

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-16i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Overview	5
2.0	PIC17C4X Device Varieties	7
3.0	Architectural Overview	9
4.0	Reset	15
5.0	Interrupts	21
6.0	Memory Organization	29
7.0	Table Reads and Table Writes	43
8.0	Hardware Multiplier	49
9.0	I/O Ports	53
10.0	Overview of Timer Resources	
11.0	Timer0	
12.0	Timer1, Timer2, Timer3, PWMs and Captures	
13.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	83
14.0	Special Features of the CPU	99
15.0	Instruction Set Summary	107
16.0	Development Support	143
17.0	PIC17C42 Electrical Characteristics	
18.0	PIC17C42 DC and AC Characteristics	
19.0	PIC17CR42/42A/43/R43/44 Electrical Characteristics	175
20.0	PIC17CR42/42A/43/R43/44 DC and AC Characteristics	
21.0	Packaging Information	205
111-	dix A: Modifications	
	dix B: Compatibility	
Appen	dix C: What's New	212
Appen	dix D: What's Changed	212
	dix E: PIC16/17 Microcontrollers	
	dix F: Errata for PIC17C42 Silicon	
PIC17	C4X Product Identification System	237

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC17C43, PIC17C43, PIC17C44 are described in this section.

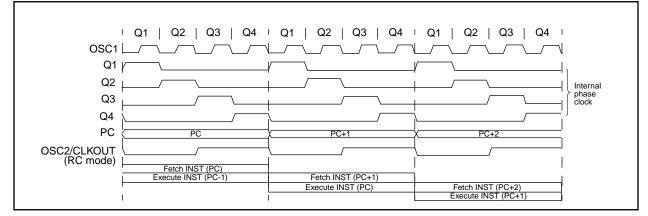
Applicable Devices 42 R42 42A 43 R43 44

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error from the previous version of the PIC17C4X Data Sheet (Literature Number DS30412B), please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

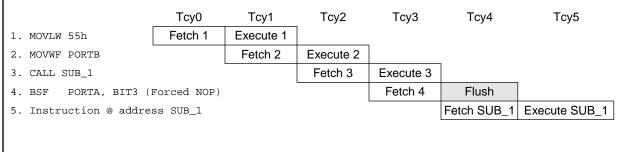
To assist you in the use of this document, Appendix C contains a list of new information in this data sheet, while Appendix D contains information that has changed

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g.GOTO) then two cycles are required to complete the instruction (Example 3-2).


A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

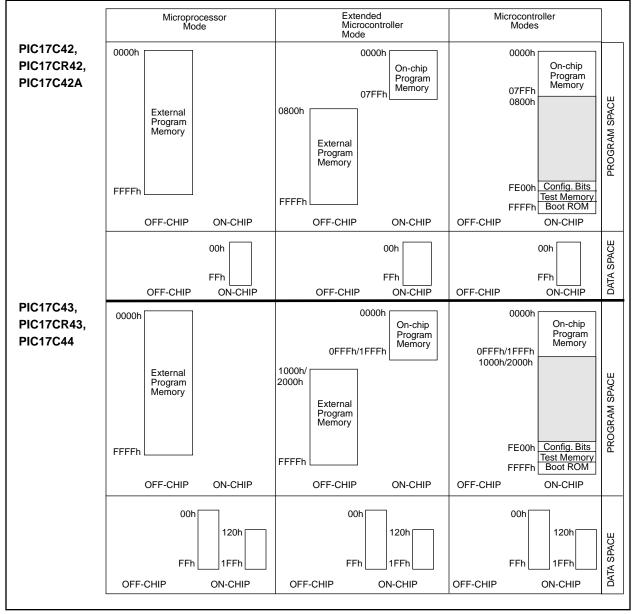
5.3 <u>Peripheral Interrupt Request Register</u> (PIR)

This register contains the individual flag bits for the peripheral interrupts.

Note: These bits will be set by the specified condition, even if the corresponding interrupt enable bit is cleared (interrupt disabled), or the GLINTD bit is set (all interrupts disabled). Before enabling an interrupt, the user may wish to clear the interrupt flag to ensure that the program does not immediately branch to the peripheral interrupt service routine.

