

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-25-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams Cont.'d

4.1.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (1024Tosc) delay after $\overline{\text{MCLR}}$ is detected high or a wake-up from SLEEP event occurs.

The OST time-out is invoked only for XT and LF oscillator modes on a Power-on Reset or a Wake-up from SLEEP.

The OST counts the oscillator pulses on the OSC1/CLKIN pin. The counter only starts incrementing after the amplitude of the signal reaches the oscillator input thresholds. This delay allows the crystal oscillator or resonator to stabilize before the device exits reset. The length of time-out is a function of the crystal/resonator frequency.

4.1.4 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First the internal POR signal goes high when the POR trip point is reached. If MCLR is high, then both the OST and PWRT timers start. In general the PWRT time-out is longer, except with low frequency crystals/resonators. The total time-out also varies based on oscillator configuration. Table 4-1 shows the times that are associated with the oscillator configuration. Figure 4-2 and Figure 4-3 display these time-out sequences.

If the device voltage is not within electrical specification at the end of a time-out, the $\overline{\text{MCLR}}/\text{VPP}$ pin must be held low until the voltage is within the device specification. The use of an external RC delay is sufficient for many of these applications.

TABLE 4-1:TIME-OUT IN VARIOUSSITUATIONS

Oscillator Configuration	Power-up	Wake up from SLEEP	MCLR Reset
XT, LF	Greater of: 96 ms or 1024Tosc	1024Tosc	—
EC, RC	Greater of: 96 ms or 1024Tosc	_	—

The time-out sequence begins from the first rising edge of $\overline{\text{MCLR}}$.

Table 4-3 shows the reset conditions for some special registers, while Table 4-4 shows the initialization conditions for all the registers. The shaded registers (in Table 4-4) are for all devices except the PIC17C42. In the PIC17C42, the PRODH and PRODL registers are general purpose RAM.

TABLE 4-2:STATUS BITS AND THEIR
SIGNIFICANCE

TO	PD	Event
1	1	Power-on Reset, MCLR Reset during normal operation, or CLRWDT instruction executed
1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
0	1	WDT Reset during normal operation
0	0	WDT Reset during SLEEP

In Figure 4-2, Figure 4-3 and Figure 4-4, TPWRT > TOST, as would be the case in higher frequency crystals. For lower frequency crystals, (i.e., 32 kHz) TOST would be greater.

TABLE 4-3: RESET CONDITION FOR THE PROGRAM COUNTER AND THE CPUSTA REGISTER

Event	PCH:PCL	CPUSTA	OST Active	
Power-on Reset		0000h	11 11	Yes
MCLR Reset during normal ope	ration	0000h	11 11	No
MCLR Reset during SLEEP		0000h	11 10	Yes (2)
WDT Reset during normal opera	ation	0000h	11 01	No
WDT Reset during SLEEP (3)		0000h	11 00	Yes (2)
Interrupt wake-up from SLEEP	GLINTD is set	PC + 1	11 10	Yes (2)
	GLINTD is clear	PC + 1 ⁽¹⁾	10 10	Yes (2)

Legend: u = unchanged, x = unknown, - = unimplemented read as '0'.

Note 1: On wake-up, this instruction is executed. The instruction at the appropriate interrupt vector is fetched and then executed.

2: The OST is only active when the Oscillator is configured for XT or LF modes.

3: The Program Counter = 0, that is the device branches to the reset vector. This is different from the mid-range devices.

5.2 <u>Peripheral Interrupt Enable Register</u> (PIE)

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 5-3: PIE REGISTER (ADDRESS: 17h, BANK 1)

_R/W - 0	
RBIE	TMR3IE TMR2IE TMR1IE CA2IE CA1IE TXIE RCIE R = Readable bit
bit7	bit0 W = Writable bit
bit 7:	RBIE : PORTB Interrupt on Change Enable bit 1 = Enable PORTB interrupt on change 0 = Disable PORTB interrupt on change
bit 6:	TMR3IE : Timer3 Interrupt Enable bit 1 = Enable Timer3 interrupt 0 = Disable Timer3 interrupt
bit 5:	TMR2IE : Timer2 Interrupt Enable bit 1 = Enable Timer2 interrupt 0 = Disable Timer2 interrupt
bit 4:	TMR1IE: Timer1 Interrupt Enable bit 1 = Enable Timer1 interrupt 0 = Disable Timer1 interrupt
bit 3:	CA2IE : Capture2 Interrupt Enable bit 1 = Enable Capture interrupt on RB1/CAP2 pin 0 = Disable Capture interrupt on RB1/CAP2 pin
bit 2:	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture interrupt on RB2/CAP1 pin 0 = Disable Capture interrupt on RB2/CAP1 pin
bit 1:	TXIE : USART Transmit Interrupt Enable bit 1 = Enable Transmit buffer empty interrupt 0 = Disable Transmit buffer empty interrupt
bit 0:	RCIE : USART Receive Interrupt Enable bit 1 = Enable Receive buffer full interrupt 0 = Disable Receive buffer full interrupt

