

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-25i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC17C4X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC17C4X Product Selection System section at the end of this data sheet. When placing orders, please use the "PIC17C4X Product Identification System" at the back of this data sheet to specify the correct part number.

For the PIC17C4X family of devices, there are four device "types" as indicated in the device number:

- C, as in PIC17C42. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC17LC42. These devices have EPROM type memory, operate over an extended voltage range, and reduced frequency range.
- 3. **CR**, as in PIC17**CR**42. These devices have ROM type memory and operate over the standard voltage range.
- 4. LCR, as in PIC17LCR42. These devices have ROM type memory, operate over an extended voltage range, and reduced frequency range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PRO MATETM programmer supports programming of the PIC17C4X. Third party programmers also are available; refer to the *Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

ROM devices do not allow serialization information in the program memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

FIGURE 4-5: OSCILLATOR START-UPTIME

FIGURE 4-6: USING ON-CHIP POR

FIGURE 4-7: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 4-8: PIC17C42 EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: An external Power-on Reset circuit is required only if VDD power-up time is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: R < 40 k Ω is recommended to ensure that the voltage drop across R does not exceed 0.2V (max. leakage current spec. on the \overline{MCLR}/VPP pin is 5 μ A). A larger voltage drop will degrade VIH level on the \overline{MCLR}/VPP pin.
 - 3: $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or (Electrical Overstress) EOS.

FIGURE 4-9: BROWN-OUT PROTECTION CIRCUIT 2

This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

6.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC17C4X; program memory and data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into General Purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

6.1 Program Memory Organization

PIC17C4X devices have a 16-bit program counter capable of addressing a 64K x 16 program memory space. The reset vector is at 0000h and the interrupt vectors are at 0008h, 0010h, 0018h, and 0020h (Figure 6-1).

6.1.1 PROGRAM MEMORY OPERATION

The PIC17C4X can operate in one of four possible program memory configurations. The configuration is selected by two configuration bits. The possible modes are:

- Microprocessor
- Microcontroller
- Extended Microcontroller
- Protected Microcontroller

The microcontroller and protected microcontroller modes only allow internal execution. Any access beyond the program memory reads unknown data. The protected microcontroller mode also enables the code protection feature.

The extended microcontroller mode accesses both the internal program memory as well as external program memory. Execution automatically switches between internal and external memory. The 16-bits of address allow a program memory range of 64K-words.

The microprocessor mode only accesses the external program memory. The on-chip program memory is ignored. The 16-bits of address allow a program memory range of 64K-words. Microprocessor mode is the default mode of an unprogrammed device.

The different modes allow different access to the configuration bits, test memory, and boot ROM. Table 6-1 lists which modes can access which areas in memory. Test Memory and Boot Memory are not required for normal operation of the device. Care should be taken to ensure that no unintended branches occur to these areas.

FIGURE 6-1: PROGRAM MEMORY MAP AND STACK

	AND STACK	
	DC (15:0)	1
	PC<15:0>	
CALL, DETEIN	RETURN TO]
REIFIE	Stack Loval 1	
	•	
	:	
	Stack Level 16	
	Reset Vector	0000h
	INT Pin Interrupt Vector	0008h
	Timer0 Interrupt Vector	0010h
	T0CKI Pin Interrupt Vector	0018h
	Peripheral Interrupt Vector	0020h
		0021h
		7556
		(PIC17C42,
30		PIC17CR42, PIC17C42A)
Mer		FFFh
er l Spa		(PIC17C43
S S		PIC17CR43)
		1FFFh (PIC17C44)
		'
	EOSCO	FDFFh
	FOSC1	FE01b
	WDTPS0	FE02h
Aer	WDTPS1	FE03h
Ce P	PM0	FE04h
pa	Reserved	FE05h
an sun	PM1	FE06h
lig	Reserved	FE07h
CO	Reserved	FE08h
		FEUEN
		FE10h
	Test EPROM	FF5Fh
		FF60h
	Boot ROM	FFFFh
Note 1: Us	er memory space may be inter	nal, external, or
bo	th. The memory configuration c	lepends on the
2: Th	cessor mode. is location is reserved on the P	IC17C42.

