-bit mode (T16 = 0) 1 = Timer1 value has rolled over to 0000h from equalling the period register (PR) value 0 = Timer1 value has not rolled over to 0000h from equalling the period register (PR2) value
	If Timer1 is in 16-bit mode (T16 = 1) 1 = TMR1:TMR2 value has rolled over to 0000h from equalling the period register (PR1:PR2) value 0 = TMR1:TMR2 value has not rolled over to 0000h from equalling the period register (PR1:PR2) value
bit 3:	CA2IF : Capture2 Interrupt Flag bit 1 = Capture event occurred on RB1/CAP2 pin 0 = Capture event did not occur on RB1/CAP2 pin
bit 2:	CA1IF : Capture1 Interrupt Flag bit 1 = Capture event occurred on RB0/CAP1 pin 0 = Capture event did not occur on RB0/CAP1 pin
bit 1:	TXIF : USART Transmit Interrupt Flag bit 1 = Transmit buffer is empty 0 = Transmit buffer is full
bit 0:	RCIF: USART Receive Interrupt Flag bit 1 = Receive buffer is full 0 = Receive buffer is empty


TABLE 6-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM		
Microprocessor	No Access	No Access		
Microcontroller	Access	Access		
Extended Microcontroller	Access	No Access		
Protected Microcontroller	Access	Access		

The PIC17C4X can operate in modes where the program memory is off-chip. They are the microprocessor and extended microcontroller modes. The microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
1				
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	Bank 0 PORTA	Bank 1 ⁽¹⁾ DDRC	Bank 2 ⁽¹⁾ TMR1	Bank 3 ⁽¹⁾ PW1DCL
10h 11h				
	PORTA	DDRC	TMR1	PW1DCL
11h	PORTA DDRB	DDRC PORTC	TMR1 TMR2	PW1DCL PW2DCL
11h 12h	PORTA DDRB PORTB	DDRC PORTC DDRD	TMR1 TMR2 TMR3L	PW1DCL PW2DCL PW1DCH
11h 12h 13h	PORTA DDRB PORTB RCSTA	DDRC PORTC DDRD PORTD	TMR1 TMR2 TMR3L TMR3H	PW1DCL PW2DCL PW1DCH PW2DCH
11h 12h 13h 14h	PORTA DDRB PORTB RCSTA RCREG	DDRC PORTC DDRD PORTD DDRE	TMR1 TMR2 TMR3L TMR3H PR1	PW1DCL PW2DCL PW1DCH PW2DCH CA2L
11h 12h 13h 14h 15h	PORTA DDRB PORTB RCSTA RCREG TXSTA	DDRC PORTC DDRD PORTD DDRE PORTE	TMR1 TMR2 TMR3L TMR3H PR1 PR2	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H
11h 12h 13h 14h 15h 16h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1

FIGURE 6-5: PIC17C42 REGISTER FILE MAP

Note 1: SFR file locations 10h - 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.

FIGURE 6-6: PIC17CR42/42A/43/R43/44 REGISTER FILE MAP

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
11h	DDRB	PORTC	TMR2	PW2DCL
12h	PORTB	DDRD	TMR3L	PW1DCH
13h	RCSTA	PORTD	TMR3H	PW2DCH
14h	RCREG	DDRE	PR1	CA2L
15h	TXSTA	PORTE	PR2	CA2H
16h	TXREG	PIR	PR3L/CA1L	TCON1
17h	SPBRG	PIE	PR3H/CA1H	TCON2
18h	PRODL			
19h	PRODH			
1Ah				
1Fh			1	
20h	General	General		
	Purpose	Purpose		
	RAM ⁽²⁾	RAM (2)		
FFh				

- Note 1: SFR file locations 10h 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.
 - 2: General Purpose Registers (GPR) locations 20h - FFh and 120h - 1FFh are banked. All other GPRs ignore the Bank Select Register (BSR) bits.