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
10h 11h	PORTA DDRB	DDRC PORTC	TMR1 TMR2	PW1DCL PW2DCL
10h 11h 12h	PORTA DDRB PORTB	DDRC PORTC DDRD	TMR1 TMR2 TMR3L	PW1DCL PW2DCL PW1DCH
10h 11h 12h 13h	PORTA DDRB PORTB RCSTA	DDRC PORTC DDRD PORTD	TMR1 TMR2 TMR3L TMR3H	PW1DCL PW2DCL PW1DCH PW2DCH
10h 11h 12h 13h 14h	PORTA DDRB PORTB RCSTA RCREG	DDRC PORTC DDRD PORTD DDRE	TMR1 TMR2 TMR3L TMR3H PR1	PW1DCL PW2DCL PW1DCH PW2DCH CA2L
10h 11h 12h 13h 14h 15h	PORTA DDRB PORTB RCSTA RCREG TXSTA	DDRC PORTC DDRD PORTD DDRE PORTE	TMR1 TMR2 TMR3L TMR3H PR1 PR2	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H
10h 11h 12h 13h 14h 15h 16h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
10h 11h 12h 13h 14h 15h 16h 17h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose RAM	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose RAM	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2

FIGURE 6-5: PIC17C42 REGISTER FILE MAP

Note 1: SFR file locations 10h - 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.

FIGURE 6-6: PIC17CR42/42A/43/R43/44 REGISTER FILE MAP

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
11h	DDRB	PORTC	TMR2	PW2DCL
12h	PORTB	DDRD	TMR3L	PW1DCH
13h	RCSTA	PORTD	TMR3H	PW2DCH
14h	RCREG	DDRE	PR1	CA2L
15h	TXSTA	PORTE	PR2	CA2H
16h	TXREG	PIR	PR3L/CA1L	TCON1
17h	SPBRG	PIE	PR3H/CA1H	TCON2
18h	PRODL			
19h	PRODH			
1Ah				
1Fh]	
20h	General Purpose RAM (2)	General Purpose RAM ⁽²⁾		
FFh				

- Note 1: SFR file locations 10h 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.
 - 2: General Purpose Registers (GPR) locations 20h - FFh and 120h - 1FFh are banked. All other GPRs ignore the Bank Select Register (BSR) bits.

6.3 <u>Stack Operation</u>

The PIC17C4X devices have a 16 x 16-bit wide hardware stack (Figure 6-1). The stack is not part of either the program or data memory space, and the stack pointer is neither readable nor writable. The PC is "PUSHed" onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is "POPed" in the event of a RETURN, RETLW, or a RETFIE instruction execution. PCLATH is not affected by a "PUSH" or a "POP" operation.

The stack operates as a circular buffer, with the stack pointer initialized to '0' after all resets. There is a stack available bit (STKAV) to allow software to ensure that the stack has not overflowed. The STKAV bit is set after a device reset. When the stack pointer equals Fh, STKAV is cleared. When the stack pointer rolls over from Fh to 0h, the STKAV bit will be held clear until a device reset.

- **Note 1:** There is not a status bit for stack underflow. The STKAV bit can be used to detect the underflow which results in the stack pointer being at the top of stack.
- Note 2: There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt vector.
- Note 3: After a reset, if a "POP" operation occurs before a "PUSH" operation, the STKAV bit will be cleared. This will appear as if the stack is full (underflow has occurred). If a "PUSH" operation occurs next (before another "POP"), the STKAV bit will be locked clear. Only a device reset will cause this bit to set.

After the device is "PUSHed" sixteen times (without a "POP"), the seventeenth push overwrites the value from the first push. The eighteenth push overwrites the second push (and so on).

