

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-16i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	DIP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	19	21	37		ST	Oscillator input in crystal/resonator or RC oscillator mode. External clock input in external clock mode.
OSC2/CLKOUT	20	22	38	0		Oscillator output. Connects to crystal or resonator in crystal oscillator mode. In RC oscillator or external clock modes OSC2 pin outputs CLKOUT which has one fourth the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/Vpp	32	35	7	I/P	ST	Master clear (reset) input/Programming Voltage (VPP) input. This is the active low reset input to the chip.
						PORTA is a bi-directional I/O Port except for RA0 and RA1 which are input only.
RA0/INT	26	28	44	I	ST	RA0/INT can also be selected as an external interrupt input. Interrupt can be configured to be on positive or negative edge.
RA1/T0CKI	25	27	43	I	ST	RA1/T0CKI can also be selected as an external interrupt input, and the interrupt can be configured to be on posi- tive or negative edge. RA1/T0CKI can also be selected to be the clock input to the Timer0 timer/counter.
RA2	24	26	42	I/O	ST	High voltage, high current, open drain input/output port pins.
RA3	23	25	41	I/O	ST	High voltage, high current, open drain input/output port pins.
RA4/RX/DT	22	24	40	I/O	ST	RA4/RX/DT can also be selected as the USART (SCI) Asynchronous Receive or USART (SCI) Synchronous Data.
RA5/TX/CK	21	23	39	I/O	ST	RA5/TX/CK can also be selected as the USART (SCI) Asynchronous Transmit or USART (SCI) Synchronous Clock.
						PORTB is a bi-directional I/O Port with software configurable weak pull-ups.
RB0/CAP1	11	13	29	I/O	ST	RB0/CAP1 can also be the CAP1 input pin.
RB1/CAP2	12	14	30	I/O	ST	RB1/CAP2 can also be the CAP2 input pin.
RB2/PWM1	13	15	31	I/O	ST	RB2/PWM1 can also be the PWM1 output pin.
RB3/PWM2	14	16	32	I/O	ST	RB3/PWM2 can also be the PWM2 output pin.
RB4/TCLK12	15	17	33	I/O	ST	RB4/TCLK12 can also be the external clock input to
RB5/TCLK3	16	18	34	I/O	ST	Timer1 and Timer2. RB5/TCLK3 can also be the external clock input to Timer3
RB6	17	19	35	1/0	ST	Timero.
RB7	18	20	36	1/0	ST	
						PORTC is a bi-directional I/O Port.
RC0/AD0	2	3	19	I/O	TTL	This is also the lower half of the 16-bit wide system bus
RC1/AD1	3	4	20	I/O	TTL	in microprocessor mode or extended microcontroller
RC2/AD2	4	5	21	I/O	TTL	mode. In multiplexed system bus configuration, these
RC3/AD3	5	6	22	I/O	TTL	pins are address output as well as data input or output.
RC4/AD4	6	7	23	I/O	TTL	
RC5/AD5	7	8	24	I/O	TTL	
RC6/AD6	8	9	25	I/O	TTL	
RC7/AD7	9	10	26	I/O	TTL	

TABLE 3-1:PINOUT DESCRIPTIONS

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input.

Register	Address	Power-on Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through interrupt
Unbanked			L	
INDF0	00h	0000 0000	0000 0000	0000 0000
FSR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
PCLATH	03h	0000 0000	0000 0000	uuuu uuuu
ALUSTA	04h	1111 xxxx	1111 uuuu	1111 uuuu
TOSTA	05h	0000 000-	0000 000-	0000 000-
CPUSTA ⁽³⁾	06h	11 11	11 qq	uu qq
INTSTA	07h	0000 0000	0000 0000	uuuu uuuu ⁽¹⁾
INDF1	08h	0000 0000	0000 0000	uuuu uuuu
FSR1	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
WREG	0Ah	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR0L	0Bh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR0H	0Ch	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁴⁾	0Dh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRH ⁽⁴⁾	0Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁵⁾	0Dh	0000 0000	0000 0000	uuuu uuuu
TBLPTRH ⁽⁵⁾	0Eh	0000 0000	0000 0000	uuuu uuuu
BSR	0Fh	0000 0000	0000 0000	uuuu uuuu
Bank 0				
PORTA	10h	0-xx xxxx	0-uu uuuu	uuuu uuuu
DDRB	11h	1111 1111	1111 1111	uuuu uuuu
PORTB	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
RCSTA	13h	0000 -00x	0000 -00u	uuuu -uuu
RCREG	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXSTA	15h	00001x	0000lu	uuuuuu
TXREG	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
SPBRG	17h	XXXX XXXX	uuuu uuuu	นนนน นนนน
Bank 1				
DDRC	10h	1111 1111	1111 1111	uuuu uuuu
PORTC	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu
DDRD	12h	1111 1111	1111 1111	uuuu uuuu
PORTD	13h	XXXX XXXX	นนนน นนนน	uuuu uuuu
DDRE	14h	111	111	uuu
PORTE	15h	xxx	uuu	uuu
PIR	16h	0000 0010	0000 0010	uuuu uuuu ⁽¹⁾
PIE	17h	0000 0000	0000 0000	นนนน นนนน

