

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-16e-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 RESET

The PIC17CXX differentiates between various kinds of reset:

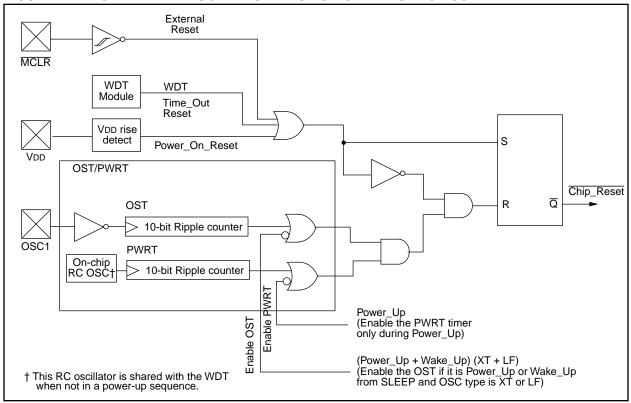
- Power-on Reset (POR)
- MCLR reset during normal operation
- WDT Reset (normal operation)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are forced to a "reset state" on Power-on Reset (POR), on $\overline{\text{MCLR}}$ or WDT Reset and on $\overline{\text{MCLR}}$ reset during SLEEP. They are not affected by a WDT Reset during SLEEP, since this reset is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 4-3. These bits are used in software to determine the nature of reset. See Table 4-4 for a full description of reset states of all registers.

Note: While the device is in a reset state, the internal phase clock is held in the Q1 state. Any processor mode that allows external execution will force the RE0/ALE pin as a low output and the RE1/OE and RE2/WR pins as high outputs.

A simplified block diagram of the on-chip reset circuit is shown in Figure 4-1.

4.1 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT), and Oscillator Start-up</u> <u>Timer (OST)</u>


4.1.1 POWER-ON RESET (POR)

The Power-on Reset circuit holds the device in reset until VDD is above the trip point (in the range of 1.4V -2.3V). The PIC17C42 does not produce an internal reset when VDD declines. All other devices will produce an internal reset for both rising and falling VDD. To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD is required. See Electrical Specifications for details.

4.1.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 96 ms time-out (nominal) on power-up. This occurs from rising edge of the POR signal and after the first rising edge of $\overline{\text{MCLR}}$ (detected high). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. In most cases the PWRT delay allows the VDD to rise to an acceptable level.

The power-up time delay will vary from chip to chip and to VDD and temperature. See DC parameters for details.

FIGURE 4-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

© 1996 Microchip Technology Inc.

TABLE 6-3:	SPECIAL FUNCTION REGISTERS
------------	----------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)
Unbank	ed	•				•			•		
00h	INDF0	Uses con	tents of FSI	R0 to addres	s data mem	ory (not a p	hysical regis	ster)			
01h	FSR0	Indirect d	ata memory	address po	inter 0					XXXX XXXX	uuuu uuuu
02h	PCL	Low orde	r 8-bits of P	С						0000 0000	0000 0000
03h ⁽¹⁾	PCLATH	Holding re	egister for u	pper 8-bits o	of PC					0000 0000	uuuu uuuu
04h	ALUSTA	FS3	FS2	FS1	FS0	OV	Z	DC	С	1111 xxxx	1111 uuuu
05h	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	—	0000 000-	0000 000-
06h (2)	CPUSTA	_	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
08h	INDF1	Uses con	tents of FSI	R1 to addres	s data mem	ory (not a p	hysical regis	ster)			
09h	FSR1	Indirect d	ata memory	address po	inter 1		, ,			xxxx xxxx	uuuu uuuu
0Ah	WREG	Working r	egister							xxxx xxxx	uuuu uuuu
0Bh	TMR0L	TMR0 reg	gister; low b	yte						xxxx xxxx	uuuu uuuu
0Ch	TMR0H	TMR0 reg	gister; high I	oyte						xxxx xxxx	uuuu uuuu
0Dh	TBLPTRL	Low byte	of program	memory tab	le pointer					(4)	(4)
0Eh	TBLPTRH	High byte	of program	memory tal	ole pointer					(4)	(4)
0Fh	BSR	Bank sele	ect register							0000 0000	0000 0000
Bank 0		1								I	
10h	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
11h	DDRB	Data dire	ction registe	er for PORTE	3					1111 1111	1111 1111
12h	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu
13h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h	RCREG	Serial por	t receive re	gister						xxxx xxxx	uuuu uuuu
15h	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	0000lu
16h	TXREG	Serial por	t transmit re	egister						xxxx xxxx	uuuu uuuu
17h	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu
Bank 1											
10h	DDRC	Data dire	ction registe	er for PORT	2					1111 1111	1111 1111
11h	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu
12h	DDRD	Data dire	ction registe	er for PORTI)					1111 1111	1111 1111
4.01-	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu
13h		Data dira	-			1		111	111		
13h 14h	DDRE	Data dire	Data direction register for PORTE								
	DDRE PORTE	Data dire	_	_	_	_	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu
14h		RBIF	— TMR3IF	— TMR2IF	— TMR1IF	— CA2IF	RE2/WR CA1IF	RE1/OE TXIF	RE0/ALE RCIF	xxx 0000 0010	uuu 0000 0010

