

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-25-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Address	Power-on Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through interrupt
Unbanked			1	
INDF0	00h	0000 0000	0000 0000	0000 0000
FSR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
PCLATH	03h	0000 0000	0000 0000	uuuu uuuu
ALUSTA	04h	1111 xxxx	1111 uuuu	1111 uuuu
TOSTA	05h	0000 000-	0000 000-	0000 000-
CPUSTA ⁽³⁾	06h	11 11	11 qq	uu qq
INTSTA	07h	0000 0000	0000 0000	uuuu uuuu ⁽¹⁾
INDF1	08h	0000 0000	0000 0000	uuuu uuuu
FSR1	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
WREG	0Ah	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR0L	0Bh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR0H	0Ch	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁴⁾	0Dh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRH ⁽⁴⁾	0Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁵⁾	0Dh	0000 0000	0000 0000	uuuu uuuu
TBLPTRH ⁽⁵⁾	0Eh	0000 0000	0000 0000	uuuu uuuu
BSR	0Fh	0000 0000	0000 0000	uuuu uuuu
Bank 0				
PORTA	10h	0-xx xxxx	0-uu uuuu	uuuu uuuu
DDRB	11h	1111 1111	1111 1111	uuuu uuuu
PORTB	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
RCSTA	13h	0000 -00x	0000 -00u	uuuu -uuu
RCREG	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXSTA	15h	00001x	0000lu	uuuuuu
TXREG	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
SPBRG	17h	XXXX XXXX	uuuu uuuu	นนนน นนนน
Bank 1				
DDRC	10h	1111 1111	1111 1111	uuuu uuuu
PORTC	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu
DDRD	12h	1111 1111	1111 1111	uuuu uuuu
PORTD	13h	XXXX XXXX	นนนน นนนน	uuuu uuuu
DDRE	14h	111	111	uuu
PORTE	15h	xxx	uuu	uuu
PIR	16h	0000 0010	0000 0010	uuuu uuuu ⁽¹⁾
PIE	17h	0000 0000	0000 0000	นนนน นนนน

TABLE 4-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTER	TABLE 4-4:	INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS
--	------------	--

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

5.2 <u>Peripheral Interrupt Enable Register</u> (PIE)

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 5-3: PIE REGISTER (ADDRESS: 17h, BANK 1)

_R/W - 0	
RBIE	TMR3IE TMR2IE TMR1IE CA2IE CA1IE TXIE RCIE R = Readable bit
bit7	bit0 W = Writable bit
bit 7:	RBIE : PORTB Interrupt on Change Enable bit 1 = Enable PORTB interrupt on change 0 = Disable PORTB interrupt on change
bit 6:	TMR3IE : Timer3 Interrupt Enable bit 1 = Enable Timer3 interrupt 0 = Disable Timer3 interrupt
bit 5:	TMR2IE : Timer2 Interrupt Enable bit 1 = Enable Timer2 interrupt 0 = Disable Timer2 interrupt
bit 4:	TMR1IE: Timer1 Interrupt Enable bit 1 = Enable Timer1 interrupt 0 = Disable Timer1 interrupt
bit 3:	CA2IE : Capture2 Interrupt Enable bit 1 = Enable Capture interrupt on RB1/CAP2 pin 0 = Disable Capture interrupt on RB1/CAP2 pin
bit 2:	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture interrupt on RB2/CAP1 pin 0 = Disable Capture interrupt on RB2/CAP1 pin
bit 1:	TXIE : USART Transmit Interrupt Enable bit 1 = Enable Transmit buffer empty interrupt 0 = Disable Transmit buffer empty interrupt
bit 0:	RCIE : USART Receive Interrupt Enable bit 1 = Enable Receive buffer full interrupt 0 = Disable Receive buffer full interrupt

6.1.2 EXTERNAL MEMORY INTERFACE

When either microprocessor or extended microcontroller mode is selected, PORTC, PORTD and PORTE are configured as the system bus. PORTC and PORTD are the multiplexed address/data bus and PORTE is for the control signals. External components are needed to demultiplex the address and data. This can be done as shown in Figure 6-4. The waveforms of address and data are shown in Figure 6-3. For complete timings, please refer to the electrical specification section.

