



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                  |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 25MHz                                                                     |
| Connectivity               | UART/USART                                                                |
| Peripherals                | POR, PWM, WDT                                                             |
| Number of I/O              | 33                                                                        |
| Program Memory Size        | 8KB (4K x 16)                                                             |
| Program Memory Type        | OTP                                                                       |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 454 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 6V                                                                 |
| Data Converters            | -                                                                         |
| Oscillator Type            | External                                                                  |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 44-TQFP                                                                   |
| Supplier Device Package    | 44-TQFP (10x10)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-25e-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





### 4.1.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (1024Tosc) delay after  $\overline{\text{MCLR}}$  is detected high or a wake-up from SLEEP event occurs.

The OST time-out is invoked only for XT and LF oscillator modes on a Power-on Reset or a Wake-up from SLEEP.

The OST counts the oscillator pulses on the OSC1/CLKIN pin. The counter only starts incrementing after the amplitude of the signal reaches the oscillator input thresholds. This delay allows the crystal oscillator or resonator to stabilize before the device exits reset. The length of time-out is a function of the crystal/resonator frequency.

### 4.1.4 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First the internal POR signal goes high when the POR trip point is reached. If MCLR is high, then both the OST and PWRT timers start. In general the PWRT time-out is longer, except with low frequency crystals/resonators. The total time-out also varies based on oscillator configuration. Table 4-1 shows the times that are associated with the oscillator configuration. Figure 4-2 and Figure 4-3 display these time-out sequences.

If the device voltage is not within electrical specification at the end of a time-out, the  $\overline{\text{MCLR}}/\text{VPP}$  pin must be held low until the voltage is within the device specification. The use of an external RC delay is sufficient for many of these applications.

## TABLE 4-1:TIME-OUT IN VARIOUSSITUATIONS

| Oscillator<br>Configuration | Power-up                            | Wake up<br>from<br>SLEEP | MCLR<br>Reset |
|-----------------------------|-------------------------------------|--------------------------|---------------|
| XT, LF                      | Greater of:<br>96 ms or<br>1024Tosc | 1024Tosc                 | —             |
| EC, RC                      | Greater of:<br>96 ms or<br>1024Tosc | _                        | —             |

The time-out sequence begins from the first rising edge of  $\overline{\text{MCLR}}$ .

Table 4-3 shows the reset conditions for some special registers, while Table 4-4 shows the initialization conditions for all the registers. The shaded registers (in Table 4-4) are for all devices except the PIC17C42. In the PIC17C42, the PRODH and PRODL registers are general purpose RAM.

# TABLE 4-2: STATUS BITS AND THEIR SIGNIFICANCE

| TO | PD | Event                                                                              |
|----|----|------------------------------------------------------------------------------------|
| 1  | 1  | Power-on Reset, MCLR Reset during normal operation, or CLRWDT instruction executed |
| 1  | 0  | MCLR Reset during SLEEP or interrupt wake-up from SLEEP                            |
| 0  | 1  | WDT Reset during normal operation                                                  |
| 0  | 0  | WDT Reset during SLEEP                                                             |

In Figure 4-2, Figure 4-3 and Figure 4-4, TPWRT > TOST, as would be the case in higher frequency crystals. For lower frequency crystals, (i.e., 32 kHz) TOST would be greater.

## TABLE 4-3: RESET CONDITION FOR THE PROGRAM COUNTER AND THE CPUSTA REGISTER

| Event                         | Event                  |                       | CPUSTA | OST Active |
|-------------------------------|------------------------|-----------------------|--------|------------|
| Power-on Reset                |                        | 0000h                 | 11 11  | Yes        |
| MCLR Reset during normal ope  | ration                 | 0000h                 | 11 11  | No         |
| MCLR Reset during SLEEP       | CLR Reset during SLEEP |                       | 11 10  | Yes (2)    |
| WDT Reset during normal opera | ation                  | 0000h                 | 11 01  | No         |
| WDT Reset during SLEEP (3)    |                        | 0000h                 | 11 00  | Yes (2)    |
| Interrupt wake-up from SLEEP  | GLINTD is set          | PC + 1                | 11 10  | Yes (2)    |
|                               | GLINTD is clear        | PC + 1 <sup>(1)</sup> | 10 10  | Yes (2)    |

Legend: u = unchanged, x = unknown, - = unimplemented read as '0'.

Note 1: On wake-up, this instruction is executed. The instruction at the appropriate interrupt vector is fetched and then executed.

2: The OST is only active when the Oscillator is configured for XT or LF modes.

3: The Program Counter = 0, that is the device branches to the reset vector. This is different from the mid-range devices.

NOTES:

## 9.0 I/O PORTS

The PIC17C4X devices have five I/O ports, PORTA through PORTE. PORTB through PORTE have a corresponding Data Direction Register (DDR), which is used to configure the port pins as inputs or outputs. These five ports are made up of 33 I/O pins. Some of these ports pins are multiplexed with alternate functions.

PORTC, PORTD, and PORTE are multiplexed with the system bus. These pins are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, these pins are general purpose I/O.

PORTA and PORTB are multiplexed with the peripheral features of the device. These peripheral features are:

- Timer modules
- Capture module
- PWM module
- USART/SCI module
- External Interrupt pin

When some of these peripheral modules are turned on, the port pin will automatically configure to the alternate function. The modules that do this are:

- PWM module
- USART/SCI module

When a pin is automatically configured as an output by a peripheral module, the pins data direction (DDR) bit is unknown. After disabling the peripheral module, the user should re-initialize the DDR bit to the desired configuration.

The other peripheral modules (which require an input) must have their data direction bit configured appropriately.

**Note:** A pin that is a peripheral input, can be configured as an output (DDRx<y> is cleared). The peripheral events will be determined by the action output on the port pin.

## 9.1 PORTA Register

PORTA is a 6-bit wide latch. PORTA does not have a corresponding Data Direction Register (DDR).

Reading PORTA reads the status of the pins.

The RA1 pin is multiplexed with TMR0 clock input, and RA4 and RA5 are multiplexed with the USART functions. The control of RA4 and RA5 as outputs is automatically configured by the USART module.