TABLE 6-3:	SPECIAL FUNCTION REGISTERS
------------	----------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)
Unbank	ed	•				•			•		
00h	INDF0	Uses con	tents of FSI								
01h	FSR0	Indirect d	ata memory	address po	inter 0					XXXX XXXX	uuuu uuuu
02h	PCL	Low orde	r 8-bits of P	С						0000 0000	0000 0000
03h ⁽¹⁾	PCLATH	Holding re	egister for u	pper 8-bits o	of PC					0000 0000	uuuu uuuu
04h	ALUSTA	FS3	FS2	FS1	FS0	OV	Z	DC	С	1111 xxxx	1111 uuuu
05h	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	—	0000 000-	0000 000-
06h (2)	CPUSTA	_	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
08h	INDF1	Uses con	tents of FSI	R1 to addres	s data mem	ory (not a p	hysical regis	ster)			
09h	FSR1	Indirect d	ata memory	address po	inter 1		, ,			xxxx xxxx	uuuu uuuu
0Ah	WREG	Working r	egister							xxxx xxxx	uuuu uuuu
0Bh	TMR0L	TMR0 reg	gister; low b	yte						xxxx xxxx	uuuu uuuu
0Ch	TMR0H	TMR0 reg	gister; high I	oyte						xxxx xxxx	uuuu uuuu
0Dh	TBLPTRL	Low byte	of program	memory tab	le pointer					(4)	(4)
0Eh	TBLPTRH	High byte	of program	memory tal	ole pointer					(4)	(4)
0Fh	BSR	Bank sele	ect register							0000 0000	0000 0000
Bank 0		1								I	
10h	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
11h	DDRB	Data dire	ction registe	er for PORTE	3					1111 1111	1111 1111
12h	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu
13h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h	RCREG	Serial por	t receive re	gister						xxxx xxxx	uuuu uuuu
15h	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
16h	TXREG	Serial por	t transmit re	egister						xxxx xxxx	uuuu uuuu
17h	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu
Bank 1											
10h	DDRC	Data dire	ction registe	er for PORT	2					1111 1111	1111 1111
11h	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu
12h	DDRD	Data dire	ction registe	er for PORTI)					1111 1111	1111 1111
4.01-	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu
13h		Data dira	Data direction register for PORTE111								
13h 14h	DDRE	Data dire						-			
	DDRE PORTE	Data dire	_	_	_	_	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu
14h		RBIF	— TMR3IF	— TMR2IF	— TMR1IF	— CA2IF	RE2/WR CA1IF	RE1/OE TXIF	RE0/ALE RCIF	xxx 0000 0010	uuu 0000 0010

x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition. Shaded cells are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated Legend: Note 1:

from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. 2:

3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

4:

The following values are for both TBLPTRL and TBLPTRH: All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu)

5: The PRODL and PRODH registers are not implemented on the PIC17C42.

8.0 HARDWARE MULTIPLIER

All PIC17C4X devices except the PIC17C42, have an 8 x 8 hardware multiplier included in the ALU of the device. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit PRODuct register (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between the PIC17C42 and all other PIC17CXX devices, which have the single cycle hardware multiply.

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8×8 signed multiply. To account for the sign bits of the arguments, each argument's most significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 MULTIPLY ROUTINE

MOVFP	ARG1,	WREG					
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRO	DD	H:PROI	ЪГ

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVFP	ARG1, WREG	
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL
BTFSC	ARG2, SB	; Test Sign Bit
SUBWF	PRODH, F	; PRODH = PRODH
		; – ARG1
MOVFP	ARG2, WREG	
BTFSC	ARG1, SB	; Test Sign Bit
SUBWF	PRODH, F	; PRODH = PRODH
		; – ARG2

Routine	Device	Program Memory		Time		
Routine	Device	(Words)	Cycles (Max)	@ 25 MHz 11.04 μs 160 ns — 960 ns	@ 33 MHz	
8 x 8 unsigned	PIC17C42	13	69	11.04 μs	N/A	
	All other PIC17CXX devices	1	1	160 ns	121 ns	
8 x 8 signed	PIC17C42	_		_	N/A	
	All other PIC17CXX devices	6	6	960 ns	727 ns	
16 x 16 unsigned	PIC17C42	21	242	38.72 μs	N/A	
	All other PIC17CXX devices	24	24	3.84 μs	2.91 μs	
16 x 16 signed	PIC17C42	52	254	40.64 μs	N/A	
	All other PIC17CXX devices	36	36	5.76 μs	4.36 µs	