x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition. Shaded cells are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated Legend: Note 1:

from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. 2:

3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

4:

The following values are for both TBLPTRL and TBLPTRH: All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu)

5: The PRODL and PRODH registers are not implemented on the PIC17C42.

6.2.2.3 TMR0 STATUS/CONTROL REGISTER (T0STA)

This register contains various control bits. Bit7 (INTEDG) is used to control the edge upon which a signal on the RA0/INT pin will set the RB0/INT interrupt flag. The other bits configure the Timer0 prescaler and clock source. (Figure 11-1).

FIGURE 6-9: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	U - 0	
INTEDG bit7	TOSE	TOCS	PS3	PS2	PS1	PS0	bit0	R = Readable bit W = Writable bit U = Unimplemented, reads as '0' -n = Value at POR reset
bit 7:	INTEDG: R This bit sele 1 = Rising e 0 = Falling e	ects the ed edge of RA	ge upon w 0/INT pin g	hich the in generates i	terrupt is d nterrupt	etected.		
bit 6:		ects the ed S = 0 edge of RA edge of RA	ge upon w 1/T0CKI pi	hich TMRC	nts TMR0 a	and/or gene		CKIF interrupt CKIF interrupt
bit 5:	TOCS : Time This bit sele 1 = Internal 0 = TOCKI	ects the clo instruction	ock source	for Timer0				
bit 4-1:	PS3:PS0: 7 These bits				ner0.			
	PS3:PS0	Pre	scale Valu	е				
	0000 001 0010 010 0100 0101 0110 0111 1xxx		1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256					
bit 0:	Unimplem	ented : Rea	id as '0'					

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	; FSR0 = 20	h
	BCF	ALUSTA, FS1	; Increment	FSR
	BSF	ALUSTA, FSO	; after acc	ess
	BCF	ALUSTA, C	; C = 0	
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	; Addr(FSR)	= 0
	CPFSEQ	FSR0	; FSRO = EN	ID_RAM+1?
	GOTO	LP	; NO, clear	next
	:		; YES, All	RAM is
	:		; cleared	

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

7.0 TABLE READS AND TABLE WRITES

The PIC17C4X has four instructions that allow the processor to move data from the data memory space to the program memory space, and vice versa. Since the program memory space is 16-bits wide and the data memory space is 8-bits wide, two operations are required to move 16-bit values to/from the data memory.

The TLWT t,f and TABLWT t,i,f instructions are used to write data from the data memory space to the program memory space. The TLRD t,f and TABLRD t,i,f instructions are used to write data from the program memory space to the data memory space.

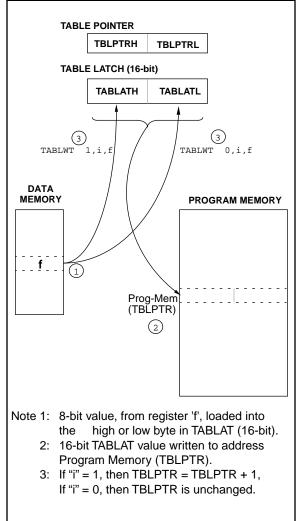
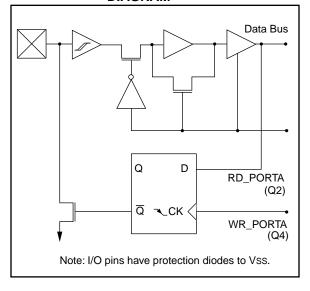
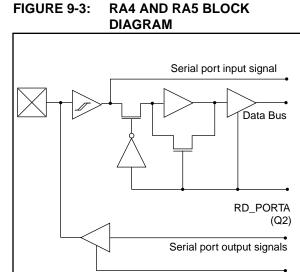

The program memory can be internal or external. For the program memory access to be external, the device needs to be operating in extended microcontroller or microprocessor mode.

