E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-25-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC17C4X can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC17C4X uses a modified Harvard architecture. This architecture has the program and data accessed from separate memories. So the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC17C4X opcodes are 16-bits wide, enabling single word instructions. The full 16-bit wide program memory bus fetches a 16-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions execute in a single cycle (121 ns @ 33 MHz), except for program branches and two special instructions that transfer data between program and data memory.

The PIC17C4X can address up to 64K x 16 of program memory space.

The **PIC17C42** and **PIC17C42A** integrate 2K x 16 of EPROM program memory on-chip, while the **PIC17CR42** has 2K x 16 of ROM program memory on-chip.

The **PIC17C43** integrates 4K x 16 of EPROM program memory, while the **PIC17CR43** has 4K x 16 of ROM program memory.

The **PIC17C44** integrates 8K x 16 EPROM program memory.

Program execution can be internal only (microcontroller or protected microcontroller mode), external only (microprocessor mode) or both (extended microcontroller mode). Extended microcontroller mode does not allow code protection.

The PIC17CXX can directly or indirectly address its register files or data memory. All special function registers, including the Program Counter (PC) and Working Register (WREG), are mapped in the data memory. The PIC17CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC17CXX simple yet efficient. In addition, the learning curve is reduced significantly.

One of the PIC17CXX family architectural enhancements from the PIC16CXX family allows two file registers to be used in some two operand instructions. This allows data to be moved directly between two registers without going through the WREG register. This increases performance and decreases program memory usage. The PIC17CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature.

The WREG register is an 8-bit working register used for ALU operations.

All PIC17C4X devices (except the PIC17C42) have an 8 x 8 hardware multiplier. This multiplier generates a 16-bit result in a single cycle.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Although the ALU does not perform signed arithmetic, the Overflow bit (OV) can be used to implement signed math. Signed arithmetic is comprised of a magnitude and a sign bit. The overflow bit indicates if the magnitude overflows and causes the sign bit to change state. Signed math can have greater than 7-bit values (magnitude), if more than one byte is used. The use of the overflow bit only operates on bit6 (MSb of magnitude) and bit7 (sign bit) of the value in the ALU. That is, the overflow bit is not useful if trying to implement signed math where the magnitude, for example, is 11-bits. If the signed math values are greater than 7-bits (15-, 24or 31-bit), the algorithm must ensure that the low order bytes ignore the overflow status bit.

Care should be taken when adding and subtracting signed numbers to ensure that the correct operation is executed. Example 3-1 shows an item that must be taken into account when doing signed arithmetic on an ALU which operates as an unsigned machine.

EXAMPLE 3-1: SIGNED MATH

Hex Value	Signed Value Math	Unsigned Value Math
FFh	-127	255
<u>+ 01h</u>	<u>+ 1</u>	<u>+ 1</u>
= ?	= -126 (FEh)	= 0 (00h); Carry bit = 1
		curry pro - r

Signed math requires the result in REG to be FEh (-126). This would be accomplished by subtracting one as opposed to adding one.

Simplified block diagrams are shown in Figure 3-1 and Figure 3-2. The descriptions of the device pins are listed in Table 3-1.

© 1996 Microchip Technology Inc.

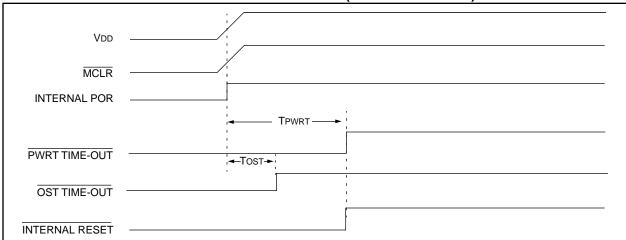
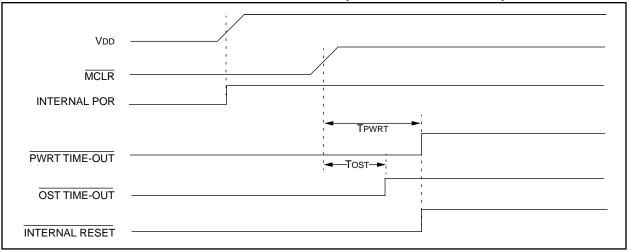
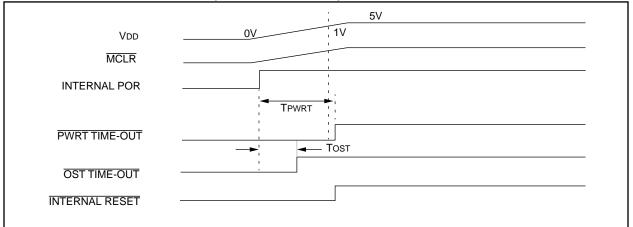




FIGURE 4-2: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

FIGURE 4-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)

FIGURE 4-4: SLOW RISE TIME (MCLR TIED TO VDD)