TABLE 4-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTER	TABLE 4-4:	INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS
--	------------	--

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

6.3 <u>Stack Operation</u>

The PIC17C4X devices have a 16 x 16-bit wide hardware stack (Figure 6-1). The stack is not part of either the program or data memory space, and the stack pointer is neither readable nor writable. The PC is "PUSHed" onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is "POPed" in the event of a RETURN, RETLW, or a RETFIE instruction execution. PCLATH is not affected by a "PUSH" or a "POP" operation.

The stack operates as a circular buffer, with the stack pointer initialized to '0' after all resets. There is a stack available bit (STKAV) to allow software to ensure that the stack has not overflowed. The STKAV bit is set after a device reset. When the stack pointer equals Fh, STKAV is cleared. When the stack pointer rolls over from Fh to 0h, the STKAV bit will be held clear until a device reset.

- **Note 1:** There is not a status bit for stack underflow. The STKAV bit can be used to detect the underflow which results in the stack pointer being at the top of stack.
- Note 2: There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt vector.
- Note 3: After a reset, if a "POP" operation occurs before a "PUSH" operation, the STKAV bit will be cleared. This will appear as if the stack is full (underflow has occurred). If a "PUSH" operation occurs next (before another "POP"), the STKAV bit will be locked clear. Only a device reset will cause this bit to set.

After the device is "PUSHed" sixteen times (without a "POP"), the seventeenth push overwrites the value from the first push. The eighteenth push overwrites the second push (and so on).

6.4 Indirect Addressing

Indirect addressing is a mode of addressing data memory where the data memory address in the instruction is not fixed. That is, the register that is to be read or written can be modified by the program. This can be useful for data tables in the data memory. Figure 6-10 shows the operation of indirect addressing. This shows the moving of the value to the data memory address specified by the value of the FSR register.

Example 6-1 shows the use of indirect addressing to clear RAM in a minimum number of instructions. A similar concept could be used to move a defined number of bytes (block) of data to the USART transmit register (TXREG). The starting address of the block of data to be transmitted could easily be modified by the program.

FIGURE 6-10: INDIRECT ADDRESSING

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	;	FSR0 = 20h
	BCF	ALUSTA, FS1	;	Increment FSR
	BSF	ALUSTA, FSO	;	after access
	BCF	ALUSTA, C	;	C = 0
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	;	Addr(FSR) = 0
	CPFSEQ	FSR0	;	FSR0 = END_RAM+1?
	GOTO	LP	;	NO, clear next
	:		;	YES, All RAM is
	:		;	cleared

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

FIGURE 7-4: TABLRD INSTRUCTION OPERATION

TABLE 9-5: PORTC FUNCTIONS

Name	Bit	Buffer Type	Function
RC0/AD0	bit0	TTL	Input/Output or system bus address/data pin.
RC1/AD1	bit1	TTL	Input/Output or system bus address/data pin.
RC2/AD2	bit2	TTL	Input/Output or system bus address/data pin.
RC3/AD3	bit3	TTL	Input/Output or system bus address/data pin.
RC4/AD4	bit4	TTL	Input/Output or system bus address/data pin.
RC5/AD5	bit5	TTL	Input/Output or system bus address/data pin.
RC6/AD6	bit6	TTL	Input/Output or system bus address/data pin.
RC7/AD7	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-6: REGISTERS/BITS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
11h, Bank 1	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	XXXX XXXX	uuuu uuuu
10h, Bank 1	DDRC	Data dired	ction registe	1111 1111	1111 1111						