Figure 7-1 through Figure 7-4 show the operation of these four instructions.




FIGURE 7-2: TABLWT INSTRUCTION OPERATION

© 1996 Microchip Technology Inc.

FIGURE 9-2: RA2 AND RA3 BLOCK DIAGRAM

 \overline{OE} = SPEN,SYNC,TXEN, \overline{CREN} , \overline{SREN} for RA4 \overline{OE} = SPEN (\overline{SYNC} +SYNC, \overline{CSRC}) for RA5

Note: I/O pins have protection diodes to VDD and VSS.

TABLE 9-1:	PO	RTA FUNCTI	ONS

.

_ _ _ _ _

Name	Bit0	Buffer Type	Function
RA0/INT	bit0	ST	Input or external interrupt input.
RA1/T0CKI	bit1	ST	Input or clock input to the TMR0 timer/counter, and/or an external interrupt input.
RA2	bit2	ST	Input/Output. Output is open drain type.
RA3	bit3	ST	Input/Output. Output is open drain type.
RA4/RX/DT	bit4	ST	Input or USART Asynchronous Receive or USART Synchronous Data.
RA5/TX/CK	bit5	ST	Input or USART Asynchronous Transmit or USART Synchronous Clock.
RBPU	bit7		Control bit for PORTB weak pull-ups.

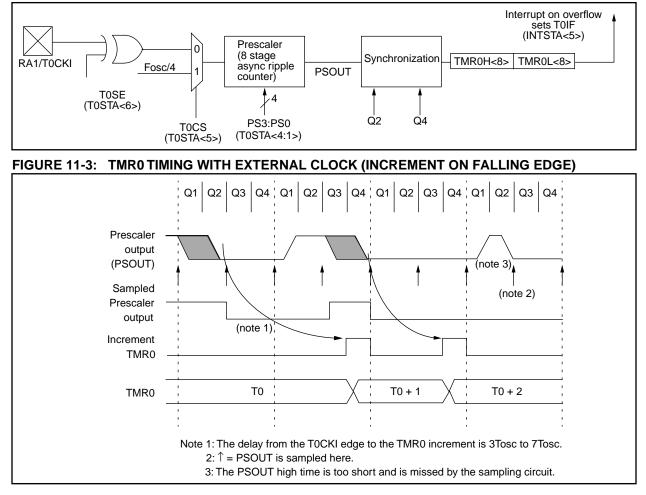
Legend: ST = Schmitt Trigger input.

TABLE 9-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
10h, Bank 0	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0	_	0000 000-	0000 000-
13h, Bank 0	RCSTA	SPEN	RC9	SREN	CREN	—	FERR	OERR	RC9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	0000lu

Legend: x = unknown, u = unchanged, - = unimplemented reads as '0'. Shaded cells are not used by PORTA. Note 1: Other (non power-up) resets include: external reset through \overline{MCLR} and the Watchdog Timer Reset.

11.1 <u>Timer0 Operation</u>


When the TOCS (TOSTA<5>) bit is set, TMR0 increments on the internal clock. When TOCS is clear, TMR0 increments on the external clock (RA1/T0CKI pin). The external clock edge can be configured in software. When the TOSE (TOSTA<6>) bit is set, the timer will increment on the rising edge of the RA1/T0CKI pin. When T0SE is clear, the timer will increment on the falling edge of the RA1/T0CKI pin. The prescaler can be programmed to introduce a prescale of 1:1 to 1:256. The timer increments from 0000h to FFFFh and rolls over to 0000h. On overflow, the TMR0 Interrupt Flag bit (T0IF) is set. The TMR0 interrupt can be masked by clearing the corresponding TMR0 Interrupt Enable bit (T0IE). The TMR0 Interrupt Flag bit (T0IF) is automatically cleared when vectoring to the TMR0 interrupt vector.