FIGURE 5-4: PIR REGISTER (ADDRESS: 16h, BANK 1)

	0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 R-0								
RBIF									
bit7	bit0 W = Writable bit -n = Value at POR reset								
bit 7:	RBIF : PORTB Interrupt on Change Flag bit 1 = One of the PORTB inputs changed (Software must end the mismatch condition) 0 = None of the PORTB inputs have changed								
bit 6:	TMR3IF: Timer3 Interrupt Flag bit If Capture1 is enabled (CA1/PR3 = 1) 1 = Timer3 overflowed 0 = Timer3 did not overflow								
	If Capture1 is disabled (CA1/ $\overline{PR3}$ = 0) 1 = Timer3 value has rolled over to 0000h from equalling the period register (PR3H:PR3L) value 0 = Timer3 value has not rolled over to 0000h from equalling the period register (PR3H:PR3L) value								
bit 5:	TMR2IF : Timer2 Interrupt Flag bit 1 = Timer2 value has rolled over to 0000h from equalling the period register (PR2) value 0 = Timer2 value has not rolled over to 0000h from equalling the period register (PR2) value								
bit 4:	TMR1IF : Timer1 Interrupt Flag bit If Timer1 is in 8-bit mode (T16 = 0) 1 = Timer1 value has rolled over to 0000h from equalling the period register (PR) value 0 = Timer1 value has not rolled over to 0000h from equalling the period register (PR2) value								
	If Timer1 is in 16-bit mode (T16 = 1) 1 = TMR1:TMR2 value has rolled over to 0000h from equalling the period register (PR1:PR2) value 0 = TMR1:TMR2 value has not rolled over to 0000h from equalling the period register (PR1:PR2) value								
bit 3:	CA2IF : Capture2 Interrupt Flag bit 1 = Capture event occurred on RB1/CAP2 pin 0 = Capture event did not occur on RB1/CAP2 pin								
bit 2:	CA1IF : Capture1 Interrupt Flag bit 1 = Capture event occurred on RB0/CAP1 pin 0 = Capture event did not occur on RB0/CAP1 pin								
bit 1:	TXIF : USART Transmit Interrupt Flag bit 1 = Transmit buffer is empty 0 = Transmit buffer is full								
bit 0:	RCIF: USART Receive Interrupt Flag bit 1 = Receive buffer is full 0 = Receive buffer is empty								


TABLE 6-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM		
Microprocessor	No Access	No Access		
Microcontroller	Access	Access		
Extended Microcontroller	Access	No Access		
Protected Microcontroller	Access	Access		

The PIC17C4X can operate in modes where the program memory is off-chip. They are the microprocessor and extended microcontroller modes. The microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

6.2 Data Memory Organization

Data memory is partitioned into two areas. The first is the General Purpose Registers (GPR) area, while the second is the Special Function Registers (SFR) area. The SFRs control the operation of the device.

Portions of data memory are banked, this is for both areas. The GPR area is banked to allow greater than 232 bytes of general purpose RAM. SFRs are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the Bank Select Register (BSR). If an access is made to a location outside this banked region, the BSR bits are ignored. Figure 6-5 shows the data memory map organization for the PIC17C42 and Figure 6-6 for all of the other PIC17C4X devices.

Instructions MOVPF and MOVFP provide the means to move values from the peripheral area ("P") to any location in the register file ("F"), and vice-versa. The definition of the "P" range is from 0h to 1Fh, while the "F" range is 0h to FFh. The "P" range has six more locations than peripheral registers (eight locations for the PIC17C42 device) which can be used as General Purpose Registers. This can be useful in some applications where variables need to be copied to other locations in the general purpose RAM (such as saving status information during an interrupt).

The entire data memory can be accessed either directly or indirectly through file select registers FSR0 and FSR1 (Section 6.4). Indirect addressing uses the appropriate control bits of the BSR for accesses into the banked areas of data memory. The BSR is explained in greater detail in Section 6.8.

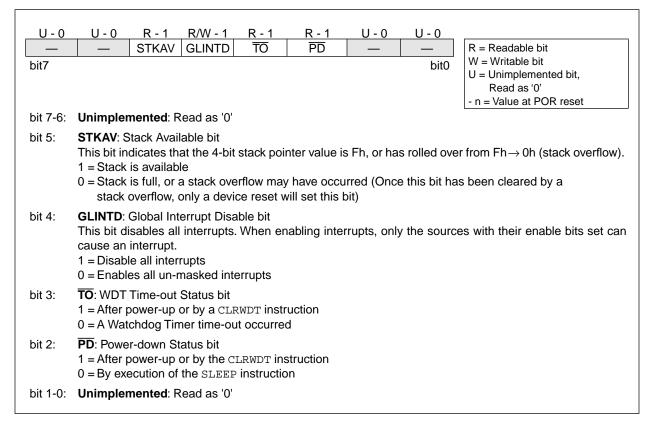
6.2.1 GENERAL PURPOSE REGISTER (GPR)

All devices have some amount of GPR area. The GPRs are 8-bits wide. When the GPR area is greater than 232, it must be banked to allow access to the additional memory space.