9.4 PORTD and DDRD Registers

PORTD is an 8-bit bi-directional port. The corresponding data direction register is DDRD. A '1' in DDRD configures the corresponding port pin as an input. A '0' in the DDRC register configures the corresponding port pin as an output. Reading PORTD reads the status of the pins, whereas writing to it will write to the port latch. PORTD is multiplexed with the system bus. When operating as the system bus, PORTD is the high order byte of the address/data bus (AD15:AD8). The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-3 shows the instruction sequence to initialize PORTD. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-3: INITIALIZING PORTD

MOVLB	1	;	Select Bank 1
CLRF	PORTD	;	Initialize PORTD data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRD	;	Set RD<3:0> as inputs
		;	RD<5:4> as outputs
		;	RD<7:6> as inputs

TABLE 9-9: PORTE FUNCTIONS

Name Bit Buffer Type			Function
RE0/ALE	bit0	TTL	Input/Output or system bus Address Latch Enable (ALE) control pin.
RE1/OE	bit1	TTL	Input/Output or system bus Output Enable (OE) control pin.
RE2/WR	bit2	TTL	Input/Output or system bus Write (WR) control pin.

Legend: TTL = TTL input.

TABLE 9-10: REGISTERS/BITS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
15h, Bank 1	PORTE	—	—	—	_	—	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu
14h, Bank 1	DDRE	Data direction register for PORTE								111	111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

14.4 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction. This clears the Watchdog Timer and postscaler (if enabled). The \overline{PD} bit is cleared and the \overline{TO} bit is set (in the CPUSTA register). In SLEEP mode, the oscillator driver is turned off. The I/O ports maintain their status (driving high, low, or hi-impedance).

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC). A WDT time-out RESET does not drive the $\overline{\text{MCLR}}/\text{VPP}$ pin low.

14.4.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- A POR reset
- External reset input on MCLR/VPP pin
- WDT Reset (if WDT was enabled)
- Interrupt from RA0/INT pin, RB port change, T0CKI interrupt, or some Peripheral Interrupts

The following peripheral interrupts can wake-up from SLEEP:

- · Capture1 interrupt
- Capture2 interrupt
- · USART synchronous slave transmit interrupt
- · USART synchronous slave receive interrupt

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

Any reset event will cause a device reset. Any interrupt event is considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the CPUSTA register can be used to determine the cause of device reset. The

 \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GLINTD bit. If the GLINTD bit is set (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GLINTD bit is clear (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt vector address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GLINTD is set), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from sleep. The TO bit is set, and the PD bit is cleared.

The WDT is cleared when the device wake from SLEEP, regardless of the source of wake-up.

14.4.1.1 WAKE-UP DELAY

When the oscillator type is configured in XT or LF mode, the Oscillator Start-up Timer (OST) is activated on wake-up. The OST will keep the device in reset for 1024Tosc. This needs to be taken into account when considering the interrupt response time when coming out of SLEEP.

FIGURE 14-9: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4
OSC1						$\frown \frown \frown$	
CLKOUT(4)		/		lost(2)	\/ \/		
INT					I I		
(RA0/INT pin)	ı ı		: (1		<u>1 </u>
INTF flag			<u>`</u>		I		Interrupt Latency (2)
GLINTD bit	1 11		· ·		I		·
	i i		Processor		1		1 I
INSTRUCTION	FLOW		in SLEEP		1 1		I I I I
PC	C PC	PC+1		+2	× 0004	h	× <u>0005h</u>
Instruction (fetched	Inst (PC) = SLEEP	Inst (PC+1)			Inst (PC	+2)	
Instruction {	Inst (PC-1)	SLEEP			Inst (PC	+1)	Dummy Cycle
Note 1: XT or LF o 2: Tost = 102 3: When GLII 4: CLKOUT is	scillator mode assume 4Tosc (drawing not to s NTD = 0 processor jum s not available in these	d. scale). This delay will ops to interrupt routin osc modes, but show	not be there e after wake wn here for ti	for RC osc -up. If GLIN	c mode. ITD = 1, exec ence.	ution will	continue in line.