Register	Address	Power-on Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through interrupt
Unbanked	L		<u></u>	
INDF0	00h	0000 0000	0000 0000	0000 0000
FSR0	01h	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
PCLATH	03h	0000 0000	0000 0000	uuuu uuuu
ALUSTA	04h	1111 xxxx	1111 uuuu	1111 uuuu
TOSTA	05h	0000 000-	0000 000-	0000 000-
CPUSTA ⁽³⁾	06h	11 11	11 qq	uu qq
INTSTA	07h	0000 0000	0000 0000	uuuu uuuu(¹⁾
INDF1	08h	0000 0000	0000 0000	<u>uuuu</u> uuuu
FSR1	09h	XXXX XXXX	uuuu uuuu	uuuu uuuu
WREG	0Ah	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR0L	0Bh	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR0H	0Ch	XXXX XXXX	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁴⁾	0Dh	XXXX XXXX	uuuu uuuu	นนนน นนนน
TBLPTRH (4)	0Eh	XXXX XXXX	uuuu uuuu	uuuu uuuu
TBLPTRL (5)	0Dh	0000 0000	0000 0000	uuuu uuuu
TBLPTRH ⁽⁵⁾	0Eh	0000 0000	0000 0000	<u>uuuu</u> uuuu
BSR	0Fh	0000 0000	0000 0000	
Bank 0	I		I	
PORTA	10h	0-xx xxxx	0-uu uuuu	<u>uuuu</u> uuuu
DDRB	11h	1111 1111	1111 1111	
PORTB	12h	XXXX XXXX	uuuu uuuu	uuuu uuuu
RCSTA	13h	0000 -00x	0000 -00u	uuuu -uuu
RCREG	14h	XXXX XXXX	uuuu uuuu	uuuu uuuu
TXSTA	15h	00001x	00001u	uuuuuu
TXREG	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
SPBRG	17h	XXXX XXXX	uuuu uuuu	นนนน นนนน
Bank 1				
DDRC	10h	1111 1111	1111 1111	uuuu uuuu
PORTC	11h	XXXX XXXX	uuuu uuuu	uuuu uuuu
DDRD	12h	1111 1111	1111 1111	uuuu uuuu
PORTD	13h	XXXX XXXX	uuuu uuuu	นนนน นนนน
DDRE	14h	111	111	uuu
PORTE	15h	xxx	uuu	uuu
PIR	16h	0000 0010	0000 0010	uuuu uuuu ⁽¹⁾
PIE	17h	0000 0000	0000 0000	uuuu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

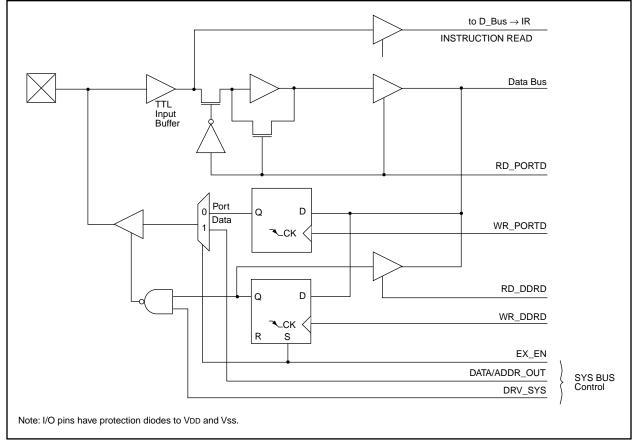
When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

9.4 PORTD and DDRD Registers

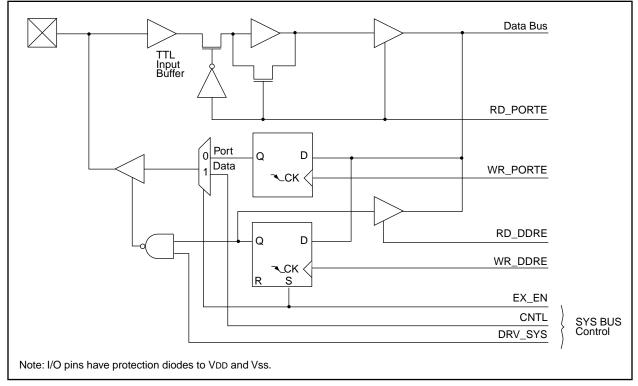

PORTD is an 8-bit bi-directional port. The corresponding data direction register is DDRD. A '1' in DDRD configures the corresponding port pin as an input. A '0' in the DDRC register configures the corresponding port pin as an output. Reading PORTD reads the status of the pins, whereas writing to it will write to the port latch. PORTD is multiplexed with the system bus. When operating as the system bus, PORTD is the high order byte of the address/data bus (AD15:AD8). The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-3 shows the instruction sequence to initialize PORTD. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-3: INITIALIZING PORTD

MOVLB	1	;	Select Bank 1
CLRF	PORTD	;	Initialize PORTD data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRD	;	Set RD<3:0> as inputs
		;	RD<5:4> as outputs
		;	RD<7:6> as inputs