6.4 Indirect Addressing

Indirect addressing is a mode of addressing data memory where the data memory address in the instruction is not fixed. That is, the register that is to be read or written can be modified by the program. This can be useful for data tables in the data memory. Figure 6-10 shows the operation of indirect addressing. This shows the moving of the value to the data memory address specified by the value of the FSR register.

Example 6-1 shows the use of indirect addressing to clear RAM in a minimum number of instructions. A similar concept could be used to move a defined number of bytes (block) of data to the USART transmit register (TXREG). The starting address of the block of data to be transmitted could easily be modified by the program.

FIGURE 6-10: INDIRECT ADDRESSING

8.0 HARDWARE MULTIPLIER

All PIC17C4X devices except the PIC17C42, have an 8 x 8 hardware multiplier included in the ALU of the device. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit PRODuct register (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between the PIC17C42 and all other PIC17CXX devices, which have the single cycle hardware multiply.

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8×8 signed multiply. To account for the sign bits of the arguments, each argument's most significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 MULTIPLY ROUTINE

MOVFP	ARG1,	WREG					
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRO	DDI	H:PROI	DГ

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVFP	ARG1, WREG		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH: PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVFP	ARG2, WREG		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		•	- ARC2

Doutino	Program Memory			Time		
Routine	Device	(Words)	Cycles (Max)	@ 25 MHz	@ 33 MHz	
8 x 8 unsigned	PIC17C42	13	69	11.04 μs	N/A	
	All other PIC17CXX devices	1	1	160 ns	121 ns	
8 x 8 signed	PIC17C42	—	—	—	N/A	
	All other PIC17CXX devices	6	6	960 ns	727 ns	
16 x 16 unsigned	PIC17C42	21	242	38.72 μs	N/A	
	All other PIC17CXX devices	24	24	3.84 µs	2.91 μs	
16 x 16 signed	PIC17C42	52	254	40.64 μs	N/A	
	All other PIC17CXX devices	36	36	5.76 μs	4.36 μs	

TABLE 8-1: PERFORMANCE COMPARISON

	FOSC - 3	3 MHz		Fosc - 2	5 MHz		FOSC - 2	0 MHz		FOSC - 1	6 MHz	
BAUD	1 000 - 0	5 1011 12	SPBRG	1 000 = 2	5 1011 12	SPBRG	1 030 - 2		SPBRG	1 030 - 1		SPBRG
RATE			value			value			value			value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	_	NA	_	_	NA	_	_	NA	_	_
1.2	NA	—	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548	-0.54	53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09	-0.54	26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.12	+7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	—
300	257.81	-14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	—
500	515.62	+3.13	0	NA	_	_	NA	—	_	NA	_	—
HIGH	515.62	—	0	-	—	0	312.5	—	0	250	—	0
LOW	2.014	—	255	1.53	—	255	1.221	—	255	0.977	—	255