FIGURE 6-3: EXTERNAL PROGRAM MEMORY ACCESS WAVEFORMS

		••••••
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1
AD	X	
<15:0>	Address out Data in	Address out Data out
ALE		
OE,	'1'	
WR		
	Read cycle	Write cycle

The system bus requires that there is no bus conflict (minimal leakage), so the output value (address) will be capacitively held at the desired value.

As the speed of the processor increases, external EPROM memory with faster access time must be used. Table 6-2 lists external memory speed requirements for a given PIC17C4X device frequency.

In extended microcontroller mode, when the device is executing out of internal memory, the control signals will continue to be active. That is, they indicate the action that is occurring in the internal memory. The external memory access is ignored.

This following selection is for use with Microchip EPROMs. For interfacing to other manufacturers memory, please refer to the electrical specifications of the desired PIC17C4X device, as well as the desired memory device to ensure compatibility.

TABLE 6-2:	EPROM MEMORY ACCESS
	TIME ORDERING SUFFIX

	Instruction	EPROM	I Suffix
Oscillator Frequency	Cycle Time (Tcy)	PIC17C42	PIC17C43 PIC17C44
8 MHz	500 ns	-25	-25
16 MHz	250 ns	-12	-15
20 MHz	200 ns	-90	-10
25 MHz	160 ns	N.A.	-70
33 MHz	121 ns	N.A.	(1)

Note 1: The access times for this requires the use of fast SRAMS.

Note: The external memory interface is not supported for the LC devices.

FIGURE 6-4: TYPICAL EXTERNAL PROGRAM MEMORY CONNECTION DIAGRAM

© 1996 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)
Bank 2	Bank 2										
10h	TMR1	Timer1								xxxx xxxx	uuuu uuuu
11h	TMR2	Timer2								xxxx xxxx	uuuu uuuu
12h	TMR3L	TMR3 reg	ister; low b	yte						xxxx xxxx	uuuu uuuu
13h	TMR3H	TMR3 reg	ister; high l	oyte						xxxx xxxx	uuuu uuuu
14h	PR1	Timer1 pe	eriod registe	er						xxxx xxxx	uuuu uuuu
15h	PR2	Timer2 pe	eriod registe	er						xxxx xxxx	uuuu uuuu
16h	PR3L/CA1L	Timer3 pe	eriod registe	er, low byte/c	apture1 regi	ster; low by	te			xxxx xxxx	uuuu uuuu
17h	PR3H/CA1H	Timer3 pe	eriod registe	er, high byte/	capture1 reg	jister; high b	oyte			xxxx xxxx	uuuu uuuu
Bank 3											
10h	PW1DCL	DC1	DC0	—	—	—	—	—	—	xx	uu
11h	PW2DCL	DC1	DC0	TM2PW2	_	—	—	_	_	xx0	uu0
12h	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
14h	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu
16h	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
Unbanke	ed										
18h ⁽⁵⁾	PRODL	Low Byte	of 16-bit Pr	oduct (8 x 8	Hardware M	lultiply)				XXXX XXXX	uuuu uuuu
19h ⁽⁵⁾	PRODH	High Byte	of 16-bit P	roduct (8 x 8	B Hardware N	/lultiply)				XXXX XXXX	uuuu uuuu
Legend:	egend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition. Shaded cells are unimplemented, read as '0'.										

TABLE 6-3: SPECIAL FUNCTION REGISTERS (Cont.'d)

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset. The following values are for both TBLPTRL and TBLPTRH:

2:

3: 4:

All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu) The PRODL and PRODH registers are not implemented on the PIC17C42.

5:

6.3 <u>Stack Operation</u>

The PIC17C4X devices have a 16 x 16-bit wide hardware stack (Figure 6-1). The stack is not part of either the program or data memory space, and the stack pointer is neither readable nor writable. The PC is "PUSHed" onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is "POPed" in the event of a RETURN, RETLW, or a RETFIE instruction execution. PCLATH is not affected by a "PUSH" or a "POP" operation.

The stack operates as a circular buffer, with the stack pointer initialized to '0' after all resets. There is a stack available bit (STKAV) to allow software to ensure that the stack has not overflowed. The STKAV bit is set after a device reset. When the stack pointer equals Fh, STKAV is cleared. When the stack pointer rolls over from Fh to 0h, the STKAV bit will be held clear until a device reset.