Only the PIC17C43 and PIC17C44 devices have banked memory in the GPR area. To facilitate switching between these banks, the MOVLR bank instruction has been added to the instruction set. GPRs are not initialized by a Power-on Reset and are unchanged on all other resets.

6.2.2 SPECIAL FUNCTION REGISTERS (SFR)

The SFRs are used by the CPU and peripheral functions to control the operation of the device (Figure 6-5 and Figure 6-6). These registers are static RAM.


The SFRs can be classified into two sets, those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described here, while those related to a peripheral feature are described in the section for each peripheral feature.

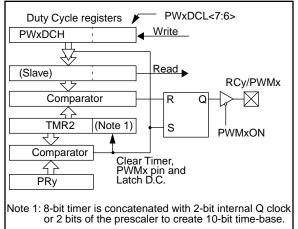
The peripheral registers are in the banked portion of memory, while the core registers are in the unbanked region. To facilitate switching between the peripheral banks, the MOVLB bank instruction has been provided.

6.2.2.2 CPU STATUS REGISTER (CPUSTA)

The CPUSTA register contains the status and control bits for the CPU. This register is used to globally enable/disable interrupts. If only a specific interrupt is desired to be enabled/disabled, please refer to the INTerrupt STAtus (INTSTA) register and the Peripheral Interrupt Enable (PIE) register. This register also indicates if the stack is available and contains the Power-down (PD) and Time-out (TO) bits. The TO, PD, and STKAV bits are not writable. These bits are set and cleared according to device logic. Therefore, the result of an instruction with the CPUSTA register as destination may be different than intended.

FIGURE 6-8: CPUSTA REGISTER (ADDRESS: 06h, UNBANKED)

12.1.3 USING PULSE WIDTH MODULATION (PWM) OUTPUTS WITH TMR1 AND TMR2


Two high speed pulse width modulation (PWM) outputs are provided. The PWM1 output uses Timer1 as its time-base, while PWM2 may be software configured to use either Timer1 or Timer2 as the time-base. The PWM outputs are on the RB2/PWM1 and RB3/PWM2 pins.

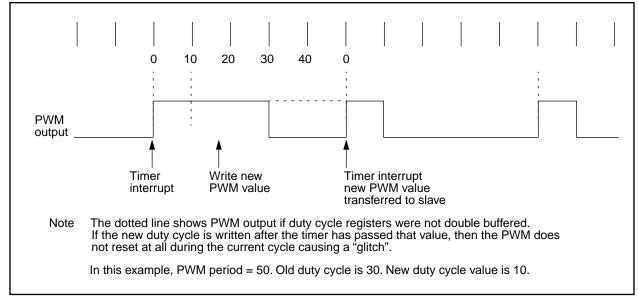
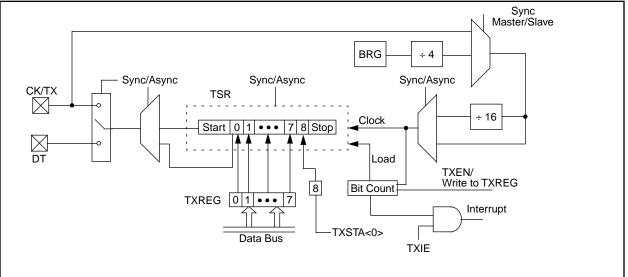

Each PWM output has a maximum resolution of 10-bits. At 10-bit resolution, the PWM output frequency is 24.4 kHz (@ 25 MHz clock) and at 8-bit resolution the PWM output frequency is 97.7 kHz. The duty cycle of the output can vary from 0% to 100%.

Figure 12-5 shows a simplified block diagram of the PWM module. The duty cycle register is double buffered for glitch free operation. Figure 12-6 shows how a glitch could occur if the duty cycle registers were not double buffered.

The user needs to set the PWM1ON bit (TCON2<4>) to enable the PWM1 output. When the PWM1ON bit is set, the RB2/PWM1 pin is configured as PWM1 output and forced as an output irrespective of the data direction bit (DDRB<2>). When the PWM1ON bit is clear, the pin behaves as a port pin and its direction is controlled by its data direction bit (DDRB<2>). Similarly, the PWM2ON (TCON2<5>) bit controls the configuration of the RB3/PWM2 pin.