9.1.1 USING RA2, RA3 AS OUTPUTS

The RA2 and RA3 pins are open drain outputs. To use the RA2 or the RA3 pin(s) as output(s), simply write to the PORTA register the desired value. A '0' will cause the pin to drive low, while a '1' will cause the pin to float (hi-impedance). An external pull-up resistor should be used to pull the pin high. Writes to PORTA will not affect the other pins.

| Note: | When using the RA2 or RA3 pin(s) as out-<br>put(s), read-modify-write instructions (such<br>as BCF, BSF, BTG) on PORTA are not rec-<br>ommended.<br>Such operations read the port pins, do the<br>desired operation, and then write this value<br>to the data latch. This may inadvertently<br>cause the RA2 or RA3 pins to switch from<br>input to output (or vice-versa).<br>It is recommended to use a shadow regis-<br>ter for PORTA. Do the bit operations on this<br>shadow register and then move it to<br>PORTA. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## FIGURE 9-1: RA0 AND RA1 BLOCK DIAGRAM



#### 12.2.1 ONE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 12-7. The timer increments until it equals the period register and then resets to 0000h. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

This mode is selected if control bit CA1/PR3 is clear. In this mode, the Capture1 register, consisting of high byte (PR3H/CA1H) and low byte (PR3L/CA1L), is configured as the period control register for TMR3. Capture1 is disabled in this mode, and the corresponding Interrupt bit CA1IF is never set. TMR3 increments until it equals the value in the period register and then resets to 0000h.

Capture2 is active in this mode. The CA2ED1 and CA2ED0 bits determine the event on which capture will occur. The possible events are:

- · Capture on every falling edge
- Capture on every rising edge
- · Capture every 4th rising edge
- · Capture every 16th rising edge

When a capture takes place, an interrupt flag is latched into the CA2IF bit. This interrupt can be enabled by setting the corresponding mask bit CA2IE. The Peripheral Interrupt Enable bit (PEIE) must be set and the Global Interrupt Disable bit (GLINTD) must be cleared for the interrupt to be acknowledged. The CA2IF interrupt flag bit must be cleared in software.

When the capture prescale select is changed, the prescaler is not reset and an event may be generated. Therefore, the first capture after such a change will be ambiguous. However, it sets the time-base for the next capture. The prescaler is reset upon chip reset. Capture pin RB1/CAP2 is a multiplexed pin. When used as a port pin, Capture2 is not disabled. However, the user can simply disable the Capture2 interrupt by clearing CA2IE. If RB1/CAP2 is used as an output pin, the user can activate a capture by writing to the port pin. This may be useful during development phase to emulate a capture interrupt.

The input on capture pin RB1/CAP2 is synchronized internally to internal phase clocks. This imposes certain restrictions on the input waveform (see the Electrical Specification section for timing).

The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the Timer3 value to the capture register, protecting the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The recommended sequence to read capture registers and capture overflow flag bits is shown in Example 12-1.

## EXAMPLE 12-1: SEQUENCE TO READ CAPTURE REGISTERS

| MOVLB | 3              | ;Select Bank 3          |
|-------|----------------|-------------------------|
| MOVPF | CA2L,LO_BYTE   | ;Read Capture2 low      |
|       |                | ;byte, store in LO_BYTE |
| MOVPF | CA2H,HI_BYTE   | ;Read Capture2 high     |
|       |                | ;byte, store in HI_BYTE |
| MOVPF | TCON2,STAT_VAL | ;Read TCON2 into file   |
|       |                | ;STAT_VAL               |

## FIGURE 12-7: TIMER3 WITH ONE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM



| TABLE 13-3: | <b>BAUD RATES FOR SYNCHRONOUS MODE</b> |
|-------------|----------------------------------------|
|             |                                        |

| BAUD<br>RATE<br>(K) | Fosc = 3 | 3 MHz<br>%ERROR | SPBRG<br>value<br>(decimal) | Fosc = 2 | 5 MHz<br>%ERROR    | SPBRG<br>value<br>(decimal) | FOSC = 2 | 0 MHz<br>%ERROR    | SPBRG<br>value<br>(decimal) | Fosc = 1 | 6 MHz<br>%ERROR    | SPBRG<br>value<br>(decimal) |
|---------------------|----------|-----------------|-----------------------------|----------|--------------------|-----------------------------|----------|--------------------|-----------------------------|----------|--------------------|-----------------------------|
| ()                  |          | /02/11/01/      | (accinal)                   |          | <i>x</i> 021111011 | (40011141)                  |          | <i>/</i> 021111011 | (uconnai)                   |          | <i>/</i> 021111011 | (uconnai)                   |
| 0.3                 | NA       | _               | _                           | NA       | —                  | _                           | NA       | _                  | _                           | NA       | _                  | —                           |
| 1.2                 | NA       | _               | _                           | NA       | —                  | _                           | NA       | _                  | _                           | NA       | _                  | _                           |
| 2.4                 | NA       | —               | —                           | NA       | —                  | —                           | NA       | —                  | —                           | NA       | —                  | —                           |
| 9.6                 | NA       | _               | —                           | NA       | _                  | —                           | NA       | _                  | —                           | NA       | _                  | _                           |
| 19.2                | NA       | —               | _                           | NA       | —                  | _                           | 19.53    | +1.73              | 255                         | 19.23    | +0.16              | 207                         |
| 76.8                | 77.10    | +0.39           | 106                         | 77.16    | +0.47              | 80                          | 76.92    | +0.16              | 64                          | 76.92    | +0.16              | 51                          |
| 96                  | 95.93    | -0.07           | 85                          | 96.15    | +0.16              | 64                          | 96.15    | +0.16              | 51                          | 95.24    | -0.79              | 41                          |
| 300                 | 294.64   | -1.79           | 27                          | 297.62   | -0.79              | 20                          | 294.1    | -1.96              | 16                          | 307.69   | +2.56              | 12                          |
| 500                 | 485.29   | -2.94           | 16                          | 480.77   | -3.85              | 12                          | 500      | 0                  | 9                           | 500      | 0                  | 7                           |
| HIGH                | 8250     | —               | 0                           | 6250     | —                  | 0                           | 5000     | —                  | 0                           | 4000     | —                  | 0                           |
| LOW                 | 32.22    | _               | 255                         | 24.41    | _                  | 255                         | 19.53    | _                  | 255                         | 15.625   | _                  | 255                         |