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

10.0 OVERVIEW OF TIMER RESOURCES

The PIC17C4X has four timer modules. Each module can generate an interrupt to indicate that an event has occurred. These timers are called:

- Timer0 16-bit timer with programmable 8-bit
- prescaler
- Timer1 8-bit timer
- Timer2 8-bit timer
- Timer3 16-bit timer

For enhanced time-base functionality, two input Captures and two Pulse Width Modulation (PWM) outputs are possible. The PWMs use the TMR1 and TMR2 resources and the input Captures use the TMR3 resource.

10.1 <u>Timer0 Overview</u>

The Timer0 module is a simple 16-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock.

The Timer0 module also has a programmable prescaler option. The PS3:PS0 bits (T0STA<4:1>) determine the prescaler value. TMR0 can increment at the following rates: 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256.

When TImer0's clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

10.2 <u>Timer1 Overview</u>

The TImer0 module is an 8-bit timer/counter with an 8bit period register (PR1). When the TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the Timer2 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR1 register is the LSB and TMR2 is the MSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.3 <u>Timer2 Overview</u>

The TMR2 module is an 8-bit timer/counter with an 8bit period register (PR2). When the TMR2 value rolls over from the period match value to 0h, the TMR2IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the TMR1 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR2 register is the MSB and TMR1 is the LSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.4 <u>Timer3 Overview</u>

The TImer3 module is a 16-bit timer/counter with a 16bit period register. When the TMR3H:TMR3L value rolls over to 0h, the TMR3IF bit is set and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB5/TCLK3 pin.

When operating in the dual capture mode, the period registers become the second 16-bit capture register.

10.5 Role of the Timer/Counters

The timer modules are general purpose, but have dedicated resources associated with them. Tlmer1 and Timer2 are the time-bases for the two Pulse Width Modulation (PWM) outputs, while Timer3 is the timebase for the two input captures.

© 1996 Microchip Technology Inc.

12.1.3 USING PULSE WIDTH MODULATION (PWM) OUTPUTS WITH TMR1 AND TMR2

Two high speed pulse width modulation (PWM) outputs are provided. The PWM1 output uses Timer1 as its time-base, while PWM2 may be software configured to use either Timer1 or Timer2 as the time-base. The PWM outputs are on the RB2/PWM1 and RB3/PWM2 pins.

Each PWM output has a maximum resolution of 10-bits. At 10-bit resolution, the PWM output frequency is 24.4 kHz (@ 25 MHz clock) and at 8-bit resolution the PWM output frequency is 97.7 kHz. The duty cycle of the output can vary from 0% to 100%.

Figure 12-5 shows a simplified block diagram of the PWM module. The duty cycle register is double buffered for glitch free operation. Figure 12-6 shows how a glitch could occur if the duty cycle registers were not double buffered.

The user needs to set the PWM1ON bit (TCON2<4>) to enable the PWM1 output. When the PWM1ON bit is set, the RB2/PWM1 pin is configured as PWM1 output and forced as an output irrespective of the data direction bit (DDRB<2>). When the PWM1ON bit is clear, the pin behaves as a port pin and its direction is controlled by its data direction bit (DDRB<2>). Similarly, the PWM2ON (TCON2<5>) bit controls the configuration of the RB3/PWM2 pin.

FIGURE 12-5: SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 12-6: PWM OUTPUT