TABLE 13-4: BAUD RATES FOR ASYNCHRONOUS MODE

BAUD	Fosc = 10 MH	łz	SPBRG	FOSC = 7.159	MHz	SPBRG	FOSC = 5.068	8 MHz	SPBRG
RATE			value			value			value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	_	NA	_	_	0.31	+3.13	255
1.2	1.202	+0.16	129	1.203	_0.23	92	1.2	0	65
2.4	2.404	+0.16	64	2.380	-0.83	46	2.4	0	32
9.6	9.766	+1.73	15	9.322	-2.90	11	9.9	-3.13	7
19.2	19.53	+1.73	7	18.64	-2.90	5	19.8	+3.13	3
76.8	78.13	+1.73	1	NA	_	_	79.2	+3.13	0
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	156.3	_	0	111.9	_	0	79.2	_	0
LOW	0.610	_	255	0.437	_	255	0.309	_	2 55
		C = 3.579 MHz							
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	Z	SPBRG	Fosc = 32.76	8 kHz	SPBRG
BAUD RATE	Fosc = 3.579	MHz	SPBRG value	Fosc = 1 MH	Z	SPBRG value	Fosc = 32.76	8 kHz	SPBRG value
BAUD RATE (K)	Fosc = 3.579 KBAUD	MHz %ERROR	SPBRG value (decimal)	Fosc = 1 MH KBAUD	z %ERROR	SPBRG value (decimal)	Fosc = 32.76 KBAUD	8 kHz %ERROR	SPBRG value (decimal)
BAUD RATE (K) 0.3	Fosc = 3.579 KBAUD 0.301	MHz %ERROR +0.23	SPBRG value (decimal) 185	Fosc = 1 MH KBAUD 0.300	z %ERROR +0.16	SPBRG value (decimal) 51	Fosc = 32.76 KBAUD 0.256	8 kHz %ERROR -14.67	SPBRG value (decimal)
BAUD RATE (K) 0.3 1.2	Fosc = 3.579 KBAUD 0.301 1.190	MHz %ERROR +0.23 -0.83	SPBRG value (decimal) 185 46	Fosc = 1 MH KBAUD 0.300 1.202	z %ERROR +0.16 +0.16	SPBRG value (decimal) 51 12	Fosc = 32.76 KBAUD 0.256 NA	68 kHz %ERROR -14.67 	SPBRG value (decimal)
BAUD RATE (K) 0.3 1.2 2.4	Fosc = 3.579 KBAUD 0.301 1.190 2.432	MHz %ERROR +0.23 -0.83 +1.32	SPBRG value (decimal) 185 46 22	FOSC = 1 MH KBAUD 0.300 1.202 2.232	z %ERROR +0.16 +0.16 -6.99	SPBRG value (decimal) 51 12 6	Fosc = 32.76 KBAUD 0.256 NA NA	8 kHz %ERROR -14.67 	SPBRG value (decimal) 1
BAUD RATE (K) 0.3 1.2 2.4 9.6	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322	MHz %ERROR +0.23 -0.83 +1.32 -2.90	SPBRG value (decimal) 185 46 22 5	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA	z %ERROR +0.16 -6.99 —	SPBRG value (decimal) 51 12 6 —	Fosc = 32.76 KBAUD 0.256 NA NA NA	8 kHz %ERROR -14.67 	SPBRG value (decimal) 1 — — —
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64	MHz *0.23 -0.83 +1.32 -2.90 -2.90	SPBRG value (decimal) 185 46 22 5 5 2	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA	z *0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 —	Fosc = 32.76 KBAUD 0.256 NA NA NA NA	8 kHz %ERROR -14.67 	SPBRG value (decimal) 1 — — — — —
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA	MHz *0.23 -0.83 +1.32 -2.90 -2.90 	SPBRG value (decimal) 185 46 22 5 2 2	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA	z +0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 — — —	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA	i8 kHz %ERROR -14.67 	SPBRG value (decimal) 1
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA NA	MHz *ERROR +0.23 -0.83 +1.32 -2.90 -2.90 	SPBRG value (decimal) 185 46 22 5 2 2 	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA NA	z +0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA NA	8 kHz %ERROR -14.67 -	SPBRG value (decimal) 1
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA NA NA	MHz %ERROR +0.23 -0.83 +1.32 -2.90 -2.90 - - - - - - - - - - - - -	SPBRG value (decimal) 185 46 22 5 2 2 	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA NA NA	z +0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA NA NA	8 kHz %ERROR -14.67 -	SPBRG value (decimal) 1 -
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA NA NA NA	MHz %ERROR +0.23 -0.83 +1.32 -2.90 -2.90 - - - - - - - - - - - - -	SPBRG value (decimal) 185 46 22 5 2 2 	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA NA NA NA	z *0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA NA NA NA	8 kHz %ERROR -14.67 -	SPBRG value (decimal) 1 -
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500 HIGH	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA NA NA NA NA S5.93	MHz %ERROR +0.23 -0.83 +1.32 -2.90 -2.90 - - - - - - - - - - - - -	SPBRG value (decimal) 185 46 22 5 2 2 0	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA NA NA NA NA NA 15.63	z %ERROR +0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 0	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA NA NA NA NA 0.512	8 kHz %ERROR -14.67 	SPBRG value (decimal) 1 0

13.2 USART Asynchronous Mode

In this mode, the USART uses standard nonreturn-to-zero (NRZ) format (one start bit, eight or nine data bits, and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock x64 of the bit shift rate. Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

The asynchronous mode is selected by clearing the SYNC bit (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

13.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit shift register (TSR). The shift register obtains its data from the read/write transmit buffer (TXREG). TXREG is loaded with data in software. The TSR is not loaded until the stop bit has been transmitted from the previous load. As soon as the stop bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), the TXREG is empty and an interrupt bit, TXIF (PIR<1>) is set. This interrupt can be enabled or disabled by the TXIE bit (PIE<1>). TXIF will be set regardless of TXIE and cannot be reset in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of the TXREG, the TRMT (TXSTA<1>) bit shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty.