| BAUD                                                                                        | Fosc = 10 M                                                                                   | Hz                                                                             | SPBRG                                                                       | Fosc = 7.159                                                                                           | ) MHz                                                                        | SPBRG                                                                                      | FOSC = 5.068                                                                                           | 3 MHz                                                                                  | SPBRG                                                                                  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| RATE<br>(K)                                                                                 | KBAUD                                                                                         | %ERROR                                                                         | value<br>(decimal)                                                          | KBAUD                                                                                                  | %ERROR                                                                       | value<br>(decimal)                                                                         | KBAUD                                                                                                  | %ERROR                                                                                 | value<br>(decimal)                                                                     |
| 0.3                                                                                         | NA                                                                                            | _                                                                              | _                                                                           | NA                                                                                                     | _                                                                            | _                                                                                          | NA                                                                                                     | _                                                                                      |                                                                                        |
| 1.2                                                                                         | NA                                                                                            | _                                                                              | _                                                                           | NA                                                                                                     | _                                                                            | _                                                                                          | NA                                                                                                     | _                                                                                      | _                                                                                      |
| 2.4                                                                                         | NA                                                                                            | _                                                                              | _                                                                           | NA                                                                                                     | _                                                                            | _                                                                                          | NA                                                                                                     | _                                                                                      | _                                                                                      |
| 9.6                                                                                         | 9.766                                                                                         | +1.73                                                                          | 255                                                                         | 9.622                                                                                                  | +0.23                                                                        | 185                                                                                        | 9.6                                                                                                    | 0                                                                                      | 131                                                                                    |
| 19.2                                                                                        | 19.23                                                                                         | +0.16                                                                          | 129                                                                         | 19.24                                                                                                  | +0.23                                                                        | 92                                                                                         | 19.2                                                                                                   | 0                                                                                      | 65                                                                                     |
| 76.8                                                                                        | 75.76                                                                                         | -1.36                                                                          | 32                                                                          | 77.82                                                                                                  | +1.32                                                                        | 22                                                                                         | 79.2                                                                                                   | +3.13                                                                                  | 15                                                                                     |
| 96                                                                                          | 96.15                                                                                         | +0.16                                                                          | 25                                                                          | 94.20                                                                                                  | -1.88                                                                        | 18                                                                                         | 97.48                                                                                                  | +1.54                                                                                  | 12                                                                                     |
| 300                                                                                         | 312.5                                                                                         | +4.17                                                                          | 7                                                                           | 298.3                                                                                                  | -0.57                                                                        | 5                                                                                          | 316.8                                                                                                  | +5.60                                                                                  | 3                                                                                      |
| 500                                                                                         | 500                                                                                           | 0                                                                              | 4                                                                           | NA                                                                                                     | _                                                                            | _                                                                                          | NA                                                                                                     | _                                                                                      | _                                                                                      |
| HIGH                                                                                        | 2500                                                                                          | _                                                                              | 0                                                                           | 1789.8                                                                                                 | _                                                                            | 0                                                                                          | 1267                                                                                                   | _                                                                                      | 0                                                                                      |
| LOW                                                                                         | 9.766                                                                                         | _                                                                              | 255                                                                         | 6.991                                                                                                  | _                                                                            | 255                                                                                        | 4.950                                                                                                  | _                                                                                      | 255                                                                                    |