PIC17C4X

TABLE 13-3:	BAUD RATES FOR SYNCHRONOUS MODE

BAUD RATE (K)	Fosc = 3	3 MHz %ERROR	SPBRG value (decimal)	Fosc = 2	5 MHz %ERROR	SPBRG value (decimal)	FOSC = 2	0 MHz %ERROR	SPBRG value (decimal)	Fosc = 1	6 MHz %ERROR	SPBRG value (decimal)
()		/02/11/01/	(accinal)		<i>x</i> 021111011	(40011141)		<i>/</i> 021111011	(uconnai)		<i>/</i> 021111011	(uconnai)
0.3	NA	_	_	NA	—	_	NA	_	_	NA	_	_
1.2	NA	_	_	NA	—	_	NA	_	_	NA	_	_
2.4	NA	—	—	NA	—	—	NA	—	—	NA	—	—
9.6	NA	_	—	NA	_	—	NA	_	—	NA	_	_
19.2	NA	—	_	NA	—	_	19.53	+1.73	255	19.23	+0.16	207
76.8	77.10	+0.39	106	77.16	+0.47	80	76.92	+0.16	64	76.92	+0.16	51
96	95.93	-0.07	85	96.15	+0.16	64	96.15	+0.16	51	95.24	-0.79	41
300	294.64	-1.79	27	297.62	-0.79	20	294.1	-1.96	16	307.69	+2.56	12
500	485.29	-2.94	16	480.77	-3.85	12	500	0	9	500	0	7
HIGH	8250	—	0	6250	—	0	5000	—	0	4000	—	0
LOW	32.22	_	255	24.41	_	255	19.53	_	255	15.625	_	255

BAUD	Fosc = 10 M	Hz	SPBRG	Fosc = 7.159) MHz	SPBRG	FOSC = 5.068	3 MHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	NA	_	_	NA	_	_	NA	_	
1.2	NA	_	_	NA	_	_	NA	_	_
2.4	NA	_	_	NA	_	_	NA	_	_
9.6	9.766	+1.73	255	9.622	+0.23	185	9.6	0	131
19.2	19.23	+0.16	129	19.24	+0.23	92	19.2	0	65
76.8	75.76	-1.36	32	77.82	+1.32	22	79.2	+3.13	15
96	96.15	+0.16	25	94.20	-1.88	18	97.48	+1.54	12
300	312.5	+4.17	7	298.3	-0.57	5	316.8	+5.60	3
500	500	0	4	NA	_	_	NA	_	_
HIGH	2500	_	0	1789.8	_	0	1267	_	0
LOW	9.766	_	255	6.991	_	255	4.950	_	255
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	Z	SPBRG	Fosc = 32.76	8 kHz	SPBRG
BAUD RATE (K)	Fosc = 3.579 KBAUD	MHz %ERROR	SPBRG value (decimal)	Fosc = 1 MH KBAUD	z %ERROR	SPBRG value (decimal)	Fosc = 32.76 KBAUD	68 kHz %ERROR	SPBRG value (decimal)
BAUD RATE (K)	Fosc = 3.579 KBAUD NA	MHz %ERROR —	SPBRG value (decimal)	Fosc = 1 MH KBAUD NA	z %ERROR —	SPBRG value (decimal)	Fosc = 32.76 KBAUD 0.303	68 kHz %ERROR +1.14	SPBRG value (decimal) 26
BAUD RATE (K) 0.3 1.2	Fosc = 3.579 KBAUD NA NA	MHz %ERROR — —	SPBRG value (decimal) —	Fosc = 1 MH KBAUD NA 1.202	z %ERROR — +0.16	SPBRG value (decimal) — 207	Fosc = 32.76 KBAUD 0.303 1.170	58 kHz %ERROR +1.14 -2.48	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4	Fosc = 3.579 KBAUD NA NA NA	MHz %ERROR — — —	SPBRG value (decimal) — —	Fosc = 1 MH KBAUD NA 1.202 2.404	z %ERROR +0.16 +0.16	SPBRG value (decimal) — 207 103	Fosc = 32.76 KBAUD 0.303 1.170 NA	68 kHz %ERROR +1.14 -2.48 —	SPBRG value (decimal) 26 6 —
BAUD RATE (K) 0.3 1.2 2.4 9.6	Fosc = 3.579 KBAUD NA NA 9.622	MHz %ERROR +0.23	SPBRG value (decimal) — — — 92	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615	z %ERROR 	SPBRG value (decimal) — 207 103 25	FOSC = 32.76 KBAUD 0.303 1.170 NA NA	8 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2	Fosc = 3.579 KBAUD NA NA 9.622 19.04	MHz %ERROR +0.23 -0.83	SPBRG value (decimal) — — — 92 46	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24	z %ERROR 	SPBRG value (decimal) — 207 103 25 12	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57	MHz %ERROR — — +0.23 -0.83 -2.90	SPBRG value (decimal) — — 92 46 11	FOSC = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34	Z %ERROR +0.16 +0.16 +0.16 +0.16 +0.16 +8.51	SPBRG value (decimal) — 207 103 25 12 2 2	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43	MHz %ERROR — — +0.23 -0.83 -2.90 _3.57	SPBRG value (decimal) — — — 92 46 11 8	FOSC = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA	z <u>~</u> +0.16 +0.16 +0.16 +0.16 +8.51 _	SPBRG value (decimal) — 207 103 25 12 2 2 	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57	SPBRG value (decimal) — — 92 46 11 8 2	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) — 207 103 25 12 2 2 — 2 —	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA	68 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3 NA	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57 —	SPBRG value (decimal) — — 92 46 11 8 2 	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA NA	Z %ERROR +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) 207 103 25 12 2 2 2 	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500 HIGH	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3 NA 894.9	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57 — _ _	SPBRG value (decimal) — — 92 46 11 8 2 _ _ 0	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA NA NA 250	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) 207 103 25 12 2 2 0	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA NA NA NA S.192	68 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6 0