9.4.1 PORTE AND DDRE REGISTER


PORTE is a 3-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to it will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (\overline{OE}), and Write (\overline{WR}). The control signals \overline{OE} and \overline{WR} are active low signals. The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-4 shows the instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-4: INITIALIZING PORTE

MOVLB	1	;	Select Bank 1
CLRF	PORTE	;	Initialize PORTE data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0x03	;	Value used to initialize
		;	data direction
MOVWF	DDRE	;	Set RE<1:0> as inputs
		;	RE<2> as outputs
		;	RE<7:3> are always
		;	read as '0'

FIGURE 9-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

TABLE 9-9: PORTE FUNCTIONS

Name	Bit	Buffer Type	Function
RE0/ALE	bit0	TTL	Input/Output or system bus Address Latch Enable (ALE) control pin.
RE1/OE	bit1	TTL	Input/Output or system bus Output Enable (OE) control pin.
RE2/WR	bit2	TTL	Input/Output or system bus Write (WR) control pin.

Legend: TTL = TTL input.

TABLE 9-10: REGISTERS/BITS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
15h, Bank 1	PORTE	—	—	—	—	_	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu
14h, Bank 1	DDRE	Data dired	ata direction register for PORTE							111	111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

ADDLW	ADD Literal to WREG					
Syntax:	[label] A	[<i>label</i>] ADDLW k				
Operands:	$0 \le k \le 25$	55				
Operation:	(WREG) -	+ k \rightarrow (V	VREG)			
Status Affected:	OV, C, DC	C, Z				
Encoding:	1011	0001	kkkk	kkkk		
Description:	The contents of WREG are added to t 8-bit literal 'k' and the result is placed WREG.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		
Decode	Read literal 'k'	Execu		Vrite to WREG		
Example:	ADDLW	0x15				
Before Instruc WREG =						

ADDWF	ADD WRE	EG to f				
Syntax:	[<i>label</i>] A[DDWF 1	f,d			
Operands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$				
Operation:	(WREG) +	- (f) \rightarrow (de	est)			
Status Affected:	OV, C, DC	, Z				
Encoding:	0000	111d	ffff	ffff		
Description:	Add WREG result is sto result is sto	red in WRE	EG. If 'd'	is 1 the		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Execute	· ·	/rite to stination		
Example:	ADDWF	REG, 0				
Before Instru WREG REG	iction = 0x17 = 0xC2					
After Instruct WREG REG	tion = 0xD9 = 0xC2					

After Instruction WREG = 0x25

MOVLR	Move Literal to high nibble in BSR			
Syntax:	[<i>label</i>] MOVLR k			
Operands:	$0 \le k \le 15$			
Operation:	$k \rightarrow (BSR < 7:4>)$			
Status Affected:	None			
Encoding:	1011 101x kkkk uuuu			
Description: The 4-bit literal 'k' is loaded into th most significant 4-bits of the Bank Select Register (BSR). Only the his 4-bits of the Bank Select Register are affected. The lower half of the BSR is unchanged. The assemble will encode the "u" fields as 0.				
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2 Q3 Q4			
Decode	Read literal Execute Write 'k:u' literal 'k' to BSR<7:4>			
Example:	MOVLR 5			
Before Instruction BSR register = 0x22 After Instruction				
BSR regis				
	nstruction is not available in the C42 device.			

MOVLW	Move Literal to WREG
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (WREG)$
Status Affected:	None
Encoding:	1011 0000 kkkk kkkk
Description:	The eight bit literal 'k' is loaded into WREG.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Execute Write to literal 'k' WREG
Example:	MOVLW 0x5A
After Instruc WREG	

© 1996 Microchip Technology Inc.

TABLRD	Table R	ead	
Example1:	TABLRD	1, 1,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0,4,1000
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0xAA
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR			0xA357
MEMORY	(TBLPTR)	=	0x5678
Example2:	TABLRD	0, 0,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0x55
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234

TABLWT	Table Writ	-		
Syntax:	[<i>label</i>] T	ABLWT	t,i,f	
Operands:	$0 \le f \le 255$ $i \in [0,1]$ $t \in [0,1]$	5		
Operation:	If $t = 0$, $f \rightarrow TB$	LATL;		
	If t = 1, f \rightarrow TB	LATH; \rightarrow Prog	Mom	
	lf i = 1,	$R + 1 \rightarrow$		
Status Affected:	None			
Encoding:	1010	11ti	ffff	ffff
Description:	latch (If t = 0	value in 'f' TBLAT) : load into : load into	low by	te;
	to the pointe	ontents of program r d to by TB _PTR poi	nemory LPTR	location
	the ins If TBL	m memor struction ta PTR point M locati	akes tw ts to ar	o-cycle
	instruc	ction is te	erminat	ed when
	LR/VPP pin m for successfu			
-	VPP = VDD gramming sec	wence of	intern	al memor
will be	executed, be h the interna	ut will no	ot be	successf
	- /	BLPTR ca	an be a	automati-
		ncremente ; TBLPTF		
	lf i = 1	increme ; TBLPTF		emented
Words:	1	, 182111		omoniou
Cycles:	2 (many if EPROM p			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Execut	e	Write

16.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

16.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

16.8 <u>PICDEM-3 Low-Cost PIC16CXXX</u> Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals. PICDEM-3 will be available in the 3rd quarter of 1996.