|                                                                                             |                                                                                               |                                                                                |                                                                             |                                                                                                        |                                                                              |                                                                                            |                                                                                                        |                                                                                        |                                                                                        |
| BAUD                                                                                        | Fosc = 3.579                                                                                  | MHz                                                                            | SPBRG                                                                       | Fosc = 1 MH                                                                                            | Z                                                                            | SPBRG                                                                                      | Fosc = 32.76                                                                                           | 8 kHz                                                                                  | SPBRG                                                                                  |
| BAUD<br>RATE<br>(K)                                                                         | Fosc = 3.579<br>KBAUD                                                                         | MHz<br>%ERROR                                                                  | SPBRG<br>value<br>(decimal)                                                 | Fosc = 1 MH<br>KBAUD                                                                                   | z<br>%ERROR                                                                  | SPBRG<br>value<br>(decimal)                                                                | Fosc = 32.76<br>KBAUD                                                                                  | 68 kHz<br>%ERROR                                                                       | SPBRG<br>value<br>(decimal)                                                            |
| BAUD<br>RATE<br>(K)                                                                         | Fosc = 3.579<br>KBAUD<br>NA                                                                   | MHz<br>%ERROR<br>—                                                             | SPBRG<br>value<br>(decimal)                                                 | Fosc = 1 MH<br>KBAUD<br>NA                                                                             | z<br>%ERROR<br>—                                                             | SPBRG<br>value<br>(decimal)                                                                | Fosc = 32.76<br>KBAUD<br>0.303                                                                         | 68 kHz<br>%ERROR<br>+1.14                                                              | SPBRG<br>value<br>(decimal)<br>26                                                      |
| BAUD<br>RATE<br>(K)<br>0.3<br>1.2                                                           | Fosc = 3.579<br>KBAUD<br>NA<br>NA                                                             | MHz<br>%ERROR<br>—<br>—                                                        | SPBRG<br>value<br>(decimal)<br>—                                            | Fosc = 1 MH<br>KBAUD<br>NA<br>1.202                                                                    | z<br>%ERROR<br>—<br>+0.16                                                    | SPBRG<br>value<br>(decimal)<br>—<br>207                                                    | Fosc = 32.76<br>KBAUD<br>0.303<br>1.170                                                                | 58 kHz<br>%ERROR<br>+1.14<br>-2.48                                                     | SPBRG<br>value<br>(decimal)<br>26<br>6                                                 |
| BAUD<br>RATE<br>(K)<br>0.3<br>1.2<br>2.4                                                    | Fosc = 3.579<br>KBAUD<br>NA<br>NA<br>NA                                                       | MHz<br>%ERROR<br>—<br>—<br>—                                                   | SPBRG<br>value<br>(decimal)<br>—<br>—                                       | Fosc = 1 MH<br>KBAUD<br>NA<br>1.202<br>2.404                                                           | z<br>%ERROR<br><br>+0.16<br>+0.16                                            | SPBRG<br>value<br>(decimal)<br>—<br>207<br>103                                             | Fosc = 32.76<br>KBAUD<br>0.303<br>1.170<br>NA                                                          | 68 kHz<br>%ERROR<br>+1.14<br>-2.48<br>—                                                | SPBRG<br>value<br>(decimal)<br>26<br>6<br>—                                            |
| BAUD<br>RATE<br>(K)<br>0.3<br>1.2<br>2.4<br>9.6                                             | Fosc = 3.579<br>KBAUD<br>NA<br>NA<br>9.622                                                    | MHz<br>%ERROR<br><br><br>+0.23                                                 | SPBRG<br>value<br>(decimal)<br>—<br>—<br>—<br>92                            | Fosc = 1 MH<br>KBAUD<br>NA<br>1.202<br>2.404<br>9.615                                                  | z<br>%ERROR<br>                                                              | SPBRG<br>value<br>(decimal)<br>—<br>207<br>103<br>25                                       | FOSC = 32.76<br>KBAUD<br>0.303<br>1.170<br>NA<br>NA                                                    | 8 kHz<br>%ERROR<br>+1.14<br>-2.48<br><br>                                              | SPBRG<br>value<br>(decimal)<br>26<br>6<br><br>                                         |
| BAUD<br>RATE<br>(K)<br>0.3<br>1.2<br>2.4<br>9.6<br>19.2                                     | Fosc = 3.579<br>KBAUD<br>NA<br>NA<br>9.622<br>19.04                                           | MHz<br>%ERROR<br><br><br>+0.23<br>-0.83                                        | SPBRG<br>value<br>(decimal)<br>—<br>—<br>—<br>92<br>46                      | Fosc = 1 MH<br>KBAUD<br>NA<br>1.202<br>2.404<br>9.615<br>19.24                                         | z<br>%ERROR<br>                                                              | SPBRG<br>value<br>(decimal)<br>—<br>207<br>103<br>25<br>12                                 | Fosc = 32.76<br>KBAUD<br>0.303<br>1.170<br>NA<br>NA<br>NA                                              | 58 kHz<br>%ERROR<br>+1.14<br>-2.48<br><br><br><br>                                     | SPBRG<br>value<br>(decimal)<br>26<br>6<br><br><br><br>                                 |
| BAUD<br>RATE<br>(K)<br>0.3<br>1.2<br>2.4<br>9.6<br>19.2<br>76.8                             | Fosc = 3.579<br>KBAUD<br>NA<br>NA<br>9.622<br>19.04<br>74.57                                  | MHz<br>%ERROR<br>—<br>—<br>+0.23<br>-0.83<br>-2.90                             | SPBRG<br>value<br>(decimal)<br>—<br>—<br>92<br>46<br>11                     | FOSC = 1 MH<br>KBAUD<br>NA<br>1.202<br>2.404<br>9.615<br>19.24<br>83.34                                | Z<br>%ERROR<br>+0.16<br>+0.16<br>+0.16<br>+0.16<br>+0.16<br>+8.51            | SPBRG<br>value<br>(decimal)<br>—<br>207<br>103<br>25<br>12<br>2<br>2                       | Fosc = 32.76<br>KBAUD<br>0.303<br>1.170<br>NA<br>NA<br>NA<br>NA                                        | 58 kHz<br>%ERROR<br>+1.14<br>-2.48<br><br><br><br><br>                                 | SPBRG<br>value<br>(decimal)<br>26<br>6<br><br><br><br><br><br>                         |
| BAUD<br>RATE<br>(K)<br>0.3<br>1.2<br>2.4<br>9.6<br>19.2<br>76.8<br>96                       | Fosc = 3.579<br>KBAUD<br>NA<br>NA<br>9.622<br>19.04<br>74.57<br>99.43                         | MHz<br>%ERROR<br>—<br>—<br>+0.23<br>-0.83<br>-2.90<br>_3.57                    | SPBRG<br>value<br>(decimal)<br>—<br>—<br>—<br>92<br>46<br>11<br>8           | FOSC = 1 MH<br>KBAUD<br>NA<br>1.202<br>2.404<br>9.615<br>19.24<br>83.34<br>NA                          | z<br><u>~</u><br>+0.16<br>+0.16<br>+0.16<br>+0.16<br>+8.51<br>_              | SPBRG<br>value<br>(decimal)<br>—<br>207<br>103<br>25<br>12<br>2<br>2<br>                   | Fosc = 32.76<br>KBAUD<br>0.303<br>1.170<br>NA<br>NA<br>NA<br>NA<br>NA                                  | 58 kHz<br>%ERROR<br>+1.14<br>-2.48<br><br><br><br><br><br><br><br><br>                 | SPBRG<br>value<br>(decimal)<br>26<br>6<br><br><br><br><br><br><br><br>                 |
| BAUD<br>RATE<br>(K)<br>0.3<br>1.2<br>2.4<br>9.6<br>19.2<br>76.8<br>96<br>300                | Fosc = 3.579<br>KBAUD<br>NA<br>NA<br>9.622<br>19.04<br>74.57<br>99.43<br>298.3                | MHz<br>%ERROR<br>—<br>+0.23<br>-0.83<br>-2.90<br>_3.57<br>-0.57                | SPBRG<br>value<br>(decimal)<br>—<br>—<br>92<br>46<br>11<br>8<br>2           | Fosc = 1 MH<br>KBAUD<br>NA<br>1.202<br>2.404<br>9.615<br>19.24<br>83.34<br>NA<br>NA                    | Z<br>%ERROR<br>+0.16<br>+0.16<br>+0.16<br>+0.16<br>+8.51<br><br>             | SPBRG<br>value<br>(decimal)<br>—<br>207<br>103<br>25<br>12<br>2<br>2<br>—<br>2<br>—        | Fosc = 32.76<br>KBAUD<br>0.303<br>1.170<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                            | 68 kHz<br>%ERROR<br>+1.14<br>-2.48<br><br><br><br><br><br><br><br><br><br><br><br><br> | SPBRG<br>value<br>(decimal)<br>26<br>6<br><br><br><br><br><br><br><br><br><br><br><br> |
| BAUD<br>RATE<br>(K)<br>0.3<br>1.2<br>2.4<br>9.6<br>19.2<br>76.8<br>96<br>300<br>500         | Fosc = 3.579<br>KBAUD<br>NA<br>NA<br>9.622<br>19.04<br>74.57<br>99.43<br>298.3<br>NA          | MHz<br>%ERROR<br>—<br>+0.23<br>-0.83<br>-2.90<br>_3.57<br>-0.57<br>—           | SPBRG<br>value<br>(decimal)<br>—<br>—<br>92<br>46<br>11<br>8<br>2<br>       | Fosc = 1 MH<br>KBAUD<br>NA<br>1.202<br>2.404<br>9.615<br>19.24<br>83.34<br>NA<br>NA<br>NA              | Z<br>%ERROR<br>+0.16<br>+0.16<br>+0.16<br>+8.51<br><br><br><br>              | SPBRG<br>value<br>(decimal)<br><br>207<br>103<br>25<br>12<br>2<br>2<br><br>2<br><br><br>   | Fosc = 32.76<br>KBAUD<br>0.303<br>1.170<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                      | 58 kHz<br>%ERROR<br>+1.14<br>-2.48<br><br><br><br><br><br><br><br><br><br><br><br><br> | SPBRG<br>value<br>(decimal)<br>26<br>6<br><br><br><br><br><br><br><br><br><br><br><br> |
| BAUD<br>RATE<br>(K)<br>0.3<br>1.2<br>2.4<br>9.6<br>19.2<br>76.8<br>96<br>300<br>500<br>HIGH | Fosc = 3.579<br>KBAUD<br>NA<br>NA<br>9.622<br>19.04<br>74.57<br>99.43<br>298.3<br>NA<br>894.9 | MHz<br>%ERROR<br>—<br>+0.23<br>-0.83<br>-2.90<br>_3.57<br>-0.57<br>—<br>_<br>_ | SPBRG<br>value<br>(decimal)<br>—<br>—<br>92<br>46<br>11<br>8<br>2<br>—<br>0 | Fosc = 1 MH<br>KBAUD<br>NA<br>1.202<br>2.404<br>9.615<br>19.24<br>83.34<br>NA<br>NA<br>NA<br>NA<br>250 | Z<br>%ERROR<br>+0.16<br>+0.16<br>+0.16<br>+0.16<br>+8.51<br><br><br><br><br> | SPBRG<br>value<br>(decimal)<br><br>207<br>103<br>25<br>12<br>2<br>12<br>2<br><br><br><br>0 | Fosc = 32.76<br>KBAUD<br>0.303<br>1.170<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>S.192 | 68 kHz<br>%ERROR<br>+1.14<br>-2.48<br><br><br><br><br><br><br><br><br><br><br><br><br> | SPBRG<br>value<br>(decimal)<br>26<br>6<br><br><br><br><br><br><br><br><br>0            |