FIGURE 14-8: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-4: REGISTERS/BITS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
_	Config	_	PM1	—	PM0	WDTPS1	WDTPS0	FOSC1	FOSC0	(Note 2)	(Note 2)
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD		—	11 11	11 qq

Legend: - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by the WDT.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

2: This value will be as the device was programmed, or if unprogrammed, will read as all '1's.

TABLE 15-2: PIC17CXX INSTRUCTION SET

Mnemonic,		Description	Cycles	1	16-bit	Opcode	e	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED F	ILE REGISTER OPERATIONS		•					
ADDWF	f,d	ADD WREG to f	1	0000	111d	ffff	ffff	OV,C,DC,Z	
ADDWFC	f,d	ADD WREG and Carry bit to f	1	0001	000d	ffff	ffff	OV,C,DC,Z	
ANDWF	f,d	AND WREG with f	1	0000	101d	ffff	ffff	Z	
CLRF	f,s	Clear f, or Clear f and Clear WREG	1	0010	100s	ffff	ffff	None	3
COMF	f,d	Complement f	1	0001	001d	ffff	ffff	Z	
CPFSEQ	f	Compare f with WREG, skip if f = WREG	1 (2)	0011	0001	ffff	ffff	None	6,8
CPFSGT	f	Compare f with WREG, skip if f > WREG	1 (2)	0011	0010	ffff	ffff	None	2,6,8
CPFSLT	f	Compare f with WREG, skip if f < WREG	1 (2)	0011	0000	ffff	ffff	None	2,6,8
DAW	f,s	Decimal Adjust WREG Register	1	0010	111s	ffff	ffff	C	3
DECF	f,d	Decrement f	1	0000	011d	ffff	ffff	OV,C,DC,Z	
DECFSZ	f,d	Decrement f, skip if 0	1 (2)	0001	011d	ffff	ffff	None	6,8
DCFSNZ	f,d	Decrement f, skip if not 0	1 (2)	0010	011d	ffff	ffff	None	6,8
INCF	f,d	Increment f	1	0001	010d	ffff	ffff	OV,C,DC,Z	
INCFSZ	f,d	Increment f, skip if 0	1 (2)	0001	111d	ffff	ffff	None	6,8
INFSNZ	f,d	Increment f, skip if not 0	1 (2)	0010	010d	ffff	ffff	None	6,8
IORWF	f,d	Inclusive OR WREG with f	1	0000	100d	ffff	ffff	Z	
MOVFP	f,p	Move f to p	1	011p]	pppp	ffff	ffff	None	
MOVPF	p,f	Move p to f	1	010p j	pppp	ffff	ffff	Z	
MOVWF	f	Move WREG to f	1	0000	0001	ffff	ffff	None	
MULWF	f	Multiply WREG with f	1	0011	0100	ffff	ffff	None	9
NEGW	f,s	Negate WREG	1	0010	110s	ffff	ffff	OV,C,DC,Z	1,3
NOP	_	No Operation	1	0000	0000	0000	0000	None	
RLCF	f,d	Rotate left f through Carry	1	0001	101d	ffff	ffff	С	
RLNCF	f,d	Rotate left f (no carry)	1	0010	001d	ffff	ffff	None	
RRCF	f,d	Rotate right f through Carry	1	0001	100d	ffff	ffff	C	
RRNCF	f,d	Rotate right f (no carry)	1	0010	000d	ffff	ffff	None	
SETF	f,s	Set f	1	0010	101s	ffff	ffff	None	3
SUBWF	f,d	Subtract WREG from f	1	0000	010d	ffff	ffff	OV,C,DC,Z	1
SUBWFB	f,d	Subtract WREG from f with Borrow	1	0000	001d	ffff	ffff	OV,C,DC,Z	1
SWAPF	f,d	Swap f	1	0001	110d	ffff	ffff	None	
TABLRD	t,i,f	Table Read	2 (3)	1010	10ti	ffff	ffff	None	7