11.2 Using Timer0 with External Clock

When the external clock input is used for Timer0, it is synchronized with the internal phase clocks. Figure 11-3 shows the synchronization of the external clock. This synchronization is done after the prescaler. The output of the prescaler (PSOUT) is sampled twice in every instruction cycle to detect a rising or a falling edge. The timing requirements for the external clock are detailed in the electrical specification section for the desired device.

11.2.1 DELAY FROM EXTERNAL CLOCK EDGE

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time TMR0 is actually incremented. Figure 11-3 shows that this delay is between 3Tosc and 7Tosc. Thus, for example, measuring the interval between two edges (e.g. period) will be accurate within \pm 4Tosc (\pm 121 ns @ 33 MHz).

FIGURE 11-2: TIMER0 MODULE BLOCK DIAGRAM

ADD	WFC	ADD WRE	G and C	Carry bit	to f
Synt	ax:	[<i>label</i>] A[DDWFC	f,d	
Ope	rands:	0 ≤ f ≤ 255 d ∈ [0,1]	5		
Ope	ration:	(WREG) +	- (f) + C -	\rightarrow (dest)	
Statu	us Affected:	OV, C, DC	, Z		
Enco	oding:	0001	000d	ffff	ffff
Desc	cription:	Add WREG memory loc placed in W placed in da	ation 'f'. If REG. If 'c	'd' is 0, the	e result is result is
Word	ds:	1			
Cycl	es:	1			
QC	cle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read register 'f'	Execut		rite to tination
<u>Exar</u>	<u>mple</u> :	ADDWFC	REG	0	
	Before Instru Carry bit REG WREG After Instruct Carry bit REG WREG	= 1 = 0x02 = 0x4D			

ANDLW	And Lite	ral with WRI	EG
Syntax:	[label] A	ANDLW k	
Operands:	$0 \le k \le 25$	55	
Operation:	(WREG)	.AND. (k) $ ightarrow$	(WREG)
Status Affected:	Z		
Encoding:	1011	0101 kk	kk kkkk
Description:			re AND'ed with sult is placed in
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Execute	Write to WREG
Example:	ANDLW	0x5F	
Before Instru WREG	uction = 0xA3		
After Instruc WREG	tion = 0x03		

ANDWF	AND WRE	EG with	f	
Syntax:	[<i>label</i>] A	NDWF	f,d	
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5		
Operation:	(WREG) .	AND. (f)	\rightarrow (dest))
Status Affected:	Z			
Encoding:	0000	101d	ffff	ffff
Description:	The conten register 'f'. in WREG. I back in reg	lf 'd' is 0 f 'd' is 1 t	the result	is stored
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4
Decode	Read register 'f'	Execu		Vrite to stination
Example:	ANDWF	REG, 1		
Before Instru WREG REG After Instruct WREG	= 0x17 = 0xC2			

BCF		Bit Clear	f					
Syntax:		[label] E	BCF f,I	С				
Operand	s:	$0 \le f \le 25$ $0 \le b \le 7$	$0 \le f \le 255$ $0 \le b \le 7$					
Operatio	n:	$0 \rightarrow (f < b >$	-)					
Status A	ffected:	None						
Encoding	g:	1000	1bbb	fff	f	ffff		
Descripti	ion:	Bit 'b' in re	gister 'f' is	clear	ed.			
Words:		1						
Cycles:		1						
Q Cycle	Activity:							
	Q1	Q2	Q3		C			
D	ecode	Read register 'f'	Execu	ute		Write gister 'f'		
<u>Example</u>	:	BCF	FLAG_R	EG,	7			
	r Instruct	EG = 0xC7						
		20 - 0,47						

DCF	SNZ	Decreme	ent f, skij	o if no	ot O				
Synt	tax:	[<i>label</i>] D	CFSNZ	f,d					
Operands:		0 ≤ f ≤ 25 d ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$						
Ope	ration:	.,	(f) $-1 \rightarrow$ (dest); skip if not 0						
Stat	us Affected:	None							
Enc	oding:	0010	011d	ffff	ffff				
Des	cription:	mented. If WREG. If back in reg If the resul which is al and an NC	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'. If the result is not 0, the next instruction, which is already fetched, is discarded, and an NOP is executed instead mak- ing it a two-cycle instruction.						
Wor	ds:	1							
Cycl	es:	1(2)							
QC	ycle Activity:								
	Q1	Q2	Q2 Q3		Q4				
	Decode	Read register 'f'	Execu	ıte	Write to destination				
lf sk	ip:								
	Q1	Q2	Q3		Q4				
	Forced NOP	NOP	Execu	ute	NOP				
Example:		HERE ZERO NZERO	DCFSNZ : :	TEMP	P, 1				
	Before Instru TEMP_V		?						
	After Instruct TEMP_V If TEMP_ PC If TEMP_ PC	ALUE = VALUE = =	0; Addre: 0;	_VALU ss (ze ss (nz	RO)				