16.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- · A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information
- Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

16.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

Droduct	** MDI ADTM		MD-Drivo/Mov		*** DICMACTED®/				DIC CTADT® DI
	Integrated	Compiler	Applications	Explorer/Edition	PICMASTER-CE	Low-Cost	II Universal	Ultra Low-Cost	Low-Cost
	Development Environment		Code Generator	Fuzzy Logic Dev. Tool	In-Circuit Emulator	In-Circuit Emulator	Microchip Programmer	Dev. Kit	Universal Dev. Kit
PIC12C508, 509	SW007002	SW006005	1	I	EM167015/ EM167101	1	DV007003	1	DV003001
PIC14000	SW007002	SW006005	I	I	EM147001/ EM147101	1	DV007003	I	DV003001
PIC16C52, 54, 54A, 55, 56, 57, 58A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167015/ EM167101	EM167201	DV007003	DV162003	DV003001
PIC16C554, 556, 558	SW007002	SW006005	1	DV005001/ DV005002	EM167033/ EM167113	1	DV007003	I	DV003001
PIC16C61	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167021/ N/A	EM167205	DV007003	DV162003	DV003001
PIC16C62, 62A, 64, 64A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167025/ EM167103	EM167203	DV007003	DV162002	DV003001
PIC16C620, 621, 622	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167023/ EM167109	EM167202	DV007003	DV162003	DV003001
PIC16C63, 65, 65A, 73, 73A, 74, 74A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167025/ EM167103	EM167204	DV007003	DV162002	DV003001
PIC16C642, 662*	SW007002	SW006005	1	I	EM167035/ EM167105	1	DV007003	DV162002	DV003001
PIC16C71	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167027/ EM167105	EM167205	DV007003	DV162003	DV003001
PIC16C710, 711	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167027/ EM167105	1	DV007003	DV162003	DV003001
PIC16C72	SW007002	SW006005	SW006006	I	EM167025/ EM167103	1	DV007003	DV162002	DV003001
PIC16F83	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107	1	DV007003	DV162003	DV003001
PIC16C84	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107	EM167206	DV007003	DV162003	DV003001
PIC16F84	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107		DV007003	DV162003	DV003001
PIC16C923, 924*	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167031/ EM167111		DV007003	I	DV003001
PIC17C42, 42A, 43, 44	SW007002	SW006005	SW006006	DV005001/ DV005002	EM177007/ EM177107	1	DV007003	I	DV003001
*Contact Microchip Technology for availability date **MPLAB Integrated Development Environment includes MPLAB-SIM Simulator and MPASM Assembler	innology for avails velopment Enviro	ability date inment includes	s MPLAB-SIM Sir	mulator and	***All PICMASTER and PICMASTER-CE ordering part numbers above include PRO MATE II programmer ****PRO MATE socket modules are ordered separately. See development systems ordering guide for specific ordering part numbers	and PICMAST rogrammer at modules are or specific orde	II PICMASTER and PICMASTER-CE ordering par PRO MATE II programmer RO MATE socket modules are ordered separately. ordering guide for specific ordering part numbers	***All PICMASTER and PICMASTER-CE ordering part numbers above include PRO MATE II programmer **PRO MATE socket modules are ordered separately. See development system ordering guide for specific ordering part numbers	lude stems
Product	TRUEGAUGI	TRUEGAUGE® Development Kit		SEEVAL® Designers Kit	Hopping Code Security Programmer Kit	Security Prog		Hopping Code Security Eval/Demo Kit	ity Eval/Demo Kit
All 2 wire and 3 wire Serial EEPROM's		N/A		DV243001		N/A		N/A	
MTA11200B		DV114001		N/A		N/A		N/A	
HCS200, 300, 301 *		N/A		N/A	-	PG306001		DM303001	001

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

17.1 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

DC CHARA	CTERIS	STICS	Standard Operating	-	-		ns (unless otherwise stated)
						-40°C	
		1	1			0°C	\leq TA \leq +70°C for commercial
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.5	_	5.5	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060*	_	_	mV/ms	See section on Power-on Reset for details
D010	IDD	Supply Current	_	3	6	mA	Fosc = 4 MHz (Note 4)
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz
D012			-	11	24 *	mA	Fosc = 16 MHz
D013			-	19	38	mA	Fosc = 25 MHz
D014			-	95	150	μA	Fosc = 32 kHz WDT enabled (EC osc configuration)
D020	IPD	Power-down Current	_	10	40	μA	VDD = 5.5V, WDT enabled
D021		(Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled

* These parameters are characterized but not tested.