- **Note 1:** There is not a status bit for stack underflow. The STKAV bit can be used to detect the underflow which results in the stack pointer being at the top of stack.
- Note 2: There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt vector.
- Note 3: After a reset, if a "POP" operation occurs before a "PUSH" operation, the STKAV bit will be cleared. This will appear as if the stack is full (underflow has occurred). If a "PUSH" operation occurs next (before another "POP"), the STKAV bit will be locked clear. Only a device reset will cause this bit to set.

After the device is "PUSHed" sixteen times (without a "POP"), the seventeenth push overwrites the value from the first push. The eighteenth push overwrites the second push (and so on).

6.4 Indirect Addressing

Indirect addressing is a mode of addressing data memory where the data memory address in the instruction is not fixed. That is, the register that is to be read or written can be modified by the program. This can be useful for data tables in the data memory. Figure 6-10 shows the operation of indirect addressing. This shows the moving of the value to the data memory address specified by the value of the FSR register.

Example 6-1 shows the use of indirect addressing to clear RAM in a minimum number of instructions. A similar concept could be used to move a defined number of bytes (block) of data to the USART transmit register (TXREG). The starting address of the block of data to be transmitted could easily be modified by the program.

FIGURE 6-10: INDIRECT ADDRESSING

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	;	FSR0 = 20h
	BCF	ALUSTA, FS1	;	Increment FSR
	BSF	ALUSTA, FSO	;	after access
	BCF	ALUSTA, C	;	C = 0
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	;	Addr(FSR) = 0
	CPFSEQ	FSR0	;	FSR0 = END_RAM+1?
	GOTO	LP	;	NO, clear next
	:		;	YES, All RAM is
	:		;	cleared

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

8.0 HARDWARE MULTIPLIER

All PIC17C4X devices except the PIC17C42, have an 8 x 8 hardware multiplier included in the ALU of the device. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit PRODuct register (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between the PIC17C42 and all other PIC17CXX devices, which have the single cycle hardware multiply.

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8×8 signed multiply. To account for the sign bits of the arguments, each argument's most significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 MULTIPLY ROUTINE

MOVFP	ARG1,	WREG					
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRO	DDI	H:PROI	DГ

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVFP	ARG1, WREG		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH: PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVFP	ARG2, WREG		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		•	- ARC2

Doutino	Deviee	Program Memory		Time		
Routine	Device	(Words)	Cycles (Max)	@ 25 MHz	@ 33 MHz	
8 x 8 unsigned	PIC17C42	13	69	11.04 μs	N/A	
	All other PIC17CXX devices	1	1	160 ns	121 ns	
8 x 8 signed	PIC17C42	—	—	—	N/A	
	All other PIC17CXX devices	6	6	960 ns	727 ns	
16 x 16 unsigned	PIC17C42	21	242	38.72 μs	N/A	
	All other PIC17CXX devices	24	24	3.84 µs	2.91 μs	
16 x 16 signed	PIC17C42	52	254	40.64 μs	N/A	
	All other PIC17CXX devices	36	36	5.76 μs	4.36 μs	

TABLE 8-1: PERFORMANCE COMPARISON

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in 4 registers RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

=

- ARG1H:ARG1L * ARG2H:ARG2L RES3:RES0 =
 - (ARG1H * ARG2H * 2¹⁶) +

(ARG1H * ARG2L * 2⁸) +

(ARG1L * ARG2H * 2⁸) (ARG1L * ARG2L)