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (fuzzyTECH[®]–MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLABTM Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

FIGURE 17-5: TIMER0 CLOCK TIMINGS

TABLE 17-5: TIMER0 CLOCK REQUIREMENTS

Parameter								
No.	Sym	Characteristic		Min	Typ†	Мах	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20 §	—	_	ns	
			With Prescaler	10*	—	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20 §	—	—	ns	
			With Prescaler	10*	—	—	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> §	—	_	ns	N = prescale value
				N				(1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5 TCY + 20 §	—	—	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5 TCY + 20 §	—	_	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> §	—	—	ns	N = prescale value
			N				(1, 2, 4, 8)
48	TckE2tmrl	Delay from selected External Clock Edge to	2Tosc §	—	6 Tosc §	_	
		Timer increment					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-7: CAPTURE TIMINGS

TABLE 17-7: CAPTURE REQUIREMENTS

Parameter	_						
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
50	TccL	Capture1 and Capture2 input low time	10 *	—	_	ns	
51	TccH	Capture1 and Capture2 input high time	10 *	—	—	ns	
52	TccP	Capture1 and Capture2 input period	<u>2 Tcy</u> § N	—	—	ns	N = prescale value (4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-8: PWM TIMINGS

TABLE 17-8: PWM REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
53	TccR	PWM1 and PWM2 output rise time		10 *	35 *§	ns	
54	TccF	PWM1 and PWM2 output fall time	—	10 *	35 *§	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

18.0 PIC17C42 DC AND AC CHARACTERISTICS

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

TABLE 18-1: PIN CAPACITANCE PER PACKAGE TYPE

Din Nama		Typical Capa	acitance (pF)	
	40-pin DIP	44-pin PLCC	44-pin MQFP	44-pin TQFP
All pins, except MCLR, VDD, and Vss	10	10	10	10
MCLR pin	20	20	20	20

FIGURE 18-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

TABLE 18-2: RC OSCILLATOR FREQUENCIES

Cext	Rext	Average Fosc @ 5V, 25°C			
22 pF	10k	3.33 MHz	± 12%		
	100k	353 kHz	± 13%		
100 pF	3.3k	3.54 MHz	± 10%		
	5.1k	2.43 MHz	± 14%		
	10k	1.30 MHz	± 17%		
	100k	129 kHz	± 10%		
300 pF	3.3k	1.54 MHz	± 14%		
	5.1k	980 kHz	± 12%		
	10k	564 kHz	± 16%		
	160k	35 kHz	± 18%		

19.1 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) DC CHARACTERISTICS Operating temperature							
						-40°C	\leq TA \leq +85°C for industrial and
						0°C	\leq TA \leq +70°C for commercial
Parameter							
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.5	—	6.0	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	_	—	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	_	_	mV/ms	See section on Power-on Reset for details
D010	IDD	Supply Current	_	3	6	mA	Fosc = 4 MHz (Note 4)
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz
D012			-	11	24 *	mA	Fosc = 16 MHz
D013			-	19	38	mA	Fosc = 25 MHz
D015			-	25	50	mA	Fosc = 33 MHz
D014			-	95	150	μA	Fosc = 32 kHz,
							WDT enabled (EC osc configuration)
D020	IPD	Power-down	_	10	40	μA	VDD = 5.5V, WDT enabled
D021		Current (Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \bullet R)$. For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

20.0 PIC17CR42/42A/43/R43/44 DC AND AC CHARACTERISTICS

The graphs and tables provided in this section are for design guidance and are not tested nor guaranteed. In some graphs or tables the data presented is outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

TABLE 20-1: PIN CAPACITANCE PER PACKAGE TYPE

Din Nama	Typical Capacitance (pF)					
	40-pin DIP	44-pin PLCC	44-pin MQFP	44-pin TQFP		
All pins, except MCLR, VDD, and Vss	10	10	10	10		
MCLR pin	20	20	20	20		