Note:	The TSR is not mapped in data memory,
	so it is not available to the user.

Transmission enabled setting is by the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 13-5). The transmission can also be started by first loading TXREG and then setting TXEN. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to TSR resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 13-6). Clearing TXEN during a transmission will cause the transmission to be aborted. This will reset the transmitter and the RA5/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty).

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the TXIE bit.
- 4. If 9-bit transmission is desired, then set the TX9 bit.
- 5. Load data to the TXREG register.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 7. Enable the transmission by setting TXEN (starts transmission).

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the opposite order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

13.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 13-4. The data comes in the RA4/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at 16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the stop bit, the received data in the RSR is transferred to the RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is cleared by the hardware. It is cleared when RCREG has been read and is empty. RCREG is a double buffered register; (i.e. it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR. On detection of the stop bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software which is done by resetting the receive logic (CREN is set). If the OERR bit is set, transfers from the RSR to RCREG are inhibited, so it is essential to clear the OERR bit if it is set. The framing error bit FERR (RCSTA<2>) is set if a stop bit is not detected.

FIGURE 13-7: RX PIN SAMPLING SCHEME

Note: The FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received Received data; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

13.2.3 SAMPLING

The data on the RA4/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RA4/RX/DT pin. The sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 11-3).

The x16 clock is a free running clock, and the three sample points occur at a frequency of every 16 falling edges.

RX		Start bit	Bit0
(RA4/RX/DT pin)	-	Baud CLK for all but start bit	
Jaud CLK	1		
x16 CLK		2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	
		Samples	

TABLE 13-8: R	REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION
---------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

14.4 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction. This clears the Watchdog Timer and postscaler (if enabled). The \overrightarrow{PD} bit is cleared and the \overrightarrow{TO} bit is set (in the CPUSTA register). In SLEEP mode, the oscillator driver is turned off. The I/O ports maintain their status (driving high, low, or hi-impedance).

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC). A WDT time-out RESET does not drive the $\overline{\text{MCLR}}/\text{VPP}$ pin low.

14.4.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- A POR reset
- External reset input on MCLR/VPP pin
- WDT Reset (if WDT was enabled)
- Interrupt from RA0/INT pin, RB port change, T0CKI interrupt, or some Peripheral Interrupts

The following peripheral interrupts can wake-up from SLEEP:

- · Capture1 interrupt
- Capture2 interrupt
- · USART synchronous slave transmit interrupt
- · USART synchronous slave receive interrupt

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

Any reset event will cause a device reset. Any interrupt event is considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the CPUSTA register can be used to determine the cause of device reset. The

 \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GLINTD bit. If the GLINTD bit is set (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GLINTD bit is clear (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt vector address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GLINTD is set), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from sleep. The TO bit is set, and the PD bit is cleared.

The WDT is cleared when the device wake from SLEEP, regardless of the source of wake-up.

14.4.1.1 WAKE-UP DELAY

When the oscillator type is configured in XT or LF mode, the Oscillator Start-up Timer (OST) is activated on wake-up. The OST will keep the device in reset for 1024Tosc. This needs to be taken into account when considering the interrupt response time when coming out of SLEEP.

FIGURE 14-9: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4
OSC1						$\frown \frown \frown$	
CLKOUT(4)		/		lost(2)	\/ \/		
INT					I I		
(RA0/INT pin)	ı ı		: (1		<u>1 </u>
INTF flag			<u>`</u>		I		Interrupt Latency (2)
GLINTD bit	1 11		· ·		I		·
	i i		Processor		1		1 I
INSTRUCTION	FLOW		in SLEEP		1 1		I I I I
PC	C PC	PC+1		+2	× 0004	h	× <u>0005h</u>
Instruction (fetched	Inst (PC) = SLEEP	Inst (PC+1)			Inst (PC	+2)	
Instruction {	Inst (PC-1)	SLEEP			Inst (PC	+1)	Dummy Cycle
Note 1: XT or LF o 2: Tost = 102 3: When GLII 4: CLKOUT is	scillator mode assume 4Tosc (drawing not to s NTD = 0 processor jum s not available in these	d. scale). This delay will ops to interrupt routin osc modes, but show	not be there e after wake wn here for ti	for RC osc -up. If GLIN	c mode. ITD = 1, exec ence.	ution will	continue in line.