TABLE 8-1: PERFORMANCE COMPARISON

TABLE 9-7: PORTD FUNCTIONS

Name	Bit	Buffer Type	Function
RD0/AD8	bit0	TTL	Input/Output or system bus address/data pin.
RD1/AD9	bit1	TTL	Input/Output or system bus address/data pin.
RD2/AD10	bit2	TTL	Input/Output or system bus address/data pin.
RD3/AD11	bit3	TTL	Input/Output or system bus address/data pin.
RD4/AD12	bit4	TTL	Input/Output or system bus address/data pin.
RD5/AD13	bit5	TTL	Input/Output or system bus address/data pin.
RD6/AD14	bit6	TTL	Input/Output or system bus address/data pin.
RD7/AD15	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-8: REGISTERS/BITS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 1	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	XXXX XXXX	uuuu uuuu
12h, Bank 1	DDRD	Data direc	Data direction register for PORTD						1111 1111	1111 1111	

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

10.0 OVERVIEW OF TIMER RESOURCES

The PIC17C4X has four timer modules. Each module can generate an interrupt to indicate that an event has occurred. These timers are called:

- Timer0 16-bit timer with programmable 8-bit
- prescaler
- Timer1 8-bit timer
- Timer2 8-bit timer
- Timer3 16-bit timer

For enhanced time-base functionality, two input Captures and two Pulse Width Modulation (PWM) outputs are possible. The PWMs use the TMR1 and TMR2 resources and the input Captures use the TMR3 resource.

10.1 <u>Timer0 Overview</u>

The Timer0 module is a simple 16-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock.

The Timer0 module also has a programmable prescaler option. The PS3:PS0 bits (T0STA<4:1>) determine the prescaler value. TMR0 can increment at the following rates: 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256.

When TImer0's clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

10.2 <u>Timer1 Overview</u>

The TImer0 module is an 8-bit timer/counter with an 8bit period register (PR1). When the TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the Timer2 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR1 register is the LSB and TMR2 is the MSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.3 <u>Timer2 Overview</u>

The TMR2 module is an 8-bit timer/counter with an 8bit period register (PR2). When the TMR2 value rolls over from the period match value to 0h, the TMR2IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the TMR1 module.

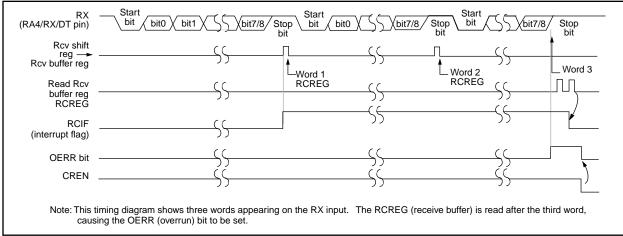
TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR2 register is the MSB and TMR1 is the LSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.4 <u>Timer3 Overview</u>

The TImer3 module is a 16-bit timer/counter with a 16bit period register. When the TMR3H:TMR3L value rolls over to 0h, the TMR3IF bit is set and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB5/TCLK3 pin.

When operating in the dual capture mode, the period registers become the second 16-bit capture register.

10.5 Role of the Timer/Counters


The timer modules are general purpose, but have dedicated resources associated with them. Tlmer1 and Timer2 are the time-bases for the two Pulse Width Modulation (PWM) outputs, while Timer3 is the timebase for the two input captures.

© 1996 Microchip Technology Inc.

 Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-8: ASYNCHRONOUS RECEPTION

TABLE 13-6:	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	k 0 SPBRG Baud rate generator register								xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous reception. Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

14.1 Configuration Bits

The PIC17CXX has up to seven configuration locations (Table 14-1). These locations can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. Any write to a configuration location, regardless of the data, will program that configuration bit. A TABLWT instruction is required to write to program memory locations. The configuration bits can be read by using the TABLRD instructions. Reading any configuration location between FE00h and FE07h will read the low byte of the configuration word (Figure 14-1) into the TABLATL register. The TABLATH register will be FFh. Reading a configuration location between FE08h and FE0Fh will read the high byte of the configuration word into the TABLATL register. The TABLATH register will be FFh.