+

EXAMPLE 8-3: 16 x 16 MULTIPLY ROUTINE

	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH:PRODL
	MOVPF	PRODH, RES1	;	
	MOVPF	PRODL, RESO	;	
;				
	MOVFP	ARG1H, WREG		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH:PRODL
	MOVPF	PRODH, RES3	;	
	MOVPF	PRODL, RES2	;	
;				
	MOVFP	ARG1L, WREG		
	MULWF	ARG2H	;	ARG1L * ARG2H ->
			;	PRODH:PRODL
	MOVFP	PRODL, WREG	;	
	ADDWF	RES1, F	;	Add cross
	MOVFP	PRODH, WREG	;	products
	ADDWFC	RES2, F	;	
	~			
	CLRF	WREG, F	;	
	CLRF ADDWFC	WREG, F RES3, F	; ;	
;	CLRF ADDWFC	RES3, F	; ;	
;	CLRF ADDWFC MOVFP	WREG, F RES3, F ARG1H, WREG	; ; ;	
;	CLRF ADDWFC MOVFP MULWF	WREG, F RES3, F ARG1H, WREG ARG2L	; ; ; ;	ARG1H * ARG2L ->
;	CLRF ADDWFC MOVFP MULWF	WREG, F RES3, F ARG1H, WREG ARG2L	;;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF	WREG, F RES3, F ARG1H, WREG ARG2L	;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF MOVFP	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG	;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP ADDWFC	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG RES2, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP ADDWFC CLRF	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG RES2, F WREG, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products

FIGURE 9-5: BLOCK DIAGRAM OF RB3 AND RB2 PORT PINS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
05h, Unbanked	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	_	0000 000-	0000 000-
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	-	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	T0CKIF	TOIF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
0Bh, Unbanked	TMR0L	TMR0 reg	TMR0 register; low byte								uuuu uuuu
0Ch, Unbanked	TMR0H	TMR0 reg	TMR0 register; high byte								uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

12.0 TIMER1, TIMER2, TIMER3, PWMS AND CAPTURES

The PIC17C4X has a wealth of timers and time-based functions to ease the implementation of control applications. These time-base functions include two PWM outputs and two Capture inputs.

Timer1 and Timer2 are two 8-bit incrementing timers, each with a period register (PR1 and PR2 respectively) and separate overflow interrupt flags. Timer1 and Timer2 can operate either as timers (increment on internal Fosc/4 clock) or as counters (increment on falling edge of external clock on pin RB4/TCLK12). They are also software configurable to operate as a single 16-bit timer. These timers are also used as the time-base for the PWM (pulse width modulation) module. Timer3 is a 16-bit timer/counter consisting of the TMR3H and TMR3L registers. This timer has four other associated registers. Two registers are used as a 16-bit period register or a 16-bit Capture1 register (PR3H/CA1H:PR3L/CA1L). The other two registers are strictly the Capture2 registers (CA2H:CA2L). Timer3 is the time-base for the two 16-bit captures.

TMR3 can be software configured to increment from the internal system clock or from an external signal on the RB5/TCLK3 pin.

Figure 12-1 and Figure 12-2 are the control registers for the operation of Timer1, Timer2, and Timer3, as well as PWM1, PWM2, Capture1, and Capture2.

FIGURE 12-1: TCON1 REGISTER (ADDRESS: 16h, BANK 3)

R/W - 0 R/W - 0 <t< th=""><th>$\begin{array}{c} \mathbf{S} \\ \mathbf{R} = \text{Readable bit} \\ \mathbf{W} = \mathbf{W} \text{ it blo bit} \end{array}$</th></t<>	$ \begin{array}{c} \mathbf{S} \\ \mathbf{R} = \text{Readable bit} \\ \mathbf{W} = \mathbf{W} \text{ it blo bit} \end{array} $
bit7 bit	-n = Value at POR reset
 bit 7-6: CA2ED1:CA2ED0: Capture2 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge 	
 bit 5-4: CA1ED1:CA1ED0: Capture1 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge 	
bit 3: T16 : Timer1:Timer2 Mode Select bit 1 = Timer1 and Timer2 form a 16-bit timer 0 = Timer1 and Timer2 are two 8-bit timers	
bit 2: TMR3CS : Timer3 Clock Source Select bit 1 = TMR3 increments off the falling edge of the RB5/TCLK3 pin 0 = TMR3 increments off the internal clock	
bit 1: TMR2CS : Timer2 Clock Source Select bit 1 = TMR2 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR2 increments off the internal clock	
bit 0: TMR1CS : Timer1 Clock Source Select bit 1 = TMR1 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR1 increments off the internal clock	