FIGURE 20-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

21.2 <u>40-Lead Plastic Dual In-line (600 mil)</u>

Package Group: Plastic Dual In-Line (PLA)						
	Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
A	_	5.080		_	0.200	
A1	0.381	_		0.015	_	
A2	3.175	4.064		0.125	0.160	
В	0.355	0.559		0.014	0.022	
B1	1.270	1.778	Typical	0.050	0.070	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.181	52.197		2.015	2.055	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	13.462	13.970		0.530	0.550	
e1	2.489	2.591	Typical	0.098	0.102	Typical
eA	15.240	15.240	Reference	0.600	0.600	Reference
eB	15.240	17.272		0.600	0.680	
L	2.921	3.683		0.115	0.145	
N	40	40		40	40	
S	1.270	_		0.050	_	
S1	0.508	_		0.020	_	

APPENDIX C: WHAT'S NEW

The structure of the document has been made consistent with other data sheets. This ensures that important topics are covered across all PIC16/17 families. Here is an overview of new features.

Added the following devices:

PIC17CR42

PIC17C42A

PIC17CR43

A 33 MHz option is now available.

APPENDIX D: WHAT'S CHANGED

To make software more portable across the different PIC16/17 families, the name of several registers and control bits have been changed. This allows control bits that have the same function, to have the same name (regardless of processor family). Care must still be taken, since they may not be at the same special function register address. The following shows the register and bit names that have been changed:

Old Name	New Name
TX8/9	TX9
RC8/9	RX9
RCD8	RX9D
TXD8	TX9D

Instruction DECFSNZ corrected to DCFSNZ

Instruction INCFSNZ corrected to INFSNZ

Enhanced discussion on PWM to include equation for determining bits of PWM resolution.

Section 13.2.2 and 13.3.2 have had the description of updating the FERR and RX9 bits enhanced.

The location of configuration bit PM2 was changed (Figure 6-1 and Figure 14-1).

Enhanced description of the operation of the INTSTA register.

Added note to discussion of interrupt operation.

Tightened electrical spec D110.

Corrected steps for setting up USART Asynchronous Reception.

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSS and MCLR pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509	8-pin
PIC16C54, PIC16C54A, PIC16CR54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C61, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622, PIC16C710, PIC16C71, PIC16C711, PIC16F83, PIC16CR83, PIC16C84, PIC16F84A, PIC16CR84	18-pin 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73, PIC16C73A	28-pin
PIC16C64, PIC16CR64, PIC16C64A, PIC16C65, PIC16C65A, PIC16C74, PIC16C74A	40-pin
PIC17C42, PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin

TABLE E-1: PIN COMPATIBLE DEVICES

NOTES:

APPENDIX F: ERRATA FOR PIC17C42 SILICON

The PIC17C42 devices that you have received have the following anomalies. At present there is no intention for future revisions to the present PIC17C42 silicon. If these cause issues for the application, it is recommended that you select the PIC17C42A device.

Note: New designs should use the PIC17C42A.

 When the Oscillator Start-Up Timer (OST) is enabled (in LF or XT oscillator modes), any interrupt that wakes the processor may cause a WDT reset. This occurs when the WDT is greater than or equal to 50% time-out period when the SLEEP instruction is executed. This will not occur in either the EC or RC oscillator modes.

Work-arounds

- Always ensure that the CLRWDT instruction is executed before the WDT increments past 50% of the WDT period. This will keep the "false" WDT reset from occurring.
- b) When using the WDT as a normal timer (WDT disabled), ensure that the WDT is less than or equal to 50% time-out period when the SLEEP instruction is executed. This can be done by monitoring the TO bit for changing state from set to clear. Example 1 shows putting the PIC17C42 to sleep.