FIGURE 12-5: SIMPLIFIED PWM BLOCK DIAGRAM

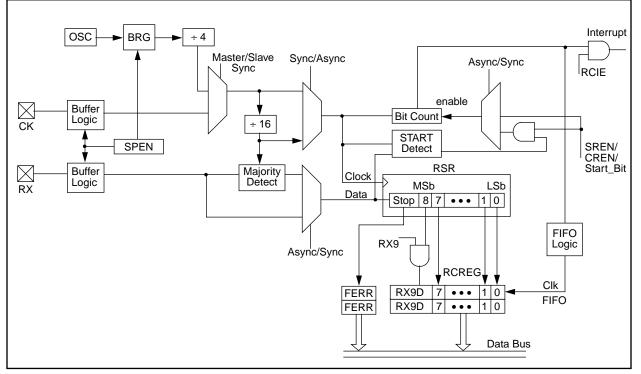


FIGURE 12-6: PWM OUTPUT

FIGURE 13-3: USART TRANSMIT

13.2 USART Asynchronous Mode

In this mode, the USART uses standard nonreturn-to-zero (NRZ) format (one start bit, eight or nine data bits, and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock x64 of the bit shift rate. Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

The asynchronous mode is selected by clearing the SYNC bit (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

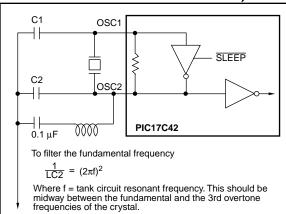
13.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit shift register (TSR). The shift register obtains its data from the read/write transmit buffer (TXREG). TXREG is loaded with data in software. The TSR is not loaded until the stop bit has been transmitted from the previous load. As soon as the stop bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), the TXREG is empty and an interrupt bit, TXIF (PIR<1>) is set. This interrupt can be enabled or disabled by the TXIE bit (PIE<1>). TXIF will be set regardless of TXIE and cannot be reset in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of the TXREG, the TRMT (TXSTA<1>) bit shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty.

Note:	The TSR is not mapped in data memory,
	so it is not available to the user.

Transmission enabled setting is by the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 13-5). The transmission can also be started by first loading TXREG and then setting TXEN. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to TSR resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 13-6). Clearing TXEN during a transmission will cause the transmission to be aborted. This will reset the transmitter and the RA5/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty).


Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the TXIE bit.
- 4. If 9-bit transmission is desired, then set the TX9 bit.
- 5. Load data to the TXREG register.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 7. Enable the transmission by setting TXEN (starts transmission).

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the opposite order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

FIGURE 14-3: CRYSTAL OPERATION, OVERTONE CRYSTALS (XT OSC CONFIGURATION)

TABLE 14-2: CAPACITOR SELECTION FOR CERAMIC RESONATORS

Oscillator Type	Resonator Frequency	Capacitor Range C1 = C2
LF	455 kHz 2.0 MHz	15 - 68 pF 10 - 33 pF
ХТ	4.0 MHz 8.0 MHz 16.0 MHz	22 - 68 pF 33 - 100 pF 33 - 100 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used:

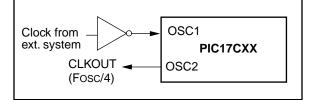
455 kHz	Panasonic EFO-A455K04B	± 0.3%				
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%				
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%				
8.0 MHz	8.0 MHz Murata Erie CSA8.00MT					
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%				
Resonators used did not have built-in capacitors.						

TABLE 14-3:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

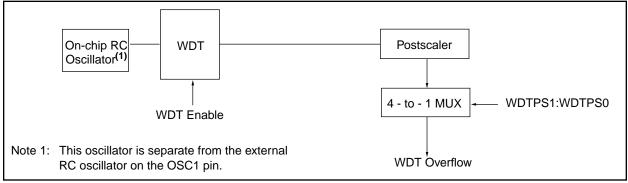
Osc Type	Freq	C1	C2
LF	32 kHz ⁽¹⁾	100-150 pF	100-150 pF
	1 MHz	10-33 pF	10-33 pF
	2 MHz	10-33 pF	10-33 pF
XT	2 MHz	47-100 pF	47-100 pF
	4 MHz	15-68 pF	15-68 pF
	8 MHz ⁽²⁾	15-47 pF	15-47 pF
	16 MHz	TBD	TBD
	25 MHz	15-47 pF	15-47 pF
	32 MHz ⁽³⁾	₀ (3)	₀ (3)

Higher capacitance increases the stability of the oscillator but also increases the start-up time and the oscillator current. These values are for design guidance only. Rs may be required in XT mode to avoid overdriving the crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values for external components.

- Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.
 - Rs of 330Ω is required for a capacitor combination of 15/15 pF.
 - 3: Only the capacitance of the board was present.


Crystals Used:

32.768 kHz	Epson C-001R32.768K-A	± 20 PPM
1.0 MHz	ECS-10-13-1	\pm 50 PPM
2.0 MHz	ECS-20-20-1	\pm 50 PPM
4.0 MHz	ECS-40-20-1	± 50 PPM
8.0 MHz	ECS ECS-80-S-4	± 50 PPM
	ECS-80-18-1	
16.0 MHz	ECS-160-20-1	TBD
25 MHz	CTS CTS25M	\pm 50 PPM
32 MHz	CRYSTEK HF-2	\pm 50 PPM


14.2.3 EXTERNAL CLOCK OSCILLATOR

In the EC oscillator mode, the OSC1 input can be driven by CMOS drivers. In this mode, the OSC1/CLKIN pin is hi-impedance and the OSC2/CLK-OUT pin is the CLKOUT output (4 Tosc).

FIGURE 14-4: EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION)

FIGURE 14-8: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-4: REGISTERS/BITS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
—	Config	-	PM1	-	PM0	WDTPS1	WDTPS0	FOSC1	FOSC0	(Note 2)	(Note 2)
06h, Unbanked	CPUSTA			STKAV	GLINTD	TO	PD		—	11 11	11 qq

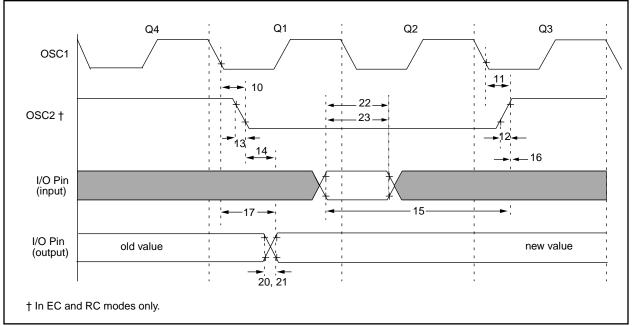
Legend: - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by the WDT.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

2: This value will be as the device was programmed, or if unprogrammed, will read as all '1's.

ANDWF AND WREG with f							
Syntax:	[<i>label</i>] A	NDWF	f,d				
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5					
Operation:	(WREG) .	AND. (f)	\rightarrow (dest))			
Status Affected:	Z						
Encoding:	0000	101d	ffff	ffff			
Description:	The conten register 'f'. in WREG. I back in reg	lf 'd' is 0 f 'd' is 1 t	the result	is stored			
Words:	1	1					
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read register 'f'	Execu		Vrite to stination			
Example:	ANDWF	REG, 1					
Before Instru WREG REG After Instruct WREG	= 0x17 = 0xC2						

BCF		Bit Clear	f					
Syntax:		[label] E	BCF f,I	С				
Operand	s:	$0 \le f \le 25$ $0 \le b \le 7$	$0 \le f \le 255$ $0 \le b \le 7$					
Operatio	n:	$0 \rightarrow (f < b >$	-)					
Status A	ffected:	None						
Encoding	g:	1000	1bbb	fff	f	ffff		
Descripti	ion:	Bit 'b' in re	gister 'f' is	clear	ed.			
Words:		1						
Cycles:		1						
Q Cycle	Activity:							
	Q1	Q2	Q3		Q4			
D	ecode	Read register 'f'	Execu	ute		Write gister 'f'		
<u>Example</u>	:	BCF	FLAG_R	EG,	7			
	r Instruct	EG = 0xC7 tion						
FLAG_REG = 0x47								


BTF	BTFSS Bit Test, skip if Set								
Synt	tax:	[<i>label</i>] E	[label] BTFSS f,b						
Ope	rands:		$0 \le f \le 127$						
		0≤b<7							
Ope	ration:	skip if (f<	b>) = 1						
Stat	us Affected:	None							
Enc	oding:	1001	0bbb	ffff	ffff				
Des	cription:	If bit 'b' in register 'f' is 1 then the next instruction is skipped. If bit 'b' is 1, then the next instruction fetched during the current instruction exe- cution, is discarded and an NOP is exe- cuted instead, making this a two-cycle instruction.							
Wor	ds:	1	1						
Cycl	les:	1(2)	1(2)						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Execu	ite	NOP				
lf sk	ip:			· · ·					
	Q1	Q2	Q3		Q4				
	Forced NOP	NOP	Execu	ıte	NOP				
Example:		HERE FALSE TRUE	BTFSS : :	FLAG,1					
	Before Instru PC		ddress (HE	RE)					
After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)									