PIC17C4X

CPF	SLT	Compare skip if f <	f with WRE WREG	G,					
Synt	ax:	[label]	CPFSLT f						
Ope	rands:	$0 \le f \le 25$	5						
Ope	ration:	(f) – (WRE skip if (f) < (unsigned	(f) – (WREG), skip if (f) < (WREG) (unsigned comparison)						
State	us Affected:	None							
Enco	oding:	0011	0000 ff	ff ffff					
Des	cription:	Compares location 'f' performing If the conte WREG, the discarded a instead ma tion.	the contents o to the contents an unsigned s ents of 'f' < the en the fetched and an NOP is kking this a two	f data memory of WREG by subtraction. contents of instruction is executed -cycle instruc-					
Wor	ds:	1	1						
Cycl	es:	1 (2)							
Q Cycle Activity:									
	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Execute	NOP					
lf sk	ip:								
	Q1	Q2	Q3	Q4					
	Forced NOP	NOP	NOP Execute						
Example:		HERE NLESS LESS	CPFSLT REG : :						
	Before Instru	iction							
	PC W	= Ao = ?	ddress (HERE)					
	After Instruct If REG PC If REG PC	:ion < W = Aa ≥ W = Aa	<pre>vm < WREG; = Address (LESS) ≥ WREG; = Address (NLESS)</pre>						

DAW	Decimal Adjust W	REG Register
Syntax:	[label] DAW f,s	
Operands:	0 ≤ f ≤ 255 s ∈ [0,1]	
Operation:	If [WREG<3:0> >9] . WREG<3:0> + 6	OR. [DC = 1] then \rightarrow f<3:0>, s<3:0>;
	WREG<3:0>→1	f<3:0>, s<3:0>;
	If [WREG<7:4> >9] . WREG<7:4> + 6	OR. [C = 1] then → f<7:4>, s<7:4>
	else WREG<7:4> \rightarrow 1	f<7:4>, s<7:4>
Status Affected:	С	
Encoding:	0010 111s	ffff ffff
Description:	DAW adjusts the eig WREG resulting from tion of two variables BCD format) and pro packed BCD result. s = 0: Result is pla memory loc WREG.	ht bit value in n the earlier addi- (each in packed iduces a correct aced in Data ation 'f' and
	s = 1: Result is pla	aced in Data
	memory loc	ation 'f'.
Words:	1	
Cycles:	1	
	02 03	04
Decode	Read Execu	te Write
	register 'f'	register 'f' and other specified register
Example1:	DAW REG1, 0	
Before Instru	tion	
WREG REG1 C DC	= 0xA5 = ?? = 0 = 0	
After Instructi WREG REG1 C DC	on = 0x05 = 0x05 = 1 = 0	
Example 2:		
Before Instruc WREG REG1 C	= 0xCE = ?? = 0	

0	_	0
DC	=	0
After Instruc	tion	
WREG	=	0x24
REG1	=	0x24
С	=	1
DC	=	0

PIC17C4X

RLN	CF	Rotate	Left f (no carry)	
Synt	ax:	[label]	RLNCF f,d	
Ope	rands:	0 ≤ f ≤ 2 d ∈ [0,2	255 1]	
Ope	ration:	$f < n > \rightarrow f < 7 > \rightarrow$	→ d <n+1>; → d<0></n+1>	
Statu	us Affected:	None		
Enco	oding:	0010	001d ffff f	fff
Deso	cription:	The con one bit t placed in stored b	itents of register 'f' are rot o the left. If 'd' is 0 the res n WREG. If 'd' is 1 the res ack in register 'f'.	ated sult is sult is
Word	ds:	1		
Cycl	es:	1		
QC	cle Activity:			
	Q1	Q2	Q3 Q4	
	Decode	Read register 'f'	Execute Write destina	to tion
<u>Exar</u>	<u>mple</u> :	RLNCF	REG, 1	
	Before Instru	iction		
	C REG	= 0 = 1110	1011	
	After Instruct C	tion =		
	REG	= 1101	0111	