Syntax: Operand	de.	[label]	0010					
Operand	18.	0 < k < 8191						
			•					
Operatio	on:	k<12:8> -	$\begin{array}{l} k \rightarrow PC < 12:0 >;\\ k < 12:8 > \rightarrow PCLATH < 4:0 >,\\ PC < 15:13 > \rightarrow PCLATH < 7:5 > \end{array}$					
Status A	Affected:	None						
Encodin	ig:	110k	kkkk	kkkk	kkkl			
Description:		The thirtee loaded into upper eigh PCLATH.	anywhere within an 8K page boundar. The thirteen bit immediate value is loaded into PC bits <12:0>. Then the upper eight bits of PC are loaded into PCLATH. GOTO is always a two-cycle instruction.					
Words:		1						
Cycles:		2						
Q Cycle	Activity:							
	Q1	Q2	Q3	5	Q4			
E	Decode	Read literal 'k'<7:0>	Execu	ute	NOP			
For	ced NOP	NOP	Execu	ute	NOP			
Example	<u>e</u> :	GOTO THE	RE					
Afte	er Instruct	tion						
	PC =	Address (TH	HERE)					

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (fuzzyTECH[®]–MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLABTM Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

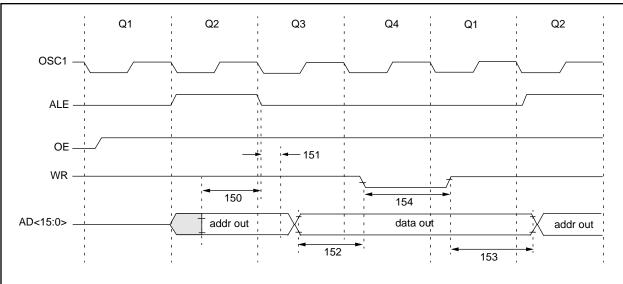
16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.


The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-11: MEMORY INTERFACE WRITE TIMING

TABLE 17-11: MEMORY INTERFACE WRITE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 30			ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	0	_	_	ns	
152	TadV2wrL	Data out valid to $\overline{WR}\downarrow$ (data setup time)	0.25Tcy - 40	—	—	ns	
153	TwrH2adl	WR↑ to data out invalid (data hold time)	_	0.25Tcy §	_	ns	
154	TwrL	WR pulse width	_	0.25Tcy §	_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification is guaranteed by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-13: WDT TIMER TIME-OUT PERIOD vs. VDD