## TABLE 13-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

| Address     | Name  | Bit 7     | Bit 6     | Bit 5    | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on<br>Power-on<br>Reset | Value on all<br>other resets<br>(Note1) |
|-------------|-------|-----------|-----------|----------|--------|-------|-------|-------|-------|-------------------------------|-----------------------------------------|
| 16h, Bank 1 | PIR   | RBIF      | TMR3IF    | TMR2IF   | TMR1IF | CA2IF | CA1IF | TXIF  | RCIF  | 0000 0010                     | 0000 0010                               |
| 13h, Bank 0 | RCSTA | SPEN      | RX9       | SREN     | CREN   | —     | FERR  | OERR  | RX9D  | 0000 -00x                     | 0000 -00u                               |
| 16h, Bank 0 | TXREG | TX7       | TX6       | TX5      | TX4    | TX3   | TX2   | TX1   | TX0   | xxxx xxxx                     | uuuu uuuu                               |
| 17h, Bank 1 | PIE   | RBIE      | TMR3IE    | TMR2IE   | TMR1IE | CA2IE | CA1IE | TXIE  | RCIE  | 0000 0000                     | 0000 0000                               |
| 15h, Bank 0 | TXSTA | CSRC      | TX9       | TXEN     | SYNC   | —     | _     | TRMT  | TX9D  | 00001x                        | 00001u                                  |
| 17h, Bank 0 | SPBRG | Baud rate | generator | register |        |       |       |       |       | xxxx xxxx                     | uuuu uuuu                               |

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

## FIGURE 13-9: SYNCHRONOUS TRANSMISSION



## FIGURE 13-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)



#### 14.2.4 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k $\Omega$  resistor provides the negative feedback for stability. The 10 k $\Omega$  potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

## FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT



Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k $\Omega$  resistors provide the negative feedback to bias the inverters in their linear region.

## FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT



### 14.2.5 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-6 shows how the R/C combination is connected to the PIC17CXX. For Rext values below 2.2 kQ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M $\Omega$ ), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3  $k\Omega$  and 100  $k\Omega$ .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

## FIGURE 14-7: RC OSCILLATOR MODE



### 14.4.2 MINIMIZING CURRENT CONSUMPTION

To minimize current consumption, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should be at VDD or VSS. The contributions from on-chip pull-ups on PORTB should also be considered, and disabled when possible.

## 14.5 <u>Code Protection</u>

The code in the program memory can be protected by selecting the microcontroller in code protected mode (PM2:PM0 = '000').

| Note: | PM2 de | oes not | exist on th | e PIC17C42. To  |
|-------|--------|---------|-------------|-----------------|
|       | select | code    | protected   | microcontroller |
|       | mode.  | PM1:PM  | AO = '00'   |                 |

In this mode, instructions that are in the on-chip program memory space, can continue to read or write the program memory. An instruction that is executed outside of the internal program memory range will be inhibited from writing to or reading from program memory.

**Note:** Microchip does not recommend code protecting windowed devices.

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

| CLR        | WDT                      | Clear W                                                                                                                         | Clear Watchdog Timer                                                                                                                                      |                               |                            |                       |                                   |  |  |
|------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|-----------------------|-----------------------------------|--|--|
| Synt       | ax:                      | [ label ]                                                                                                                       | С                                                                                                                                                         | LRWD                          | Т                          |                       |                                   |  |  |
| Ope        | rands:                   | None                                                                                                                            | None                                                                                                                                                      |                               |                            |                       |                                   |  |  |
| Ope        | ration:                  | $\begin{array}{l} 00h \rightarrow V\\ 0 \rightarrow WE\\ 1 \rightarrow \overline{TO}\\ 1 \rightarrow \overline{PD} \end{array}$ | $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ postscaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$ |                               |                            |                       |                                   |  |  |
| State      | us Affected:             | to, PD                                                                                                                          |                                                                                                                                                           |                               |                            |                       |                                   |  |  |
| Enco       | oding:                   | 0000                                                                                                                            |                                                                                                                                                           | 0000                          | 000                        | 00                    | 0100                              |  |  |
| Des        | cription:                | CLRWDT<br>timer. It a<br>WDT. Sta                                                                                               | inst<br>also<br>atus                                                                                                                                      | truction<br>resets<br>bits TC | resets<br>the pro<br>and I | the v<br>esca<br>PD a | watchdog<br>ler of the<br>re set. |  |  |
| Wor        | ds:                      | 1                                                                                                                               |                                                                                                                                                           |                               |                            |                       |                                   |  |  |
| Cycl       | es:                      | 1                                                                                                                               |                                                                                                                                                           |                               |                            |                       |                                   |  |  |
| QC         | ycle Activity:           |                                                                                                                                 |                                                                                                                                                           |                               |                            |                       |                                   |  |  |
|            | Q1                       | Q2                                                                                                                              |                                                                                                                                                           | Q                             | 3                          |                       | Q4                                |  |  |
|            | Decode                   | Read<br>register<br>ALUSTA                                                                                                      |                                                                                                                                                           | Execute                       |                            |                       | NOP                               |  |  |
| <u>Exa</u> | <u>mple</u> :            | CLRWDT                                                                                                                          |                                                                                                                                                           |                               |                            |                       |                                   |  |  |
|            | Before Instru<br>WDT cou | ction<br>Inter                                                                                                                  | =                                                                                                                                                         | ?                             |                            |                       |                                   |  |  |
|            | After Instruct           | ion                                                                                                                             |                                                                                                                                                           |                               |                            |                       |                                   |  |  |
|            | WDT cou                  | nter                                                                                                                            | =                                                                                                                                                         | 0x00                          |                            |                       |                                   |  |  |
|            |                          | stscaler                                                                                                                        | =                                                                                                                                                         | 0                             |                            |                       |                                   |  |  |
|            |                          |                                                                                                                                 | =                                                                                                                                                         | י<br>1                        |                            |                       |                                   |  |  |
|            | · -                      |                                                                                                                                 |                                                                                                                                                           | •                             |                            |                       |                                   |  |  |