BTG	Bit Togg	le f					
Syntax:	[label]	BTG f,b					
Operands:	•=•==	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b < 7 \end{array}$					
Operation:	(Ī) →	→ (f)					
Status Affected	: None						
Encoding:	0011	1bbb	ffff	ffff			
Description:	Bit 'b' in d inverted.	Bit 'b' in data memory location 'f' is inverted.					
Words:	1						
Cycles:	1						
Q Cycle Activity	/ :						
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Execut	• ·	/rite ster 'f'			
Example:	BTG	PORTC,	4				
Before Inst PORT		0101 [0x7 5	5]				
After Instru		0101 [0x6 5	-1				

SUBWF	Sub	otrac	t WREG	from	f		
Syntax:	[lab	oel]	SUBWF	f,d			-
Operands:	-	f ≤ 25 [0,1]	55				:
Operation:	(f) –	· (W)	\rightarrow (dest)			
Status Affected:	OV,	C, D	C, Z				(
Encoding:	00	00	010d	fff	f	ffff	:
Description:	com resu	pleme It is si	VREG fro ent metho tored in W tored bac	d). If ' /REG	d' is . If 'c	0 the I' is 1 the	l
Words:	1						
Cycles:	1						,
Q Cycle Activity:							
Q1	Qź		Q3	3		Q4	
Decode	Rea registe		Execu	ute		Vrite to stination	
			DECI	1	ue	Sunation	
Example 1:	SUB	M F.	REG1,	T			
Before Instru REG1 WREG C	Iction = 3 = 2 = ?						<u> </u>
After Instruc REG1 WREG C Z	tion = 1 = 2 = 1 = 0	;	result is p	oositiv	е		
Example 2:							
Before Instru REG1 WREG C	uction = 2 = 2 = ?						<u> </u>
After Instruc REG1 WREG C Z	tion = 0 = 2 = 1 = 1	;	result is z	zero			
Example 3:							
Before Instru REG1 WREG C	uction = 1 = 2 = ?						ļ
After Instruc REG1 WREG C Z	tion = F = 2 = 0 = 0		result is r	negativ	ve		

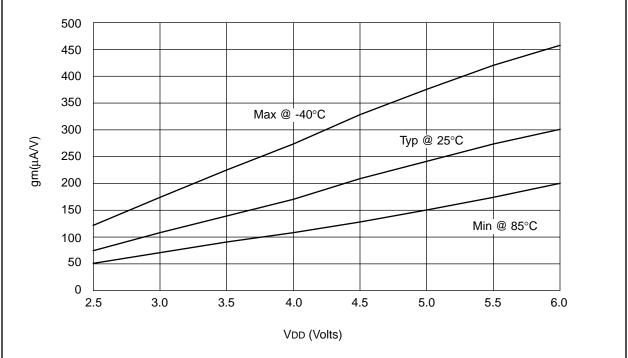
SUBWFB		Subtract WREG from f with					
Syntax:		Borrow [label] SUBWFB f,d					
Operands:		$0 \le f \le 2$, u			
Operands.		d ∈ [0,1]				
Operation:		(f) – (W)	$) - \overline{C} \rightarrow (0)$	dest)			
Status Affect	ed:	OV, C, E	DC, Z				
Encoding:		0000	001d	fff	f	ffff	
Description:		(borrow) ment me stored in	WREG an from regis thod). If 'd' WREG. If ack in regis	ter 'f' is 0 tl 'd' is ´	(2's he r 1 the	comple- esult is	
Words:		1					
Cycles:		1					
Q Cycle Activ	/ity:						
Q1		Q2	Q3			Q4	
Decod	-	Read egister 'f'	Execu	ıte		Vrite to stination	
Example 1:		SUBWFB	REG1,	1			
Before Ir	nstructio	on					
REG WRE C		0x19 0x0D 1	(0001 (0000		'		
After Ins	truction	1					
REG WRE C	EG = =	0x0C 0x0D 1	(0000 (0000 ; resul t	110	1)	e	
Z	=	0					
Example2:		UBWFB	REG1,0				
Before Ir REG WRE C	61 =	0x1B	(0001 (0001		,		
After Ins	truction	1					
REG		0x1B	(0001	101	1)		
WRE C Z	EG = = =	0x00 1 1	; resul	t is ze	ro		
Example3:	S	UBWFB	REG1,1				
Before Ir		on					
REG WRE C		0x03 0x0E 1	(0000 (0000				
After Ins REG WRE C Z	61 =	0xF5 0x0E 0 0	(1111 (0000 ; resul t	110	1)	?'s comp] ve	