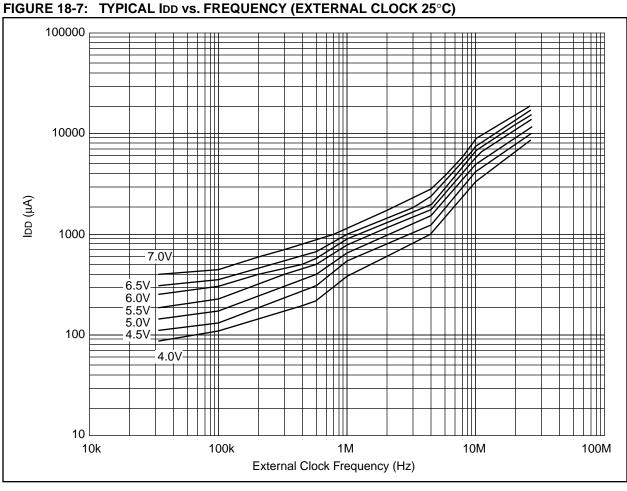
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

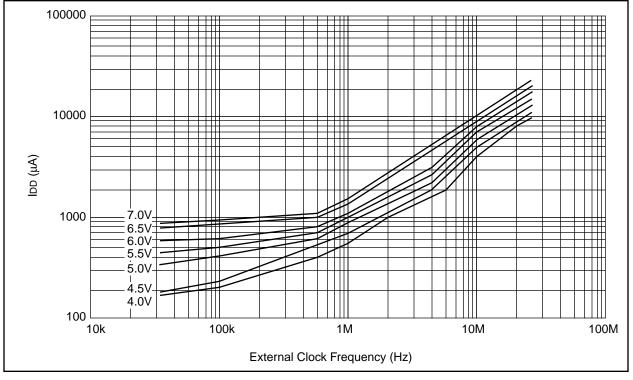
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.


Current consumed from the oscillator and I/O's driving external capacitive or resistive loads need to be considered.

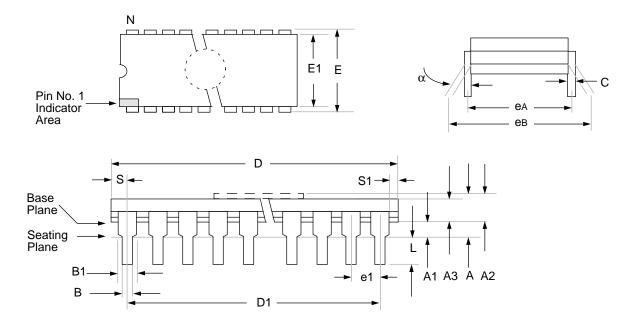
For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \cdot R)$. For capacitive loads, The current can be estimated (for an individual I/O pin) as (CL $\cdot VDD$) $\cdot f$

CL = Total capacitive load on the I/O pin; f = average frequency on the I/O pin switches.


The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 42 R42 42A 43 R43 44



NOTES:

21.0 PACKAGING INFORMATION

21.1 40-Lead Ceramic CERDIP Dual In-line, and CERDIP Dual In-line with Window (600 mil)

Package Group: Ceramic CERDIP Dual In-Line (CDP)						
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
Ν	40	40		40	40	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

© 1996 Microchip Technology Inc.

APPENDIX F: ERRATA FOR PIC17C42 SILICON

The PIC17C42 devices that you have received have the following anomalies. At present there is no intention for future revisions to the present PIC17C42 silicon. If these cause issues for the application, it is recommended that you select the PIC17C42A device.

Note: New designs should use the PIC17C42A.

 When the Oscillator Start-Up Timer (OST) is enabled (in LF or XT oscillator modes), any interrupt that wakes the processor may cause a WDT reset. This occurs when the WDT is greater than or equal to 50% time-out period when the SLEEP instruction is executed. This will not occur in either the EC or RC oscillator modes.

Work-arounds

- Always ensure that the CLRWDT instruction is executed before the WDT increments past 50% of the WDT period. This will keep the "false" WDT reset from occurring.
- b) When using the WDT as a normal timer (WDT disabled), ensure that the WDT is less than or equal to 50% time-out period when the SLEEP instruction is executed. This can be done by monitoring the TO bit for changing state from set to clear. Example 1 shows putting the PIC17C42 to sleep.

EXAMPLE F-1: PIC17C42 TO SLEEP

BTFSS	CPUSTA,	TO	;	TO = 0?
CLRWDT			;	YES, WDT = 0
BTFSC	CPUSTA,	то	;	WDT rollover?
GOTO	LOOP		;	NO, Wait
SLEEP			;	YES, goto Sleep
	CLRWDT BTFSC GOTO	CLRWDT BTFSC CPUSTA, GOTO LOOP	CLRWDT BTFSC CPUSTA, TO GOTO LOOP	BTFSC CPUSTA, TO ; GOTO LOOP ;

2. When the clock source of Timer1 or Timer2 is selected to external clock, the overflow interrupt flag will be set twice, once when the timer equals the period, and again when the timer value is reset to 0h. If the latency to clear TMRxIF is greater than the time to the next clock pulse, no problems will be noticed. If the latency is less than the time to the next timer clock pulse, the interrupt will be serviced twice.