Addresses FE00h thorough FE0Fh are only in the program memory space for microcontroller and code protected microcontroller modes. A device programmer will be able to read the configuration word in any processor mode. See programming specifications for more detail.

TABLE 14-1: CONFIGURATION LOCATIONS

Bit	Address
FOSC0	FE00h
FOSC1	FE01h
WDTPS0	FE02h
WDTPS1	FE03h
PM0	FE04h
PM1	FE06h
PM2 ⁽¹⁾	FE0Fh ⁽¹⁾

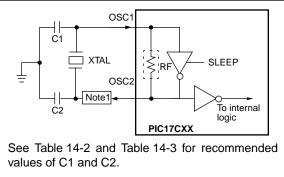
Note 1: This location does not exist on the PIC17C42.

Note:	When programming the desired configura-				
	tion locations, they must be programmed in				
	ascending	order.	Starting	with	address
	FE00h.				

14.2 Oscillator Configurations

14.2.1 OSCILLATOR TYPES

The PIC17CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:


- LF: Low Power Crystal
- XT: Crystal/Resonator
- EC: External Clock Input
- RC: Resistor/Capacitor

14.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT or LF modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 14-2). The PIC17CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications.

For frequencies above 20 MHz, it is common for the crystal to be an overtone mode crystal. Use of overtone mode crystals require a tank circuit to attenuate the gain at the fundamental frequency. Figure 14-3 shows an example of this.

FIGURE 14-2: CRYSTAL OR CERAMIC RESONATOR OPERATION (XT OR LF OSC CONFIGURATION)

Note 1: A series resistor may be required for AT strip cut crystals.

14.4 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction. This clears the Watchdog Timer and postscaler (if enabled). The \overrightarrow{PD} bit is cleared and the \overrightarrow{TO} bit is set (in the CPUSTA register). In SLEEP mode, the oscillator driver is turned off. The I/O ports maintain their status (driving high, low, or hi-impedance).

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC). A WDT time-out RESET does not drive the $\overline{\text{MCLR}}/\text{VPP}$ pin low.

14.4.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- A POR reset
- External reset input on MCLR/VPP pin
- WDT Reset (if WDT was enabled)
- Interrupt from RA0/INT pin, RB port change, T0CKI interrupt, or some Peripheral Interrupts

The following peripheral interrupts can wake-up from SLEEP:

- · Capture1 interrupt
- Capture2 interrupt
- · USART synchronous slave transmit interrupt
- · USART synchronous slave receive interrupt

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

Any reset event will cause a device reset. Any interrupt event is considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the CPUSTA register can be used to determine the cause of device reset. The

 \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GLINTD bit. If the GLINTD bit is set (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GLINTD bit is clear (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt vector address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GLINTD is set), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from sleep. The TO bit is set, and the PD bit is cleared.

The WDT is cleared when the device wake from SLEEP, regardless of the source of wake-up.

14.4.1.1 WAKE-UP DELAY

When the oscillator type is configured in XT or LF mode, the Oscillator Start-up Timer (OST) is activated on wake-up. The OST will keep the device in reset for 1024Tosc. This needs to be taken into account when considering the interrupt response time when coming out of SLEEP.

FIGURE 14-9: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4
OSC1						$\frown \frown \frown$	
CLKOUT(4)		/		Tost(2)	\/ \/		
INT					I I		
(RA0/INT pin)	ı ı		: (1		<u>1 </u>
INTF flag			<u>`</u>		I		Interrupt Latency (2)
GLINTD bit	1 11		· ·		I		·
	, , , , , , , , , , , , , , , , , , ,		Processor		1		1 I
INSTRUCTION	FLOW		in SLEEP		1 1		I I I I
PC	C PC	PC+1		+2	× 0004	h	× <u>0005h</u>
Instruction (fetched	Inst (PC) = SLEEP	Inst (PC+1)			Inst (PC	+2)	
Instruction {	Inst (PC-1)	SLEEP			Inst (PC	+1)	Dummy Cycle
Note 1: XT or LF oscillator mode assumed. 2: Tost = 1024Tosc (drawing not to scale). This delay will not be there for RC osc mode. 3: When GLINTD = 0 processor jumps to interrupt routine after wake-up. If GLINTD = 1, execution will continue in line. 4: CLKOUT is not available in these osc modes, but shown here for timing reference.							