| COMF                           | Complem                                                  | nent f                                                  |                                          |                                  |
|--------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------|----------------------------------|
| Syntax:                        | [label]                                                  | COMF                                                    | f,d                                      |                                  |
| Operands:                      | 0 ≤ f ≤ 255<br>d ∈ [0,1]                                 | 5                                                       |                                          |                                  |
| Operation:                     | $(\overline{f}) \rightarrow (d$                          | lest)                                                   |                                          |                                  |
| Status Affected:               | Z                                                        |                                                         |                                          |                                  |
| Encoding:                      | 0001                                                     | 001d                                                    | ffff                                     | ffff                             |
| Description:                   | The conten<br>mented. If '<br>WREG. If 'c<br>back in reg | its of regi<br>d' is 0 the<br>d' is 1 the<br>ister 'f'. | ster 'f' are<br>e result is<br>result is | e comple-<br>stored in<br>stored |
| Words:                         | 1                                                        |                                                         |                                          |                                  |
| Cycles:                        | 1                                                        |                                                         |                                          |                                  |
| Q Cycle Activity:              |                                                          |                                                         |                                          |                                  |
| Q1                             | Q2                                                       | Q3                                                      | 3                                        | Q4                               |
| Decode                         | Read<br>register 'f'                                     | Execu                                                   | ute<br>re                                | Write<br>egister 'f'             |
| Example:                       | COMF                                                     | REG                                                     | 1,0                                      |                                  |
| Before Instru<br>REG1          | ction<br>= 0x13                                          |                                                         |                                          |                                  |
| After Instruct<br>REG1<br>WREG | ion<br>= 0x13<br>= 0xEC                                  |                                                         |                                          |                                  |

| TABLWT            | Table Wr    | ite      |         |                |
|-------------------|-------------|----------|---------|----------------|
| <u>Example1</u> : | TABLWT      | 0, 1,    | REG     |                |
| Before Instruct   | tion        |          |         |                |
| REG               |             | =        | 0x53    |                |
| TBLATH            |             | =        | 0xAA    |                |
| TBLATL            |             | =        | 0x55    |                |
| TBLPTR            |             | =        | 0xA35   | 6              |
| MEMORY(           | TBLPTR)     | =        | 0xFFF   | F              |
| After Instruction | on (table v | vrite co | mpletic | n)             |
| REG               |             | =        | 0x53    |                |
| TBLATH            |             | =        | 0x53    |                |
| TBLATL            |             | =        | 0x55    |                |
| TBLPTR            |             | =        | 0xA35   | 7              |
| MEMORY(           | TBLPTR -    | 1) =     | 0x535   | 5              |
| Example 2:        | TABLWT      | 1, 0,    | REG     |                |
| Before Instruct   | tion        |          |         |                |
| REG               |             | =        | 0x53    |                |
| TBLATH            |             | =        | 0xAA    |                |
| TBLATL            |             | =        | 0x55    |                |
| TBLPTR            |             | =        | 0xA35   | 6              |
| MEMORY(           | TBLPTR)     | =        | 0xFFF   | F              |
| After Instructio  | on (table v | vrite co | mpletic | on)            |
| REG               |             | =        | 0x53    |                |
| TBLATH            |             | =        | 0xAA    |                |
| TBLATL            |             | =        | 0x53    |                |
| TBLPTR            |             | =        | 0xA35   | 6              |
| MEMORY(           | TBLPTR)     | =        | 0xAA5   | 3              |
|                   |             |          |         |                |
| Brogram           |             |          |         | Dette          |
| Memory            | 15          |          | 0       | Data<br>Memorv |
|                   | 4           |          |         | ,              |

| 16 bits | TBLAT 8 bits |
|---------|--------------|

| TLRD              | Table Late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ch Read                                    |                              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------|
| Syntax:           | [ <i>label</i> ] T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LRD t,f                                    |                              |
| Operands:         | 0 ≤ f ≤ 255<br>t ∈ [0,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                          |                              |
| Operation:        | lf t = 0,<br>TBLAT<br>lf t = 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $L \rightarrow f;$                         |                              |
|                   | TBLAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $H \rightarrow f$                          |                              |
| Status Affected:  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                              |
| Encoding:         | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00tx ff                                    | ff fff                       |
| Description:      | Read data f<br>(TBLAT) intending the second sec | from 16-bit tab<br>o file register '<br>d. | ile latch<br>f'. Table Latch |
|                   | If $t = 1$ ; high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | byte is read                               |                              |
|                   | If $t = 0$ ; low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | byte is read                               | conjunction                  |
|                   | with TABLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D to transfer d<br>ory to data me          | ata from pro-<br>mory.       |
| Words:            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                              |
| Cycles:           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                              |
| Q Cycle Activity: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                              |
| Q1                | Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q3                                         | Q4                           |
| Decode            | Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Execute                                    | Write                        |
|                   | register<br>TBLATH or<br>TBLATL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | register T                   |
| Example:          | TLRD t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E, RAM                                     |                              |
| Before Instru     | iction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                              |
| t                 | = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                              |
| RAM<br>TBLAT      | = ?<br>= 0x00AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (TBLATH =                                  | 0x00)                        |
| After Instruct    | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (IDLAIL =                                  |                              |
| RAM               | = 0xAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                              |
| TBLAT             | = 0x00AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (TBLATH =<br>(TBLATL =                     | 0x00)<br>0xAF)               |
| Before Instru     | ction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                              |
| t<br>RAM          | = 1<br>= ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                              |
| TBLAT             | = 0x00AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (TBLATH =<br>(TBLATL =                     | 0x00)<br>0xAF)               |
| After Instruct    | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                              |
| RAM<br>TBLAT      | = 0x00<br>= 0x00AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (TBLATH =                                  | 0x00)                        |
| <b></b>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (TBLATL =                                  | UxAF)                        |
| Program<br>Memory | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                          | Data<br>Memory               |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLPTR                                      |                              |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | →<br>→                       |
| 16 bits           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | 8 bits                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                              |