RRCF		Rotate	Right	f throug	gh Ca	arry	
Syntax:		[label]	RRC	CF f,d			
Operand	ds:	0 ≤ f ≤ 2 d ∈ [0,1	55]				
Operatio	on:	$f < n > \rightarrow$ $f < 0 > \rightarrow$ $C \rightarrow d < 2$	d <n-1: C; 7></n-1: 	>;			
Status A	Affected:	С					
Encodin	g:	0001	100	d ff	ff	ffff	
Descript	tion:	The cont one bit to Flag. If 'd WREG. I back in re	ents of the rig ' is 0 th f 'd' is 1 egister	register ' ht throug e result i the resu 'f'. register	f' are ih the s plac ilt is p f	rotated e Carry ced in blaced	
\A/= = -l= -							
vvoras:		1					
Cycles:	A	1					
Q Cycle	Activity:	00		00		04	
	Decode	Read register 'f	E	xecute	V de:	Vrite to stination	
Example	<u>ə</u> :	RRCF REG1,0					
Bef	ore Instru	iction					
	REG1 C	= 1110 = 0	0110				
Afte	er Instruct REG1 WREG C	tion = 1110 = 0111 = 0	0110 0011				

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (fuzzyTECH[®]-MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLABTM Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

001	DM303		-G306001		N/A		N/A		HCS200, 300, 301 *
	N/A		N/A		N/A		JV114001		MTA11200B
	N/A		N/A		DV243001		N/A		All 2 wire and 3 wire Serial EEPROM's
ity Eval/Demo Kit	opping Code Secur	rammer Kit H	Security Prog	Hopping Code (EVAL® Designers Kit	ent Kit SEI	E® Developme	TRUEGAUG	Product
stems	. See development sy	orgereg separately ering part numbers	er modules are or specific orde	ordering guide for					MIPAOM ASSEMDIE
Inde	rt numbers above inc	ER-CE ordering pa	and PICMAST rogrammer	***AII PICMASTER	Simulator and	MPLAB-SIM S	ability date	hnology for avail /elopment Enviro	*Contact Microchip Tec **MPLAB Integrated Dev
DV003001	I	DV007003		EM177007/ EM177107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC17C42, 42A, 43, 44
DV003001	I	DV007003		EM167031/ EM167111	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C923, 924*
DV003001	DV162003	DV007003		EM167029/ EM167107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16F84
DV003001	DV162003	DV007003	EM167206	EM167029/ EM167107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C84
DV003001	DV162003	DV007003		EM167029/ EM167107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16F83
DV003001	DV162002	DV007003	I	EM167025/ EM167103	I	SW006006	SW006005	SW007002	PIC16C72
DV003001	DV162003	DV007003	I	EM167027/ EM167105	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C710, 711
DV003001	DV162003	DV007003	EM167205	EM167027/ EM167105	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C71
DV003001	DV162002	DV007003	1	EM167035/ EM167105	1	I	SW006005	SW007002	PIC16C642, 662*
DV003001	DV162002	DV007003	EM167204	EM167025/ EM167103	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C63, 65, 65A, 73, 73A, 74, 74A
DV003001	DV162003	DV007003	EM167202	EM167023/ EM167109	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C620, 621, 622
DV003001	DV162002	DV007003	EM167203	EM167025/ EM167103	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C62, 62A, 64, 64A
DV003001	DV162003	DV007003	EM167205	EM167021/ N/A	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C61
DV003001	Ι	DV007003	1	EM167033/ EM167113	DV005001/ DV005002	I	SW006005	SW007002	PIC16C554, 556, 558
DV003001	DV162003	DV007003	EM167201	EM167015/ EM167101	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C52, 54, 54A, 55, 56, 57, 58A
DV003001	Ι	DV007003	I	EM147001/ EM147101	I	1	SW006005	SW007002	PIC14000
DV003001	Ι	DV007003	1	EM167015/ EM167101	1	I	SW006005	SW007002	PIC12C508, 509
Universal Dev. Kit	Dev. Kit	Microchip Programmer	In-Circuit Emulator	In-Circuit Emulator	Fuzzy Logic Dev. Tool	Code Generator	-	Development Environment	
PICSTART® Plus Low-Cost	PICSTART® Lite	****PRO MATE TM Il Universal	ICEPIC Low-Cost	*** PICMASTER®/ PICMASTER-CE	fuzzyTECH®-MP Explorer/Edition	MP-DriveWay Applications	MPLAB™ C Compiler	** MPLAB™ Integrated	Product

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓		15‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↑ to CLKOUT↑	—	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time	—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time	—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT [↑] to Port out valid	—	_	0.5TCY + 20‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT	0.25Tcy + 25 ‡	_	_	ns	Note 1
16	TckH2iol	Port in hold after CLKOUT	0 ‡	_	_	ns	Note 1
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	_	100 ‡	ns	
20	TioR	Port output rise time	—	10‡	35 ‡	ns	
21	TioF	Port output fall time	—	10‡	35 ‡	ns	
22	TinHL	INT pin high or low time	25 *	—	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25 *	—	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

‡ These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where OSC2 output = 4 x Tosc = Tcy.