FIGURE 12-10: TMR1, TMR2, AND TMR3 OPERATION IN TIMER MODE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 re	gister							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 re	gister							xxxx xxxx	uuuu uuuu
12h, Bank 2	TMR3L	TMR3 reg	ister; low by	⁄te						xxxx xxxx	uuuu uuuu
13h, Bank 2	TMR3H	TMR3 reg	ister; high b	yte			_	-	_	xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD	—	—	11 11	11 qq
14h, Bank 2	PR1	Timer1 pe	riod registe	r		•				xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 pe	riod registe	r						xxxx xxxx	uuuu uuuu
16h, Bank 2	PR3L/CA1L	Timer3 pe	riod/capture	e1 register; l	ow byte					xxxx xxxx	uuuu uuuu
17h, Bank 2	PR3H/CA1H	Timer3 pe	riod/capture	e1 register; l	high byte					xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	_	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	—	—	—	—	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
14h, Bank 3	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h, Bank 3	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by TMR1, TMR2 or TMR3.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

MPASM allow full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

16.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

16.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

16.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

16.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

16.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

16.16 <u>TrueGauge[®] Intelligent Battery</u> <u>Management</u>

The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

16.17 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

17.1 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated) Operating temperature							
DC CHARA	CIERIS	STICS				-40°C	\leq TA \leq +85°C for industrial and	
						0°C	\leq TA \leq +70°C for commercial	
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage	4.5	_	5.5	V		
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	Ι	V	Device in SLEEP mode	
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details	
D004	Svdd	VDD rise rate to ensure internal Power-on Reset signal	0.060*	_	_	mV/ms	See section on Power-on Reset for details	
D010	IDD	Supply Current	-	3	6	mA	Fosc = 4 MHz (Note 4)	
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz	
D012			-	11	24 *	mA	Fosc = 16 MHz	
D013			-	19	38	mA	Fosc = 25 MHz	
D014			_	95	150	μA	Fosc = 32 kHz WDT enabled (EC osc configuration)	
D020	IPD	Power-down Current	_	10	40	μA	VDD = 5.5V, WDT enabled	
D021		(Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads need to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \cdot R)$. For capacitive loads, The current can be estimated (for an individual I/O pin) as (CL $\cdot VDD$) $\cdot f$

CL = Total capacitive load on the I/O pin; f = average frequency on the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

FIGURE 17-12: MEMORY INTERFACE READ TIMING

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 30		_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	5*	_	_	ns	
160	TadZ2oeL	AD<15:0> high impedance to $\overline{OE}\downarrow$	0*	—	—	ns	
161	ToeH2adD	OE↑ to AD<15:0> driven	0.25Tcy - 15	_	—	ns	
162	TadV2oeH	Data in valid before OE↑ (data setup time)	35	—	_	ns	
163	ToeH2adI	OE to data in invalid (data hold time)	0	_	_	ns	
164	TalH	ALE pulse width	—	0.25Tcy §	—	ns	
165	ToeL	OE pulse width	0.5Tcy - 35 §	_	_	ns	
166	TalH2alH	ALE↑ to ALE↑ (cycle time)	—	TCY §	—	ns	
167	Tacc	Address access time	—	—	0.75 Tcy-40	ns	
168	Тое	Output enable access time (OE low to Data Valid)	_	_	0.5 TCY - 60	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification guaranteed by design.

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-16: IOL vs. VOL, VDD = 3V

FIGURE 19-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 19-9: SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param								
No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER &						
		<u>SLAVE)</u>	PIC17CR42/42A/43/R43/44	—	-	50	ns	
		Clock high to data out valid	PIC17LCR42/42A/43/R43/44		—	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17CR42/42A/43/R43/44	_	_	25	ns	
	(Master Mode)	PIC17LCR42/42A/43/R43/44	_	_	40	ns		
122	TdtRF	Data out rise time and fall time	PIC17CR42/42A/43/R43/44	_	_	25	ns	
			PIC17LCR42/42A/43/R43/44	_	_	40	ns	
+	Data in "T	yp" column is at 5V, 25°C unless	otherwise stated. These parameters	are for	design	guidan	ce only	and are not

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-10: SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-6: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

FIGURE 20-17: IOL vs. VOL, VDD = 5V

FIGURE 20-18: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS (TTL) VS. VDD

E.7 <u>PIC16C9XX Family Of Devices</u>