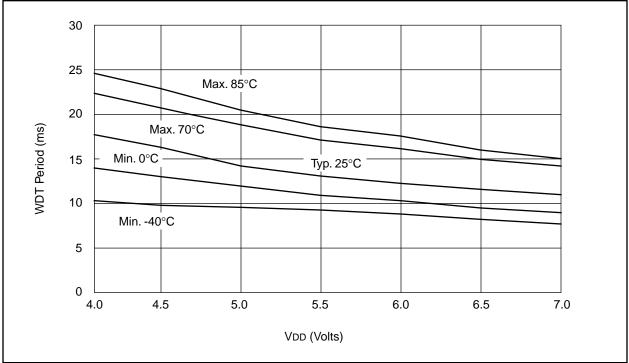
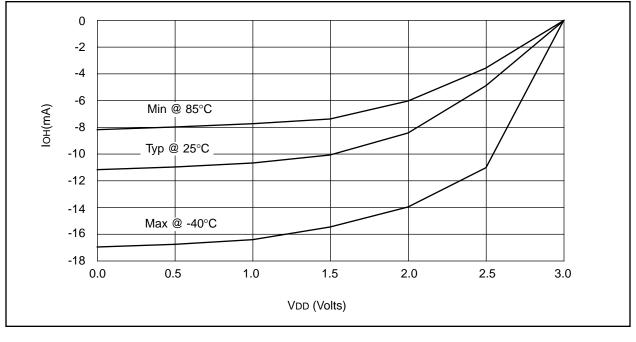
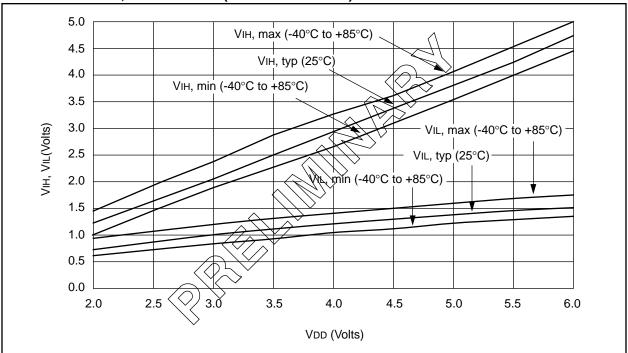
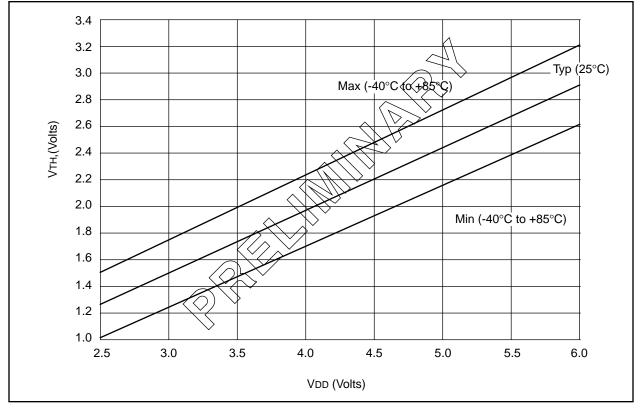




FIGURE 18-14: IOH vs. VOH, VDD = 3V



Applicable Devices 42 R42 42A 43 R43 44

Applicable Devices 42 R42 42A 43 R43 44

19.3 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial) PIC17LCR42/42A/43/R43/44-08 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

$0^{\circ}C = \leq TA \leq +70^{\circ}C$ for commercial Operating voltage VDD range as described in Section 19.1							
Parameter	1			ollage vi	D lange a		
No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \le VDD \le 5.5V$
			Vss	_	0.2Vdd	V	$2.5V \le VDD \le 4.5V$
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V	
D032		MCLR, OSC1 (in EC and RC mode)	Vss	-	0.2Vdd	V	Note1
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	_	V	
		Input High Voltage					
	VIH	I/O ports					
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
			1 + 0.2VDD	-	Vdd	V	$2.5V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	V	
D042		MCLR	0.8Vdd	_	Vdd	V	Note1
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	_	V	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15Vdd *	-	-	V	
		Input Leakage Current (Notes 2, 3)					
D060	lı∟	I/O ports (except RA2, RA3)	_	_	±1	μA	Vss ≤ VPIN ≤ VDD, I/O Pin at hi-impedance PORTB weak pull-ups disabled
D061		MCLR	_	-	±2	μA	VPIN = Vss or VPIN = VDD
D062		RA2, RA3			±2	μΑ	$Vss \le Vra2$, $Vra3 \le 12V$
D063		OSC1, TEST (EC, RC modes)	-	_	±1	μΑ	$Vss \le VPIN \le VDD$
D063B		OSC1, TEST (XT, LF modes)	-	-	VPIN	μA	RF ≥ 1 MΩ, see Figure 14.2
D064		MCLR	-	-	10	μA	VMCLR = VPP = 12V (when not programming)
D070	IPURB	PORTB weak pull-up current	60	200	400	μA	VPIN = VSS, $\overline{\text{RBPU}} = 0$ 4.5V \leq VDD \leq 6.0V

These parameters are characterized but not tested.

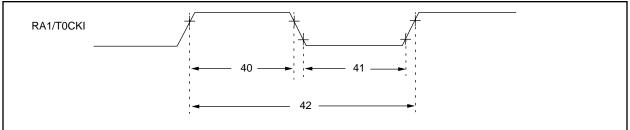
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as coming out of the pin.

3: Negative current is defined as coming out of the pin.