NOTES:

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

17.2 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial

Operating voltage VDD range as described in Section 17.1 Parameter No. Sym Characteristic Min Typ† Max Units Conditions Input Low Voltage VIL I/O ports D030 with TTL buffer Vss 0.8 V D031 with Schmitt Trigger buffer Vss 0.2VDD V _ D032 MCLR, OSC1 (in EC and RC Vss 0.2Vdd V Note1 _ mode) D033 OSC1 (in XT, and LF mode) 0.5VDD V _ Input High Voltage Vн I/O ports V D040 2.0 with TTL buffer _ Vdd D041 with Schmitt Trigger buffer 0.8VDD Vdd V _ D042 MCLR 0.8Vdd Vdd Note1 V D043 OSC1 (XT, and LF mode) 0.5VDD V D050 Hysteresis of 0.15VDD* VHYS V _ _ Schmitt Trigger inputs Input Leakage Current (Notes 2, 3) D060 lı∟ I/O ports (except RA2, RA3) $Vss \leq VPIN \leq VDD$, ±1 μΑ I/O Pin at hi-impedance PORTB weak pull-ups disabled MCLR D061 <u>+2</u> μA VPIN = Vss or VPIN = VDD D062 **RA2, RA3** ±2 μΑ $Vss \leq VRA2$, $VRA3 \leq 12V$ D063 OSC1, TEST ±1 μΑ $Vss \le VPIN \le VDD$

D070 IPURB PORTB weak pull-up current 60 These parameters are characterized but not tested.

MCLR

D064

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only t and are not tested.

200

10

400

μA

μΑ

These parameters are for design guidance only and are not tested, nor characterized. t

Design guidance to attain the AC timing specifications. These loads are not tested. ++

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

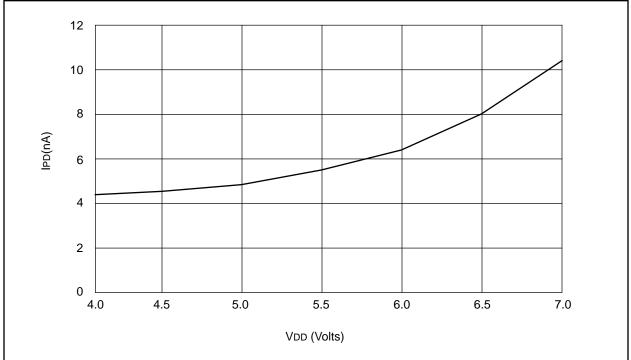
3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

VMCLR = VPP = 12V


(when not programming)

VPIN = Vss. $\overline{RBPU} = 0$

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

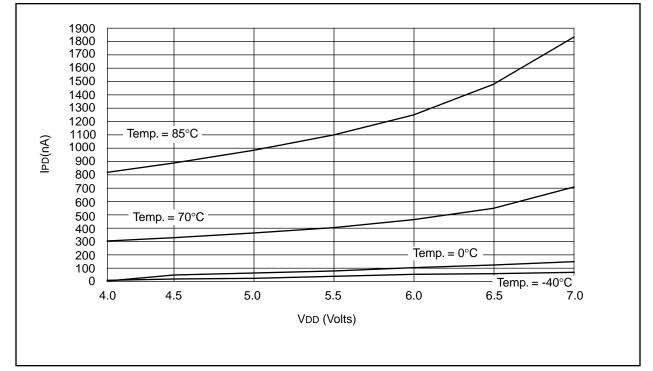


FIGURE 18-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-13: WDT TIMER TIME-OUT PERIOD vs. VDD