## 17.0 PIC17C42 ELECTRICAL CHARACTERISTICS

### Absolute Maximum Ratings †

| Ambient temperature under bias                                                                                     | 55 to +125°C                    |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Storage temperature                                                                                                | 65°C to +150°C                  |
| Voltage on VDD with respect to Vss                                                                                 | 0 to +7.5V                      |
| Voltage on MCLR with respect to Vss (Note 2)                                                                       | 0.6V to +14V                    |
| Voltage on RA2 and RA3 with respect to Vss                                                                         | -0.6V to +12V                   |
| Voltage on all other pins with respect to Vss                                                                      | 0.6V to VDD + 0.6V              |
| Total power dissipation (Note 1)                                                                                   | 1.0W                            |
| Maximum current out of Vss pin(s) - Total                                                                          | 250 mA                          |
| Maximum current into VDD pin(s) - Total                                                                            | 200 mA                          |
| Input clamp current, lik (VI < 0 or VI > VDD)                                                                      | ±20 mA                          |
| Output clamp current, IOK (VO < 0 or VO > VDD)                                                                     | ±20 mA                          |
| Maximum output current sunk by any I/O pin (except RA2 and RA3)                                                    | 35 mA                           |
| Maximum output current sunk by RA2 or RA3 pins                                                                     | 60 mA                           |
| Maximum output current sourced by any I/O pin                                                                      | 20 mA                           |
| Maximum current sunk by PORTA and PORTB (combined)                                                                 | 150 mA                          |
| Maximum current sourced by PORTA and PORTB (combined)                                                              | 100 mA                          |
| Maximum current sunk by PORTC, PORTD and PORTE (combined)                                                          | 150 mA                          |
| Maximum current sourced by PORTC, PORTD and PORTE (combined)                                                       | 100 mA                          |
| <b>Note 1:</b> Power dissipation is calculated as follows: Pdis = VDD x {IDD - $\Sigma$ IOH} + $\Sigma$ {(VDD-VOH) | ) x IOH} + $\Sigma$ (VOL x IOL) |

**Note 2:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

**†** NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

## FIGURE 17-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.



## FIGURE 17-12: MEMORY INTERFACE READ TIMING



| Parameter<br>No. | Sym      | Characteristic                                           | Min           | Тур†      | Мах          | Units | Conditions |
|------------------|----------|----------------------------------------------------------|---------------|-----------|--------------|-------|------------|
| 150              | TadV2alL | AD<15:0> (address) valid to ALE↓<br>(address setup time) | 0.25Tcy - 30  | _         | _            | ns    |            |
| 151              | TalL2adl | ALE↓ to address out invalid (address hold time)          | 5*            | _         | _            | ns    |            |
| 160              | TadZ2oeL | AD<15:0> high impedance to $\overline{OE}\downarrow$     | 0*            | _         | —            | ns    |            |
| 161              | ToeH2adD | OE↑ to AD<15:0> driven                                   | 0.25Tcy - 15  | —         | _            | ns    |            |
| 162              | TadV2oeH | Data in valid before OE↑<br>(data setup time)            | 35            | —         | _            | ns    |            |
| 163              | ToeH2adl | OE to data in invalid (data hold time)                   | 0             | _         | _            | ns    |            |
| 164              | TalH     | ALE pulse width                                          | —             | 0.25Tcy § | —            | ns    |            |
| 165              | ToeL     | OE pulse width                                           | 0.5Tcy - 35 § | _         | _            | ns    |            |
| 166              | TalH2alH | ALE↑ to ALE↑ (cycle time)                                | —             | TCY §     | —            | ns    |            |
| 167              | Tacc     | Address access time                                      | —             | _         | 0.75 Tcy-40  | ns    |            |
| 168              | Тое      | Output enable access time<br>(OE low to Data Valid)      | _             |           | 0.5 TCY - 60 | ns    |            |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification guaranteed by design.

Applicable Devices 42 R42 42A 43 R43 44





FIGURE 18-12: MAXIMUM IPD vs. VDD WATCHDOG ENABLED

## FIGURE 19-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING



#### TABLE 19-9: SYNCHRONOUS TRANSMISSION REQUIREMENTS

| Param |            |                                   |                                    |         |        |        |         |             |
|-------|------------|-----------------------------------|------------------------------------|---------|--------|--------|---------|-------------|
| No.   | Sym        | Characteristic                    |                                    |         | Тур†   | Max    | Units   | Conditions  |
| 120   | TckH2dtV   | SYNC XMIT (MASTER &               |                                    |         |        |        |         |             |
|       |            | <u>SLAVE)</u>                     | PIC17CR42/42A/43/R43/44            | —       | -      | 50     | ns      |             |
|       |            | Clock high to data out valid      | PIC17LCR42/42A/43/R43/44           |         | —      | 75     | ns      |             |
| 121   | TckRF      | Clock out rise time and fall time | PIC17CR42/42A/43/R43/44            | _       | _      | 25     | ns      |             |
|       |            | (Master Mode)                     | PIC17LCR42/42A/43/R43/44           | _       | _      | 40     | ns      |             |
| 122   | TdtRF      | Data out rise time and fall time  | PIC17CR42/42A/43/R43/44            | _       | _      | 25     | ns      |             |
|       |            |                                   | PIC17LCR42/42A/43/R43/44           | _       | _      | 40     | ns      |             |
| +     | Data in "T | yp" column is at 5V, 25°C unless  | otherwise stated. These parameters | are for | design | guidan | ce only | and are not |

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

## FIGURE 19-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING



## **TABLE 19-10: SYNCHRONOUS RECEIVE REQUIREMENTS**

| Parameter<br>No. | Sym      | Characteristic                                                   | Min | Тур† | Мах | Units | Conditions |
|------------------|----------|------------------------------------------------------------------|-----|------|-----|-------|------------|
| 125              | TdtV2ckL | SYNC RCV (MASTER & SLAVE)<br>Data hold before CK↓ (DT hold time) | 15  | _    | _   | ns    |            |
| 126              | TckL2dtl | Data hold after CK $\downarrow$ (DT hold time)                   | 15  | _    | _   | ns    |            |

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

## 20.0 PIC17CR42/42A/43/R43/44 DC AND AC CHARACTERISTICS

The graphs and tables provided in this section are for design guidance and are not tested nor guaranteed. In some graphs or tables the data presented is outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean +  $3\sigma$ ) and (mean -  $3\sigma$ ) respectively where  $\sigma$  is standard deviation.