Legend: Refer to Table 15-1 for opcode field descriptions.

- Note 1: 2's Complement method.
 - 2: Unsigned arithmetic.

3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.

- 4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL)
- 5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.
- 6: Two-cycle instruction when condition is true, else single cycle instruction.
- 7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
- 8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead an NOP is executed.
- 9: These instructions are not available on the PIC17C42.

NOTES:

Applicable Devices	42	R42	42A	43	R43	44

			Standard C	perating	Conditio	ons (ur	nless otherwise stated)		
DC CHARA	DC CHARACTERISTICS			-40°C \leq TA \leq +40°C					
			Operating v	oltage VD	D range a	is desc	ribed in Section 19.1		
Parameter									
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions		
		Internal Program Memory Programming Specs (Note 4)							
D110 D111	Vpp Vddp	Voltage on MCLR/VPP pin Supply voltage during programming	12.75 4.75	_ 5.0	13.25 5.25	V V	Note 5		
D112 D113	Ipp Iddp	Current into MCLR/VPP pin Supply current during programming		25 ‡ _	50 ‡ 30 ‡	mA mA			
D114	TPROG	Programming pulse width	10	100	1000	μs	Terminated via internal/ external interrupt or a reset		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Note: When using the Table Write for internal programming, the device temperature must be less than 40°C.

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

19.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	ρS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			· · · · · · · · · · · · · · · · · · ·
F	Frequency	Т	Time
Lowerca	ase symbols (pp) and their meanings:		
рр			
ad	Address/Data	ost	Oscillator Start-Up Timer
al	ALE	pwrt	Power-Up Timer
сс	Capture1 and Capture2	rb	PORTB
ck	CLKOUT or clock	rd	RD
dt	Data in	rw	RD or WR
in	INT pin	tO	TOCKI
io	I/O port	t123	TCLK12 and TCLK3
mc	MCLR	wdt	Watchdog Timer
oe	ŌĒ	wr	WR
os	OSC1		
Upperca	ase symbols and their meanings:		
S			
D	Driven	L	Low
E	Edge	P	Period
F	Fall	R	Rise
Н	High	V	Valid
	Invalid (Hi-impedance)	Z	Hi-impedance

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

19.5 <u>Timing Diagrams and Specifications</u>

FIGURE 19-2: EXTERNAL CLOCK TIMING

TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param							
No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	8	MHz	EC osc mode - 08 devices (8 MHz devices)
		(Note 1)	DC	—	16	MHz	 16 devices (16 MHz devices)
			DC	—	25	MHz	 - 25 devices (25 MHz devices)
			DC	—	33	MHz	 - 33 devices (33 MHz devices)
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	1	—	8	MHz	XT osc mode - 08 devices (8 MHz devices)
			1	—	16	MHz	 16 devices (16 MHz devices)
			1	—	25	MHz	 - 25 devices (25 MHz devices)
			1	—	33	MHz	 - 33 devices (33 MHz devices)
			DC	—	2	MHz	LF osc mode
1	Tosc	External CLKIN Period	125	—	—	ns	EC osc mode - 08 devices (8 MHz devices)
		(Note 1)	62.5	—	—	ns	 16 devices (16 MHz devices)
			40	—	—	ns	 - 25 devices (25 MHz devices)
			30.3	—	—	ns	- 33 devices (33 MHz devices)
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	125	—	1,000	ns	XT osc mode - 08 devices (8 MHz devices)
			62.5	—	1,000	ns	 16 devices (16 MHz devices)
			40	—	1,000	ns	 - 25 devices (25 MHz devices)
			30.3	—	1,000	ns	 - 33 devices (33 MHz devices)
			500	—	—	ns	LF osc mode
2	TCY	Instruction Cycle Time	121.2	4/Fosc	DC	ns	
		(Note 1)					
3	TosL,	Clock in (OSC1)	10 ‡	—	—	ns	EC oscillator
	TosH	high or low time					
4	TosR,	Clock in (OSC1)	_		5‡	ns	EC oscillator
	TosF	rise or fall time					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