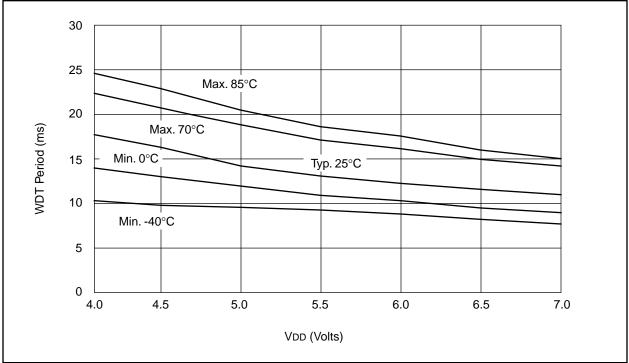
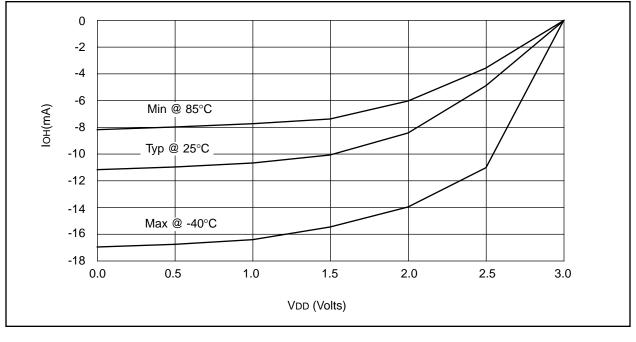



FIGURE 18-14: IOH vs. VOH, VDD = 3V

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

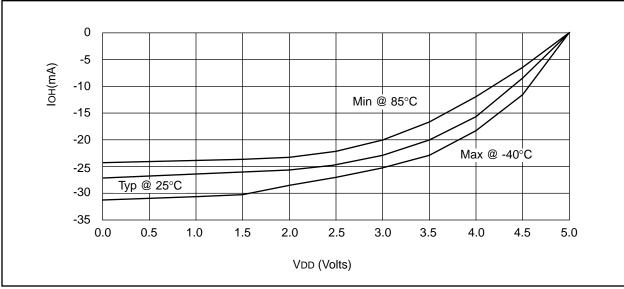
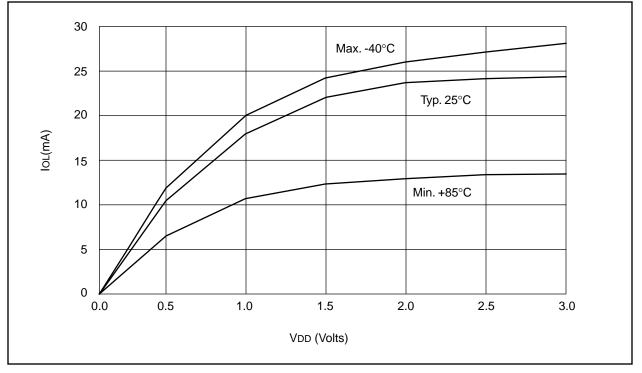



FIGURE 18-16: IOL vs. VOL, VDD = 3V

Applicable Devices 42 R42 42A 43 R43 44

19.3 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial) PIC17LCR42/42A/43/R43/44-08 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

			Operating	oltago \/r	0°C		≤ +70°C for commercial cribed in Section 19.1
Parameter	1			ollage vi	D lange a		
No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \le VDD \le 5.5V$
			Vss	_	0.2Vdd	V	$2.5V \le VDD \le 4.5V$
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V	
D032		MCLR, OSC1 (in EC and RC mode)	Vss	-	0.2Vdd	V	Note1
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	_	V	
		Input High Voltage					
	VIH	I/O ports					
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
			1 + 0.2VDD	-	Vdd	V	$2.5V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	V	
D042		MCLR	0.8Vdd	_	Vdd	V	Note1
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	_	V	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15Vdd *	-	-	V	
		Input Leakage Current (Notes 2, 3)					
D060	lı∟	I/O ports (except RA2, RA3)	_	_	±1	μA	Vss ≤ VPIN ≤ VDD, I/O Pin at hi-impedance PORTB weak pull-ups disabled
D061		MCLR	_	-	±2	μA	VPIN = Vss or VPIN = VDD
D062		RA2, RA3			±2	μΑ	$Vss \le Vra2$, $Vra3 \le 12V$
D063		OSC1, TEST (EC, RC modes)	-	_	±1	μΑ	$Vss \le VPIN \le VDD$
D063B		OSC1, TEST (XT, LF modes)	-	-	VPIN	μA	RF ≥ 1 MΩ, see Figure 14.2
D064		MCLR	-	-	10	μA	VMCLR = VPP = 12V (when not programming)
D070	IPURB	PORTB weak pull-up current	60	200	400	μA	VPIN = VSS, $\overline{\text{RBPU}} = 0$ 4.5V \leq VDD \leq 6.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as coming out of the pin.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Applicable Devices 42 R42 42A 43 R43 44