Work-arounds

- a) Ensure that the timer has rolled over to 0h before clearing the flag bit.
- b) Clear the timer in software. Clearing the timer in software causes the period to be one count less than expected.

Design considerations

The device must not be operated outside of the specified voltage range. An external reset circuit must be used to ensure the device is in reset when a brown-out occurs or the VDD rise time is too long. Failure to ensure that the device is in reset when device voltage is out of specification may cause the device to lock-up and ignore the $\overline{\text{MCLR}}$ pin.

Figure 6-12:	Program Counter using The CALL and
Figure 6-13:	GOTO Instructions
Figure 7-1:	TLWT Instruction Operation43
Figure 7-2:	TABLWT Instruction Operation
Figure 7-3:	TLRD Instruction Operation
Figure 7-4:	TABLRD Instruction Operation
Figure 7-5:	TABLWT Write Timing
Figure 7-6:	(External Memory) 46 Consecutive TABLWT Write Timing
	(External Memory)47
Figure 7-7:	TABLRD Timing48
Figure 7-8:	TABLRD Timing (Consecutive TABLRD
0	Instructions)
Figure 9-1:	RA0 and RA1 Block Diagram53
Figure 9-2:	RA2 and RA3 Block Diagram
Figure 9-3:	RA4 and RA5 Block Diagram54
Figure 9-4:	Block Diagram of RB<7:4> and RB<1:0> Port Pins
Figuro 0 5:	Block Diagram of RB3 and RB2 Port Pins56
Figure 9-5:	
Figure 9-6:	Block Diagram of RC<7:0> Port Pins
Figure 9-7:	PORTD Block Diagram
	(in I/O Port Mode)60
Figure 9-8:	PORTE Block Diagram
	(in I/O Port Mode)
Figure 9-9:	Successive I/O Operation
Figure 11-1:	T0STA Register (Address: 05h,
riguio i i i.	Unbanked)
Figure 11-2:	Timer0 Module Block Diagram
0	
Figure 11-3:	TMR0 Timing with External Clock
	(Increment on Falling Edge)68
Figure 11-4:	TMR0 Timing: Write High or Low Byte 69
Figure 11-5:	TMR0 Read/Write in Timer Mode70
Figure 12-1:	TCON1 Register (Address: 16h, Bank 3) 71
Figure 12-2:	TCON2 Register (Address: 17h, Bank 3) 72
Figure 12-3:	Timer1 and Timer2 in Two 8-bit
0	Timer/Counter Mode73
Figure 12-4:	TMR1 and TMR2 in 16-bit Timer/Counter
1 iguie 12 4.	
	Mode74
Figure 12-5:	Mode
Figure 12-5: Figure 12-6:	Mode74Simplified PWM Block Diagram75PWM Output75
Figure 12-5:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and One
Figure 12-5: Figure 12-6: Figure 12-7:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78
Figure 12-5: Figure 12-6:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture Registers
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79
Figure 12-5: Figure 12-6: Figure 12-7:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation in
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation in
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 TMR1, TMR2, and TMR3 Operation in 81
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)84
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90Asynchronous Master Transmission
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90(Back to Back)90
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90Asynchronous Master Transmission90RX Pin Sampling Scheme91
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-7: Figure 13-8:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90RX Pin Sampling Scheme91Asynchronous Reception92
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90RX Pin Sampling Scheme91Asynchronous Transmission94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-7: Figure 13-8:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90RX Pin Sampling Scheme91Asynchronous Transmission94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-8: Figure 13-9:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90RX Pin Sampling Scheme91Asynchronous Transmission94Synchronous Transmission94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-7: Figure 13-9: Figure 13-10:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90RX Pin Sampling Scheme91Asynchronous Transmission94Synchronous Transmission94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-8: Figure 13-9:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90RX Pin Sampling Scheme91Asynchronous Transmission94Synchronous Transmission94Synchronous Reception (Master Mode,94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-2: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit.85USART Receive85Asynchronous Master Transmission90RX Pin Sampling Scheme91Asynchronous Transmission94Synchronous Reception94Synchronous Reception (Master Mode,85SREN)95
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-2: Figure 13-3: Figure 13-6: Figure 13-6: Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11: Figure 14-1:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit85USART Receive85Asynchronous Master Transmission90RX Pin Sampling Scheme91Asynchronous Transmission94Synchronous Transmission94Synchronous Reception (Master Mode,85SREN)95Configuration Word99
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-2: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11:	Mode74Simplified PWM Block Diagram75PWM Output75Timer3 with One Capture and OnePeriod Register Block Diagram78Timer3 with Two Capture RegistersBlock Diagram79TMR1, TMR2, and TMR3 Operation inExternal Clock Mode80TMR1, TMR2, and TMR3 Operation inTimer Mode81TXSTA Register (Address: 15h, Bank 0)83RCSTA Register (Address: 13h, Bank 0)84USART Transmit.85USART Receive85Asynchronous Master Transmission90RX Pin Sampling Scheme91Asynchronous Transmission94Synchronous Reception94Synchronous Reception (Master Mode,85SREN)95