NOTES:

NOTES:

E.6 **PIC16C8X Family of Devices**

÷ Note

WDT	99, 103
Clearing the WDT	103
Normal Timer	103
Period	103
Programming Considerations	103
WDTPS0	
WDTPS1	
WREG	

Χ

XORLW	. 141
XORWF	. 141

Ζ

Ζ	 	 9,	36
Zero (Z)	 	 	9

LIST OF EXAMPLES

Example 3-1:	Signed Math	9
Example 3-2:	Instruction Pipeline Flow	14
Example 5-1:	Saving STATUS and WREG in RAM	27
Example 6-1:	Indirect Addressing	40
Example 7-1:	Table Write	46
Example 7-2:	Table Read	48
Example 8-1:	8 x 8 Multiply Routine	49
Example 8-2:	8 x 8 Signed Multiply Routine	49
Example 8-3:	16 x 16 Multiply Routine	50
Example 8-4:	16 x 16 Signed Multiply Routine	51
Example 9-1:	Initializing PORTB	57
Example 9-2:	Initializing PORTC	58
Example 9-3:	Initializing PORTD	60
Example 9-4:	Initializing PORTE	62
Example 9-5:	Read Modify Write Instructions on an	
	I/O Port	64
Example 11-1:	16-Bit Read	69
Example 11-2:	16-Bit Write	69
Example 12-1:	Sequence to Read Capture Registers.	78
Example 12-2:	Writing to TMR3	80
Example 12-3:	Reading from TMR3	80
Example 13-1:	Calculating Baud Rate Error	86
Example F-1:	PIC17C42 to Sleep	223

LIST OF FIGURES

Figure 3-1:	PIC17C42 Block Diagram	10
Figure 3-2:	PIC17CR42/42A/43/R43/44 Block	
	Diagram	11
Figure 3-3:	Clock/Instruction Cycle	14
Figure 4-1:	Simplified Block Diagram of On-chip	
	Reset Circuit	15
Figure 4-2:	Time-Out Sequence on Power-Up	
	(MCLR Tied to VDD)	17
Figure 4-3:	Time-Out Sequence on Power-Up	
	(MCLR NOT Tied to VDD)	17
Figure 4-4:	Slow Rise Time (MCLR Tied to VDD)	17
Figure 4-5:	Oscillator Start-Up Time	18
Figure 4-6:	Using On-Chip POR	18
Figure 4-7:	Brown-out Protection Circuit 1	18
Figure 4-8:	PIC17C42 External Power-On Reset	
	Circuit (For Slow VDD Power-Up)	18
Figure 4-9:	Brown-out Protection Circuit 2	18
Figure 5-1:	Interrupt Logic	21
Figure 5-2:	INTSTA Register (Address: 07h,	
	Unbanked)	22
Figure 5-3:	PIE Register (Address: 17h, Bank 1)	23
Figure 5-4:	PIR Register (Address: 16h, Bank 1)	24
Figure 5-5:	INT Pin / T0CKI Pin Interrupt Timing	26
Figure 6-1:	Program Memory Map and Stack	29
Figure 6-2:	Memory Map in Different Modes	30
Figure 6-3:	External Program Memory Access	
	Waveforms	31
Figure 6-4:	Typical External Program Memory	
	Connection Diagram	31
Figure 6-5:	PIC17C42 Register File Map	33
Figure 6-6:	PIC17CR42/42A/43/R43/44 Register	
	File Map	33
Figure 6-7:	ALUSTA Register (Address: 04h,	
	Unbanked)	36
Figure 6-8:	CPUSTA Register (Address: 06h,	
	Unbanked)	37
Figure 6-9:	T0STA Register (Address: 05h,	
	Unbanked)	38
Figure 6-10:	Indirect Addressing	39
Figure 6-11:	Program Counter Operation	41