			Standard C Operating te			ns (ur	nless otherwise stated)
DC CHARA	CTERI	STICS		·	-40°C 0°C		≤ +85°C for industrial and ≤ +70°C for commercial
			Operating v	oltage Vi	DD range a	s desc	ribed in Section 19.1
Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Output Low Voltage					
D080	VOL	I/O ports (except RA2 and RA3)					IOL = VDD/1.250 mA
			_	_	0.1Vdd	V	$4.5V \le VDD \le 6.0V$
			_	_	0.1Vdd *	V	VDD = 2.5V
D081		with TTL buffer	-	_	0.4	V	IOL = 6 mA, VDD = 4.5V Note 6
D082		RA2 and RA3	_	_	3.0	V	IOL = 60.0 mA, VDD = 6.0V
D083		OSC2/CLKOUT	_	_	0.4	V	IOL = 1 mA, VDD = 4.5V
D084		(RC and EC osc modes)	_	_	0.1Vdd *	V	IOL = VDD/5 mA
							(PIC17LC43/LC44 only)
		Output High Voltage (Note 3)					
D090	Vон	I/O ports (except RA2 and RA3)					IOH = -VDD/2.500 mA
			0.9Vdd	_	-	V	$4.5V \le VDD \le 6.0V$
			0.9Vdd *	-	-	V	VDD = 2.5V
D091		with TTL buffer	2.4	_	_	V	IOH = -6.0 mA, VDD=4.5V Note 6
D092		RA2 and RA3	-	_	12	V	Pulled-up to externally applied voltage
D093		OSC2/CLKOUT	2.4	_	_	v	IOH = -5 mA, VDD = 4.5 V
D094		(RC and EC osc modes)	0.9Vdd *	_	_	V	IOH = -VDD/5 mA
		, , ,					(PIC17LC43/LC44 only)
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2/CLKOUT pin	_	_	25	pF	In EC or RC osc modes when OSC2 pin is outputting CLKOUT. external clock is used to drive OSC1.
D101	Сю	All I/O pins and OSC2 (in RC mode)	_	_	50	pF	
D102	CAD	System Interface Bus (PORTC, PORTD and PORTE)	_	_	50	pF	In Microprocessor or Extended Microcontroller mode

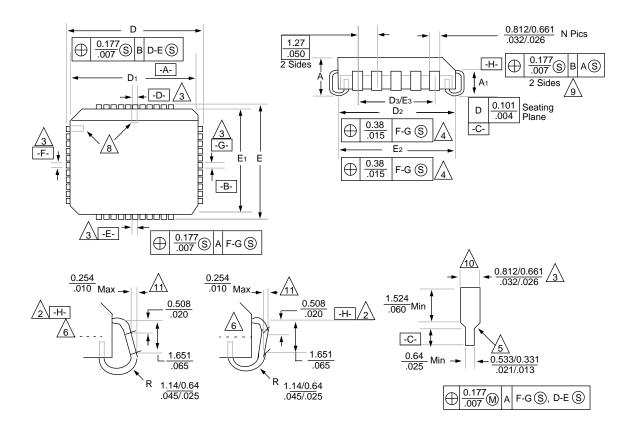
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