4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

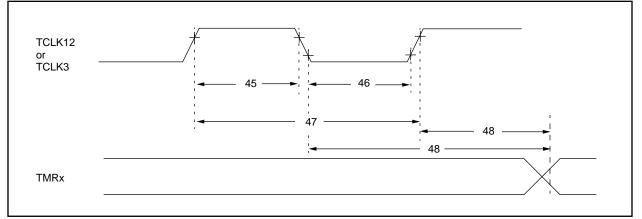
5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-5: TIMER0 CLOCK TIMINGS

TABLE 19-5: TIMER0 CLOCK REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20 §	-	—	ns	
			With Prescaler	10*	-	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
42	Tt0P	T0CKI Period		Greater of: 20 ns or <u>Tcy + 40 §</u> N	-	_		N = prescale value (1, 2, 4,, 256)

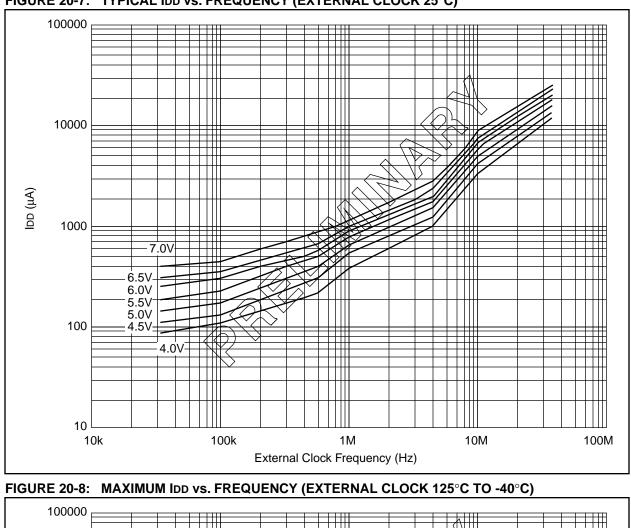
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

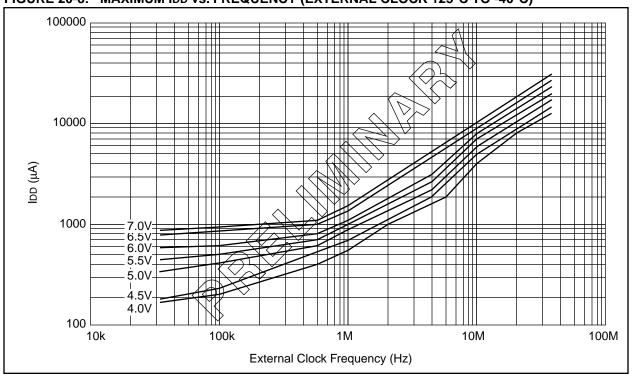
§ This specification ensured by design.

FIGURE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

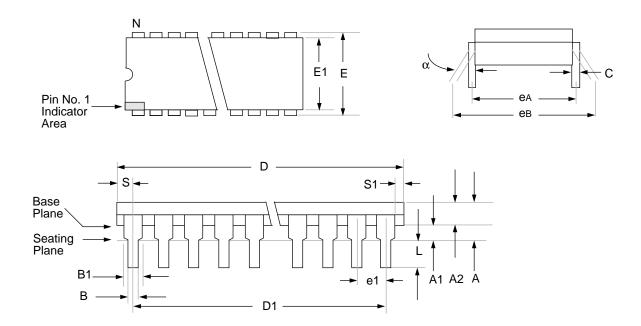
TABLE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS


Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5TCY + 20 §	-	—	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5Tcy + 20 §	_	—	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N		_		N = prescale value (1, 2, 4, 8)
48	TckE2tmrl	Delay from selected External Clock Edge to Timer increment	2Tosc §		6Tosc §		

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.



21.2 <u>40-Lead Plastic Dual In-line (600 mil)</u>

Package Group: Plastic Dual In-Line (PLA)									
	Millimeters			Millimeters				Inches	
Symbol	Min	Мах	Notes	Min	Max	Notes			
α	0°	10°		0°	10°				
Α	_	5.080		_	0.200				
A1	0.381	_		0.015	_				
A2	3.175	4.064		0.125	0.160				
В	0.355	0.559		0.014	0.022				
B1	1.270	1.778	Typical	0.050	0.070	Typical			
С	0.203	0.381	Typical	0.008	0.015	Typical			
D	51.181	52.197		2.015	2.055				
D1	48.260	48.260	Reference	1.900	1.900	Reference			
E	15.240	15.875		0.600	0.625				
E1	13.462	13.970		0.530	0.550				
e1	2.489	2.591	Typical	0.098	0.102	Typical			
eA	15.240	15.240	Reference	0.600	0.600	Reference			
eB	15.240	17.272		0.600	0.680				
L	2.921	3.683		0.115	0.145				
N	40	40		40	40				
S	1.270	_		0.050	_				
S1	0.508	-		0.020	_				