Figure 14-3:	Crystal Operation, Overtone Crystals	
	(XT OSC Configuration)	101
Figure 14-4:	External Clock Input Operation	
	(EC OSC Configuration)	101
Figure 14-5:	External Parallel Resonant Crystal	
	Oscillator Circuit	102
Figure 14-6:	External Series Resonant Crystal	
	Oscillator Circuit	102
Figure 14-7:	RC Oscillator Mode	
Figure 14-8:	Watchdog Timer Block Diagram	104
Figure 14-9:	Wake-up From Sleep Through Interrupt	105
Figure 15-1:	General Format for Instructions	108
Figure 15-2:	Q Cycle Activity	
Figure 17-1:	Parameter Measurement Information	
Figure 17-2:	External Clock Timing	155
Figure 17-3:	CLKOUT and I/O Timing	
Figure 17-4:	Reset, Watchdog Timer,	
i igui e i i ii	Oscillator Start-Up Timer and	
	Power-Up Timer Timing	157
Figure 17-5:	Timer0 Clock Timings	
Figure 17-6:	Timer1, Timer2, And Timer3 Clock	150
Figure 17-0.	Timings	150
Figure 17-7:	Capture Timings	
Figure 17-8:	PWM Timings	159
Figure 17-9:	USART Module: Synchronous	
	Transmission (Master/Slave) Timing	160
Figure 17-10	,	
	(Master/Slave) Timing	
Figure 17-11		
Figure 17-12	: Memory Interface Read Timing	162
Figure 18-1:	Typical RC Oscillator Frequency	
	vs. Temperature	163
Figure 18-2:	Typical RC Oscillator Frequency	
-	vs. VDD	164
Figure 18-3:	Typical RC Oscillator Frequency	
0	vs. VDD	164
Figure 18-4:	Typical RC Oscillator Frequency	
0	vs. VDD	165
Figure 18-5:	Transconductance (gm) of LF Oscillator	
J	vs. VDD	166
Figure 18-6:	Transconductance (gm) of XT Oscillator	
	vs. VDD	166
Figure 18-7:	Typical IDD vs. Frequency (External	100
rigulo lo l.	Clock 25°C)	167
Figure 18-8:	Maximum IDD vs. Frequency (External	107
Figure 10-0.		167
Figure 19 0:	Clock 125°C to -40°C)	107
Figure 18-9:	Typical IPD vs. VDD Watchdog	400
Einung 40 40	Disabled 25°C	100
Figure 18-10		400
	Disabled	168
Figure 18-11		
	Enabled 25°C	169
Figure 18-12	: Maximum IPD vs. VDD Watchdog	
	Enabled	
Figure 18-13	: WDT Timer Time-Out Period vs. VDD	170
Figure 18-14	: IOH vs. VOH, VDD = 3V	170
Figure 18-15	: IOH vs. VOH, VDD = 5V	171
Figure 18-16		
Figure 18-17		
Figure 18-18		
3	I/O Pins (TTL) vs. VDD	172
Figure 18-19		
. iguto 10-19	VDD	173
Figure 18-20		115
- igure 10-20		172
Figure 10.4	Input (In XT and LF Modes) vs. VDD	
Figure 19-1:	Parameter Measurement Information	103