EXAMPLE F-1: PIC17C42 TO SLEEP

	BTFSS	CPUSTA,	то	;	TO = 0?
	CLRWDT			;	YES, WDT = 0
LOOP	BTFSC	CPUSTA,	то	;	WDT rollover?
	GOTO	LOOP		;	NO, Wait
	SLEEP			;	YES, goto Sleep

2. When the clock source of Timer1 or Timer2 is selected to external clock, the overflow interrupt flag will be set twice, once when the timer equals the period, and again when the timer value is reset to 0h. If the latency to clear TMRxIF is greater than the time to the next clock pulse, no problems will be noticed. If the latency is less than the time to the next timer clock pulse, the interrupt will be serviced twice.

Work-arounds

- a) Ensure that the timer has rolled over to 0h before clearing the flag bit.
- b) Clear the timer in software. Clearing the timer in software causes the period to be one count less than expected.

Design considerations

The device must not be operated outside of the specified voltage range. An external reset circuit must be used to ensure the device is in reset when a brown-out occurs or the VDD rise time is too long. Failure to ensure that the device is in reset when device voltage is out of specification may cause the device to lock-up and ignore the $\overline{\text{MCLR}}$ pin.

PIC17C4X

INDEX

Α

ADDLW	112
ADDWF	
ADDWFC	113
ALU	9
ALU STATUS Register (ALUSTA)	
ALUSTA	34, 36, 108
ALUSTA Register	
ANDLW	
ANDWF	
Application Notes	
AN552	55
Assembler	
Asynchronous Master Transmission	
Asynchronous Transmitter	

В

Bank Select Register (BSR) 42	2
Banking	2
Baud Rate Formula	ô
Baud Rate Generator (BRG)86	ô
Baud Rates	
Asynchronous Mode88	В
Synchronous Mode87	7
BCF	4
Bit Manipulation	В
Block Diagrams	
On-chip Reset Circuit15	5
PIC17C4210	C
PORTD	D
PORTE	2
PWM75	5
RA0 and RA153	3
RA2 and RA354	4
RA4 and RA554	4
RB3:RB2 Port Pins56	ô
RB7:RB4 and RB1:RB0 Port Pins55	5
RC7:RC0 Port Pins58	В
Timer3 with One Capture and One Period Register 78	в
TMR1 and TMR2 in 16-bit Timer/Counter Mode74	4
TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 73	3
TMR3 with Two Capture Registers79	9
WDT 104	4
BORROW	9
BRG	ô
Brown-out Protection	В
BSF	5
BSR	2
BSR Operation	2
BTFSC	5
BTFSS	ô
BTG	ô

С

72
71
71

CA1IE	23
CA1IF	24
CA10VF	72
CA2ED0	71
CA2ED1	71
CA2H	20, 35
CA2IE	23, 78
CA2IF	24, 78
CA2L	20, 35
CA2OVF	72
Calculating Baud Rate Error	86
CALL	39, 117
Capacitor Selection	
Ceramic Resonators	101
Crystal Oscillator	101
Capture	71, 78
Capture Sequence to Read Example	78
Capture1	
Mode	71
Overflow	72
Capture2	
. Mode	71
Overflow	72
Carry (C)	9
Ceramic Resonators	100
Circular Buffer	
Clearing the Prescaler	103
Clock/Instruction Cycle (Figure)	14
Clocking Scheme/Instruction Cycle (Section)	14
CLRF	117
CLRWDT	118
Code Protection	99, 106
COMF	118
Configuration	
Bits	100
Locations	100
Oscillator	100
Word	99
CPFSEQ	119
CPFSGT	119
CPFSLT	120
CPU STATUS Register (CPUSTA)	37
CPUSTA	34, 37, 105
CREN	84
Crystal Operation, Overtone Crystals	101
Crystal or Ceramic Resonator Operation	100
Crystal Oscillator	100
CSRC	83

D

Data Memory	
GPR	
Indirect Addressing	
Organization	
SFR	
Transfer to Program Memory	43
DAW	
DC	9, 36
DDRB	
DDRC	19, 34, 58
DDRD	19, 34, 60
DDRE	
DECF	
DECFSNZ	
DECFSZ	

 $\ensuremath{\textcircled{}^{\odot}}$ 1996 Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.