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓		15 ‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↑ to CLKOUT↑	—	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time	—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time	—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT [↑] to Port out valid	—	—	0.5Tcy + 20‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT	0.25Tcy + 25 ‡	—	—	ns	Note 1
16	TckH2iol	Port in hold after CLKOUT	0 ‡	—	—	ns	Note 1
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	—	100 ‡	ns	
20	TioR	Port output rise time	—	10 ‡	35 ‡	ns	
21	TioF	Port output fall time	—	10 ‡	35 ‡	ns	
22	TinHL	INT pin high or low time	25 *	—	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25 *	—	—	ns	

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where OSC2 output = 4 x Tosc = Tcy.

Applicable Devices 42 R42 42A 43 R43 44

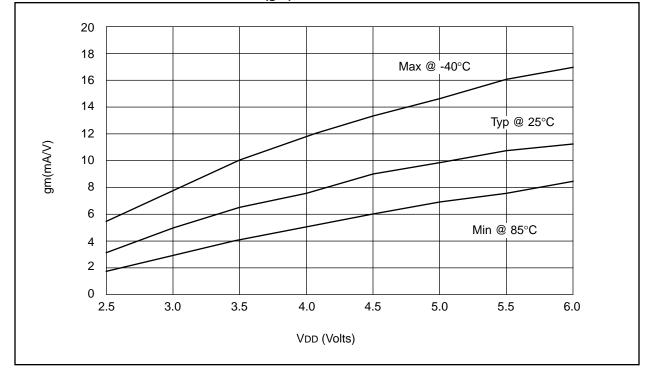


FIGURE 18-6: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

19.1 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial)

DC CHARACT	CDIETI		Standard Operating Conditions (unless otherwise stated) Operating temperature					
	ERISTI	63				-40°C		
		i				0°C	\leq TA \leq +70°C for commercial	
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
D001	Vdd	Supply Voltage	4.5	_	6.0	V		
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	_	—	V	Device in SLEEP mode	
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	-	V	See section on Power-on Reset for details	
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	_	_	mV/ms	See section on Power-on Reset for details	
D010	IDD	Supply Current	-	3	6	mA	Fosc = 4 MHz (Note 4)	
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz	
D012			-	11	24 *	mA	Fosc = 16 MHz	
D013			-	19	38	mA	Fosc = 25 MHz	
D015			-	25	50	mA	Fosc = 33 MHz	
D014			-	95	150	μA	Fosc = 32 kHz,	
							WDT enabled (EC osc configuration)	
D020	IPD	Power-down	_	10	40	μA	VDD = 5.5V, WDT enabled	
D021		Current (Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled	

These parameters are characterized but not tested.

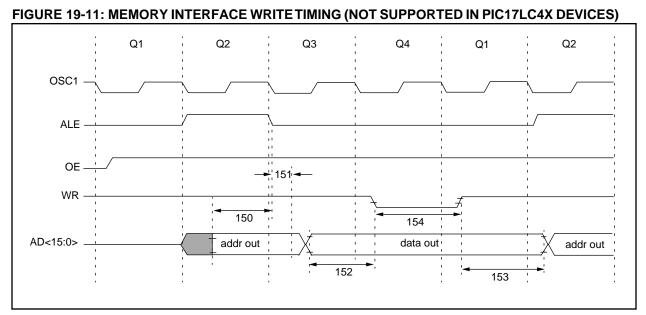
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.


Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

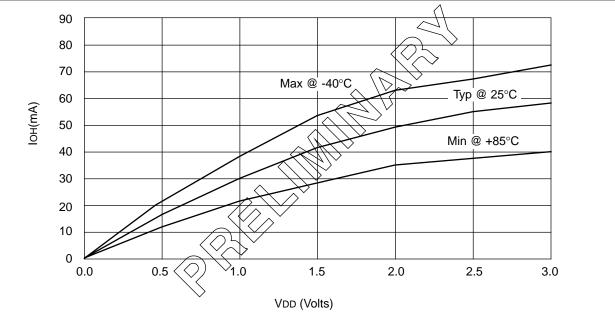
For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \bullet R)$. For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