INDEX

Α

ADDLW	112 113
	-
ALU STATUS Register (ALUSTA)	
ALUSTA	, ,
ALUSTA Register	
ANDLW	113
ANDWF	
Application Notes	
AN552	55
Assembler	144
Asynchronous Master Transmission	
Asynchronous Transmitter	89

В

Bank Select Register (BSR) 42
Banking
Baud Rate Formula
Baud Rate Generator (BRG)86
Baud Rates
Asynchronous Mode88
Synchronous Mode87
BCF
Bit Manipulation
Block Diagrams
On-chip Reset Circuit15
PIC17C4210
PORTD60
PORTE
PWM75
RA0 and RA153
RA2 and RA354
RA4 and RA554
RB3:RB2 Port Pins56
RB7:RB4 and RB1:RB0 Port Pins55
RC7:RC0 Port Pins 58
Timer3 with One Capture and One Period Register 78
TMR1 and TMR2 in 16-bit Timer/Counter Mode74
TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 73
TMR3 with Two Capture Registers79
WDT
BORROW9
BRG86
Brown-out Protection
BSF
BSR
BSR Operation
BTFSC
BTFSS
BTG

С

72
71
71

CA1IE	23
CA1IF	24
CA10VF	72
CA2ED0	71
CA2ED1	71
CA2H	20, 35
CA2IE	
CA2IF	24, 78
CA2L	
CA2OVF	
Calculating Baud Rate Error	86
CALL	
Capacitor Selection	
Ceramic Resonators	101
Crystal Oscillator	101
Capture	71, 78
Capture Sequence to Read Example	78
Capture1	
Mode	71
Overflow	72
Capture2	
. Mode	71
Overflow	72
Carry (C)	9
Ceramic Resonators	
Circular Buffer	
Clearing the Prescaler	103
Clock/Instruction Cycle (Figure)	14
Clocking Scheme/Instruction Cycle (Section)	14
CLRF	117
CLRWDT	118
Code Protection	99, 106
COMF	118
Configuration	
Bits	100
Locations	100
Oscillator	100
Word	99
CPFSEQ	119
CPFSGT	119
CPFSLT	
CPU STATUS Register (CPUSTA)	37
CPUSTA	34, 37, 105
CREN	
Crystal Operation, Overtone Crystals	101
Crystal or Ceramic Resonator Operation	
Crystal Oscillator	
CSRC	83

D

Data Memory	
GPR	
Indirect Addressing	
Organization	
SFR	
Transfer to Program Memory	43
DAW	
DC	9, 36
DDRB	19, 34, 55
DDRC	
DDRD	19, 34, 60
DDRE	
DECF	
DECFSNZ	
DECFSZ	

 $\ensuremath{\textcircled{}^{\odot}}$ 1996 Microchip Technology Inc.

PIC17C4X Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

PART NO. – XX X /XX XXX		Examples
Pattern:	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices	a) PIC17C42 – 16/P Commercial Temp., PDIP package,
Package:	P = PDIP JW = Windowed CERDIP P = PDIP (600 mil) PQ = MQFP PT = TQFP L = PLCC	16 MHZ, normal VDD limits b) PIC17LC44 – 08/PT Commercial Temp., TQFP package,
Temperature Range:	$\begin{array}{rcl} - & = 0^{\circ}C \text{ to } +70^{\circ}C \\ I & = -40^{\circ}C \text{ to } +85^{\circ}C \end{array}$	8MHz, extended VDD limits
Frequency Range:	08 = 8 MHz 16 = 16 MHz 25 = 25 Mhz 33 = 33 Mhz	c) PIC17C43 – 25I/P Industrial Temp., PDIP package,
Device:	PIC17C44 : Standard Vdd range PIC17C44T : (Tape and Reel) PIC17LC44 : Extended Vdd range	25 MHz, normal VDD limits

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

^{© 1996} Microchip Technology Inc.