Figure 19-2:	External Clock Timing 184
Figure 19-3:	CLKOUT and I/O Timing 185
Figure 19-4:	Reset, Watchdog Timer,
riguio io 4.	Oscillator Start-Up Timer, and
-	Power-Up Timer Timing
Figure 19-5:	Timer0 Clock Timings 187
Figure 19-6:	Timer1, Timer2, and Timer3 Clock
	Timings 187
Figure 19-7:	Capture Timings 188
Figure 19-8:	PWM Timings
Figure 19-9:	USART Module: Synchronous
rigule 13-3.	
E'	Transmission (Master/Slave) Timing 189
Figure 19-10:	USART Module: Synchronous
	Receive (Master/Slave) Timing 189
Figure 19-11:	Memory Interface Write Timing
	(Not Supported in PIC17LC4X Devices) 190
Figure 19-12:	Memory Interface Read Timing
J	(Not Supported in PIC17LC4X Devices) 191
Figure 20-1:	Typical RC Oscillator Frequency vs.
rigule 20-1.	
F : 00.0	Temperature
Figure 20-2:	Typical RC Oscillator Frequency
	vs. VDD
Figure 20-3:	Typical RC Oscillator Frequency
	vs. VDD
Figure 20-4:	Typical RC Oscillator Frequency
J	vs. VDD
Figure 20-5:	Transconductance (gm) of LF Oscillator
1 igule 20-5.	
	vs. VDD
Figure 20-6:	Transconductance (gm) of XT Oscillator
	vs. VDD196
Figure 20-7:	Typical IDD vs. Frequency (External
	Clock 25°C) 197
Figure 20-8:	Maximum IDD vs. Frequency (External
J	Clock 125°C to -40°C) 197
Figure 20-9:	Typical IPD vs. VDD Watchdog
riguie 20 5.	
Einung 00 40.	Disabled 25°C
Figure 20-10:	Maximum IPD vs. VDD Watchdog
	Disabled198
Figure 20-11:	Typical IPD vs. VDD Watchdog
	Enabled 25°C 199
Figure 20-12:	Maximum IPD vs. VDD Watchdog
0	Enabled199
Figure 20-13:	WDT Timer Time-Out Period vs. VDD 200
Figure 20-14:	IOH vs. VOH, $VDD = 3V$
Figure 20-15:	IOH vs. VOH, VDD = 5V
Figure 20-16:	IOL vs. VOL, VDD = 3V
Figure 20-17:	IOL vs. VOL, VDD = 5V
Figure 20-18:	Vтн (Input Threshold Voltage) of
	I/O Pins (TTL) vs. VDD
Figure 20-19:	VTH, VIL of I/O Pins (Schmitt Trigger)
ga.o _o .o.	vs. VDD
Figure 20-20:	VTH (Input Threshold Voltage) of OSC1
1 igule 20-20.	
	Input (In XT and LF Modes) vs. VDD 203
LIST OF TAE	
LIST OF TAE	
Table 1-1:	PIC17CXX Family of Devices 6
Table 3-1:	Pinout Descriptions12
Table 4-1:	Time-Out in Various Situations
Table 4-2:	STATUS Bits and Their Significance

Mode Memory Access 30

Initialization Conditions For Special

Table 6-2:	EPROM Memory Access Time
	Ordering Suffix
Table 6-3:	Special Function Registers34
Table 7-1:	Interrupt - Table Write Interaction45
Table 8-1:	Performance Comparison49
Table 9-1:	PORTA Functions
Table 9-2:	Registers/Bits Associated with PORTA54
Table 9-3:	PORTB Functions
Table 9-4: Table 9-5:	Registers/Bits Associated with PORTB57 PORTC Functions
Table 9-5: Table 9-6:	Registers/Bits Associated with PORTC59
Table 9-0. Table 9-7:	PORTD Functions
Table 9-8:	Registers/Bits Associated with PORTD61
Table 9-9:	PORTE Functions
Table 9-10:	Registers/Bits Associated with PORTE63
Table 11-1:	Registers/Bits Associated with Timer070
Table 12-1:	Turning On 16-bit Timer74
Table 12-2:	Summary of Timer1 and Timer2
	Registers
Table 12-3:	PWM Frequency vs. Resolution at
	25 MHz
Table 12-4:	Registers/Bits Associated with PWM77
Table 12-5:	Registers Associated with Capture79
Table 12-6:	Summary of TMR1, TMR2, and TMR3
	Registers81
Table 13-1:	Baud Rate Formula86
Table 13-2:	Registers Associated with Baud Rate
	Generator86
Table 13-3:	Baud Rates for Synchronous Mode87
Table 13-4:	Baud Rates for Asynchronous Mode88
Table 13-5:	Registers Associated with Asynchronous
	Transmission90
Table 13-6:	Registers Associated with Asynchronous
	Reception92
Table 13-7:	Registers Associated with Synchronous
	Master Transmission
Table 13-8:	Registers Associated with Synchronous
T 40.0	Master Reception
Table 13-9:	Registers Associated with Synchronous
Table 40.40	Slave Transmission
Table 13-10:	Registers Associated with Synchronous
Table 14-1:	Slave Reception
Table 14-1. Table 14-2:	Capacitor Selection for Ceramic
	Resonators
Table 14-3:	Capacitor Selection for Crystal
Table 14-5.	OscillatoR
Table 14-4:	Registers/Bits Associated with the
	Watchdog Timer
Table 15-1:	Opcode Field Descriptions
Table 15-2:	PIC17CXX Instruction Set110
Table 16-1:	development tools from microchip146
Table 17-1:	Cross Reference of Device Specs for
	Oscillator Configurations and Frequencies
	of Operation (Commercial Devices)148
Table 17-2:	External Clock Timing Requirements155
Table 17-3:	CLKOUT and I/O Timing Requirements156
Table 17-4:	Reset, Watchdog Timer,
	Oscillator Start-Up Timer and
	Power-Up Timer Requirements157
Table 17-5:	Timer0 Clock Requirements158
Table 17-6:	Timer1, Timer2, and Timer3 Clock
	Requirements158
Table 17-7:	Capture Requirements
Table 17-8:	PWM Requirements159

Table 4-3:

Table 4-4:

Table 5-1:

Table 6-1:

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe[®] communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address:

mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

960513

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM, MPLAB and fuzzyLAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

^{© 1996} Microchip Technology Inc.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02