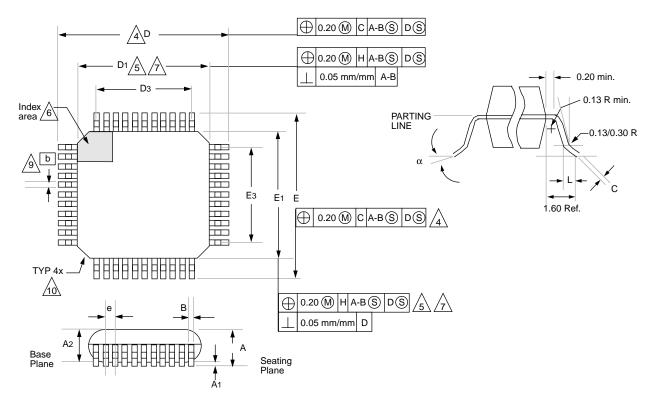
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.


6: For TTL buffers, the better of the two specifications may be used.

21.3 44-Lead Plastic Leaded Chip Carrier (Square)

	Package Group: Plastic Leaded Chip Carrier (PLCC)						
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
А	4.191	4.572		0.165	0.180		
A1	2.413	2.921		0.095	0.115		
D	17.399	17.653		0.685	0.695		
D1	16.510	16.663		0.650	0.656		
D2	15.494	16.002		0.610	0.630		
D3	12.700	12.700	Reference	0.500	0.500	Reference	
Е	17.399	17.653		0.685	0.695		
E1	16.510	16.663		0.650	0.656		
E2	15.494	16.002		0.610	0.630		
E3	12.700	12.700	Reference	0.500	0.500	Reference	
N	44	44		44	44		
CP	_	0.102		_	0.004		
LT	0.203	0.381		0.008	0.015		

	Package Group: Plastic MQFP							
		Millimeters						
Symbol	Min	Max	Notes	Min	Мах	Notes		
α	0°	7 °		0°	7 °			
А	2.000	2.350		0.078	0.093			
A1	0.050	0.250		0.002	0.010			
A2	1.950	2.100		0.768	0.083			
b	0.300	0.450	Typical	0.011	0.018	Typical		
С	0.150	0.180		0.006	0.007			
D	12.950	13.450		0.510	0.530			
D1	9.900	10.100		0.390	0.398			
D3	8.000	8.000	Reference	0.315	0.315	Reference		
E	12.950	13.450		0.510	0.530			
E1	9.900	10.100		0.390	0.398			
E3	8.000	8.000	Reference	0.315	0.315	Reference		
е	0.800	0.800		0.031	0.032			
L	0.730	1.030		0.028	0.041			
Ν	44	44		44	44			
CP	0.102	_		0.004	_			

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: microcontroller, protected microcontroller, extended microcontroller, and microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions have been removed.
- 4. 4 new instructions for transferring data between data memory and program memory. This can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replaces function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing the interrupt.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt on change feature works on all eight port pins.
- 16. TMR0 is 16-bit plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Configuration bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit) (PIC17C43 and PIC17C44 only).
- 19. Peripheral modules operate slightly differently.
- 20. Oscillator modes slightly redefined.
- 21. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 22. Addition of a test mode pin.
- 23. In-circuit serial programming is not implemented.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXX to PIC17CXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the interrupt service routine into its four vectors.
- 3. Replace:

4.

<pre>MOVF REG1, W with: MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or MOVFP REG1, REG2 ; Addr(REG2)<20h</pre>			
MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	with:		
MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	MOVFP	REG1,	WREG
MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	Replace:		
with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVWF	REG2	
or	with:		
	MOVPF	REG1,	REG2 ; Addr(REG1)<20h
MOVFP REG1, REG2 ; Addr(REG2)<20h	or		
	MOVFP	REG1,	REG2 ; Addr(REG2)<20h

Note: If REG1 and REG2 are both at addresses greater then 20h, two instructions are required. MOVFP REG1, WREG ; MOVPF WREG, REG2 ;

- 5. Ensure that all bit names and register names are updated to new data memory map location.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on reset.

To convert code from the PIC17C42 to all the other PIC17C4X devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1996} Microchip Technology Inc.