## TABLE 20-1: PIN CAPACITANCE PER PACKAGE TYPE

| Din Nama                               | Typical Capacitance (pF) |             |             |             |  |  |  |  |
|----------------------------------------|--------------------------|-------------|-------------|-------------|--|--|--|--|
|                                        | 40-pin DIP               | 44-pin PLCC | 44-pin MQFP | 44-pin TQFP |  |  |  |  |
| All pins, except MCLR,<br>VDD, and Vss | 10                       | 10          | 10          | 10          |  |  |  |  |
| MCLR pin                               | 20                       | 20          | 20          | 20          |  |  |  |  |

## FIGURE 20-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE



NOTES:

| WDT                        | 99, 103 |
|----------------------------|---------|
| Clearing the WDT           | 103     |
| Normal Timer               | 103     |
| Period                     | 103     |
| Programming Considerations | 103     |
| WDTPS0                     |         |
| WDTPS1                     |         |
| WREG                       |         |

## Χ

| XORLW | . 141 |
|-------|-------|
| XORWF | . 141 |

## Ζ

| Ζ        | <br> | <br> | 9, 36 |
|----------|------|------|-------|
| Zero (Z) | <br> | <br> | 9     |

## LIST OF EXAMPLES

| Example 3-1:  | Signed Math                          | 9   |
|---------------|--------------------------------------|-----|
| Example 3-2:  | Instruction Pipeline Flow            | 14  |
| Example 5-1:  | Saving STATUS and WREG in RAM        | 27  |
| Example 6-1:  | Indirect Addressing                  | 40  |
| Example 7-1:  | Table Write                          | 46  |
| Example 7-2:  | Table Read                           | 48  |
| Example 8-1:  | 8 x 8 Multiply Routine               | 49  |
| Example 8-2:  | 8 x 8 Signed Multiply Routine        | 49  |
| Example 8-3:  | 16 x 16 Multiply Routine             | 50  |
| Example 8-4:  | 16 x 16 Signed Multiply Routine      | 51  |
| Example 9-1:  | Initializing PORTB                   | 57  |
| Example 9-2:  | Initializing PORTC                   | 58  |
| Example 9-3:  | Initializing PORTD                   | 60  |
| Example 9-4:  | Initializing PORTE                   | 62  |
| Example 9-5:  | Read Modify Write Instructions on an |     |
|               | I/O Port                             | 64  |
| Example 11-1: | 16-Bit Read                          | 69  |
| Example 11-2: | 16-Bit Write                         | 69  |
| Example 12-1: | Sequence to Read Capture Registers.  | 78  |
| Example 12-2: | Writing to TMR3                      | 80  |
| Example 12-3: | Reading from TMR3                    | 80  |
| Example 13-1: | Calculating Baud Rate Error          | 86  |
| Example F-1:  | PIC17C42 to Sleep                    | 223 |
|               |                                      |     |

## LIST OF FIGURES

| Figure 3-1:  | PIC17C42 Block Diagram               | 10 |
|--------------|--------------------------------------|----|
| Figure 3-2:  | PIC17CR42/42A/43/R43/44 Block        |    |
|              | Diagram                              | 11 |
| Figure 3-3:  | Clock/Instruction Cycle              | 14 |
| Figure 4-1:  | Simplified Block Diagram of On-chip  |    |
|              | Reset Circuit                        | 15 |
| Figure 4-2:  | Time-Out Sequence on Power-Up        |    |
|              | (MCLR Tied to VDD)                   | 17 |
| Figure 4-3:  | Time-Out Sequence on Power-Up        |    |
|              | (MCLR NOT Tied to VDD)               | 17 |
| Figure 4-4:  | Slow Rise Time (MCLR Tied to VDD)    | 17 |
| Figure 4-5:  | Oscillator Start-Up Time             | 18 |
| Figure 4-6:  | Using On-Chip POR                    | 18 |
| Figure 4-7:  | Brown-out Protection Circuit 1       | 18 |
| Figure 4-8:  | PIC17C42 External Power-On Reset     |    |
|              | Circuit (For Slow VDD Power-Up)      | 18 |
| Figure 4-9:  | Brown-out Protection Circuit 2       | 18 |
| Figure 5-1:  | Interrupt Logic                      | 21 |
| Figure 5-2:  | INTSTA Register (Address: 07h,       |    |
|              | Unbanked)                            | 22 |
| Figure 5-3:  | PIE Register (Address: 17h, Bank 1)  | 23 |
| Figure 5-4:  | PIR Register (Address: 16h, Bank 1)  | 24 |
| Figure 5-5:  | INT Pin / T0CKI Pin Interrupt Timing | 26 |
| Figure 6-1:  | Program Memory Map and Stack         | 29 |
| Figure 6-2:  | Memory Map in Different Modes        | 30 |
| Figure 6-3:  | External Program Memory Access       |    |
|              | Waveforms                            | 31 |
| Figure 6-4:  | Typical External Program Memory      |    |
|              | Connection Diagram                   | 31 |
| Figure 6-5:  | PIC17C42 Register File Map           | 33 |
| Figure 6-6:  | PIC17CR42/42A/43/R43/44 Register     |    |
|              | File Map                             | 33 |
| Figure 6-7:  | ALUSTA Register (Address: 04h,       |    |
|              | Unbanked)                            | 36 |
| Figure 6-8:  | CPUSTA Register (Address: 06h,       |    |
|              | Unbanked)                            | 37 |
| Figure 6-9:  | T0STA Register (Address: 05h,        |    |
|              | Unbanked)                            | 38 |
| Figure 6-10: | Indirect Addressing                  | 39 |
| Figure 6-11: | Program Counter Operation            | 41 |
|              |                                      |    |

## **ON-LINE SUPPORT**

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

#### Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

#### www.microchip.com

The file transfer site is available by using an FTP service to connect to:

#### ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
   Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

## **Connecting to the Microchip BBS**

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe<sup>®</sup> communications network.

#### Internet:

You can telnet or ftp to the Microchip BBS at the address:

#### mchipbbs.microchip.com

#### **CompuServe Communications Network:**

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

#### Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

960513

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM, MPLAB and fuzzyLAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

<sup>© 1996</sup> Microchip Technology Inc.