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

19.0 PIC17CR42/42A/43/R43/44 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0.6V to +14V
Voltage on RA2 and RA3 with respect to Vss	0.6V to +14V
Voltage on all other pins with respect to Vss	0.6V to VDD + 0.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin(s) - total	250 mA
Maximum current into VDD pin(s) - total	200 mA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	60 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH)) x IOH} + Σ (Vol x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)		100 *	—	—	ns	VDD = 5V
31	Twdt	Watchdog Timer Time-ou (Prescale = 1)	It Period	5 *	12	25 *	ms	VDD = 5V
32	Tost	Oscillation Start-up Time	r Period	—	1024Tosc§	—	ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period		40 *	96	200 *	ms	VDD = 5V
35	TmcL2adl	MCLR to System Inter- face bus (AD15:AD0>)	PIC17CR42/42A/ 43/R43/44	_	—	100 *	ns	
		invalid	PIC17LCR42/ 42A/43/R43/44	—	—	120 *	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

PIC17C4X

E.2 PIC16C5X Family of Devices

				0	Clock Me	mory	Perip	herals	Features
	*ein	1,10813 CUMULT	To to to the the	CANIN LOINE BOL	(Selfor Aousin Eleg	(9.8m) (9.7m)	*Gellon Suid	N Souger and	SUOJORIJSUJOEd SUOJORIJSUJOEd SUCIORIJORISUJO
PIC16C52	4	384		25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC
PIC16C54	20	512		25	TMRO	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C54A	20	512	Ι	25	TMRO	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR54A	20	I	512	25	TMRO	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C55	20	512		24	TMRO	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C56	20	ź	Ι	25	TMRO	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C57	20	2K		72	TMRO	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16CR57B	20	Ι	2K	72	TMRO	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C58A	20	2K		73	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR58A	20		2K	73	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
All PIC16/17	Family	devices	have f	-ower-On	ו Reset, selectab	le Watch	ndog Timer, s	selectab	le code protect and high I/O current capability.

DS30412C-page 214

E.4 PIC16C6X Family of Devices

					Clock M	lemo	≥		□	eriphe	erals	F		Features
			Toll BIT		FLO (SQ 10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,			AND OF OF	THOMAS STREET	TAX HOLD			(SION)	631111111191601018 9890-001018 1891-001018
	Carlor I	XI LENDER		410	NN FOLIDIAN RECOVERED	Cel 30	solute Col	STIDD T	ale ale	S ANIHO	Suitor Suite	Se tall	SHOULD	SWP 2000 SWP
PIC16C62	20	2K	Ι	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Ι	7	22	3.0-6.0	Yes	Ι	28-pin SDIP, SOIC, SSOP
PIC16C62A ⁽¹⁾	20	2K	Ι	128	TMR0, TMR1, TMR2	~	SPI/I ² C	I	7	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16CR62 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	~	SPI/I ² C	I	7	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C63	20	4K		192	TMR0, TMR1, TMR2	ר 2 3	sPI/I ² C, JSART	I	10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16CR63 ⁽¹⁾	20	Ι	4 K	192	TMR0, TMR1, TMR2	5	sPI/I ² C, JSART	I	10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C64	20	2K	Ι	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	ω	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C64A ⁽¹⁾	20	2K	Ι	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	ω	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR64 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	ω	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16C65	20	44 A	Ι	192	TMR0, TMR1, TMR2	5	sPI/I ² C, JSART	Yes	11	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65A ⁽¹⁾	20	4K	Ι	192	TMR0, TMR1, TMR2	2	sPI/I ² C, JSART	Yes	11	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR65 ⁽¹⁾	20		4K	192	TMR0, TMR1, TMR2	2 8	sPI/I²C, JSART	Yes	11	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
All PI All PI	C16/17 C16C6	^r family	y devic ilv devi	es hav ices us	e Power-on Rese e serial program	et, se mina	ectable with close	Watch ck pin I	dog Ti RB6 a	mer, s nd dat	electable c	ode pi	otect,	and high I/O current capability.

All PIC16C6X family devices use serial programming with clock pin RB6 and data pin Note 1: Please contact your local sales office for availability of these devices.