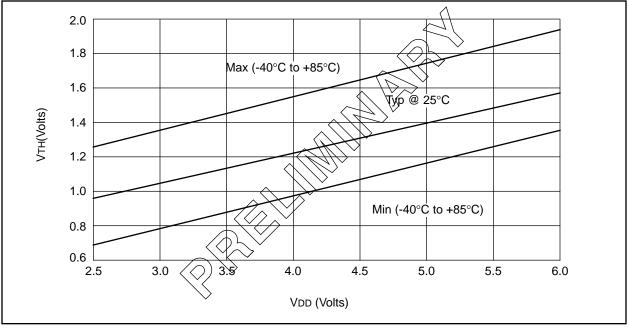
The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

TABLE 19-11: MEMORY INTERFACE WRITE REQUIREMENTS (NOT SUPPORTED IN PIC17LC4X DEVICES)


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 10		_	ns	
151	TalL2adI	ALE↓ to address out invalid (address hold time)	0	_	—	ns	
152	TadV2wrL	Data out valid to $\overline{WR} \downarrow$ (data setup time)	0.25Tcy - 40	_	_	ns	
153	TwrH2adl	WR↑ to data out invalid (data hold time)	_	0.25Tcy §	_	ns	
154	TwrL	WR pulse width	—	0.25Tcy §	—	ns	

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 20-17: IOL vs. VOL, VDD = 5V

FIGURE 20-18: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS (TTL) VS. VDD

MP-C C Compiler	145
MPSIM Software Simulator	
MULLW	129
Multiply Examples	
16 x 16 Routine	50
16 x 16 Signed Routine	51
8 x 8 Routine	49
8 x 8 Signed Routine	49
MULWF	129

Ν

NEGW)
NOP 130	`
NOP	'

0

OERR	84
Opcode Field Descriptions	107
OSC Selection	
Oscillator	
Configuration	100
Crystal	
External Clock	101
External Crystal Circuit	102
External Parallel Resonant Crystal Circuit	102
External Series Resonant Crystal Circuit	102
RC	
RC Frequencies	165, 195
Oscillator Start-up Time (Figure)	
Oscillator Start-up Timer (OST)	15, 99
OST	
OV	
Overflow (OV)	9

Ρ

Package Marking Information	
Packaging Information	
Parameter Measurement Information	
PC (Program Counter)	
PCH	
PCL	34, 41, 108
PCLATH	
PD	
PEIE	
PEIF	
Peripheral Bank	
Peripheral Interrupt Enable	23
Peripheral Interrupt Request (PIR)	24
PICDEM-1 Low-Cost PIC16/17 Demo Board	143, 144
PICDEM-2 Low-Cost PIC16CXX Demo Board	143, 144
PICDEM-3 Low-Cost PIC16C9XXX Demo Boar	d144
PICMASTER [®] RT In-Circuit Emulator	
PICSTART [®] Low-Cost Development System	
PIE	
Pin Compatible Devices	
PIR	
PM0	
PM1	
POP	
POR	
PORTA	19, 34, 53
PORTB	19, 34, 55
PORTC	19, 34, 58

PORTD			
PORTE	19,	34,	62
Power-down Mode		1	05
Power-on Reset (POR)			
Power-up Timer (PWRT)			
PR1			
PR2			
PR3/CA1H			
PR3/CA1L			
PR3H/CA1H			
PR3L/CA1L			
Prescaler Assignments	•••••		69
PRO MATE [®] Universal Programmer			
PRODH			
PRODL			
Program Counter (PC)	•••••		41
Program Memory			
External Access Waveforms			
External Connection Diagram			31
Мар			29
Modes			
Extended Microcontroller			29
Microcontroller			
Microprocessor			
Protected Microcontroller			
Operation			
Organization			
Transfers from Data Memory			
Protected Microcontroller			
PS0			
PS1			
PS2			
PS3			
PUSH			
PW1DCH		20,	35
PW1DCL		20,	35
PW2DCH			
PW2DCL		20,	35
PWM		71,	75
Duty Cycle			76
External Clock Source			
Frequency vs. Resolution			
Interrupts			
Max Resolution/Frequency for External			
Clock Input			77
Output			75
Periods			
			-
PWM1			
PWM10N			
PWM2			
PWM2ON			
PWRT		15,	99

R

RA1/T0CKI pin	
RBIE	
RBIF	
RBPU	
RC Oscillator	
RC Oscillator Frequencies	
RCIE	
RCIF	
RCREG	19, 34, 91, 92, 96, 97
RCSTA	
Reading 16-bit Value	
0	