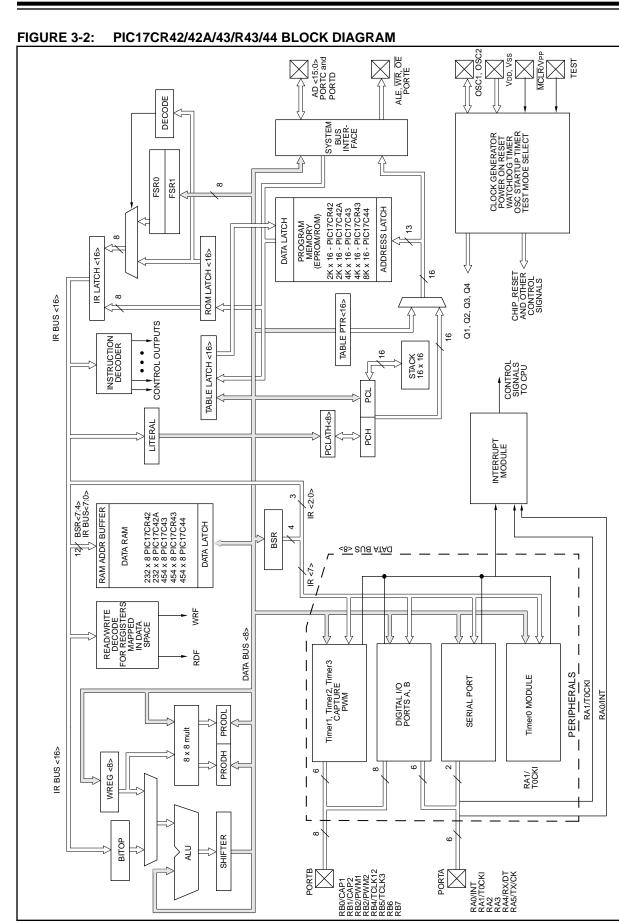
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-33-p

Email: info@E-XFL.COM

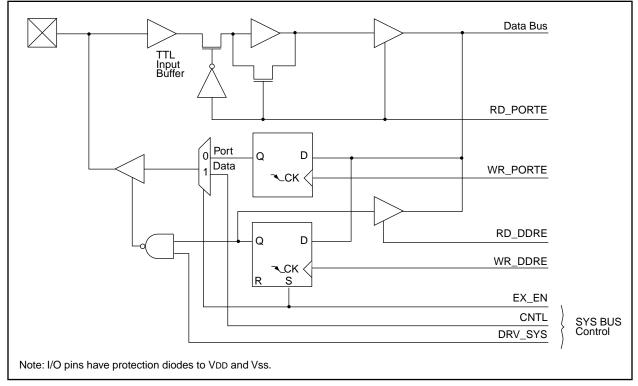
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1.						
Name	DIP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
						PORTD is a bi-directional I/O Port.
RD0/AD8	40	43	15	I/O	TTL	This is also the upper byte of the 16-bit system bus in
RD1/AD9	39	42	14	I/O	TTL	microprocessor mode or extended microprocessor mode
RD2/AD10	38	41	13	I/O	TTL	or extended microcontroller mode. In multiplexed system
RD3/AD11	37	40	12	I/O	TTL	bus configuration these pins are address output as well as data input or output.
RD4/AD12	36	39	11	I/O	TTL	
RD5/AD13	35	38	10	I/O	TTL	
RD6/AD14	34	37	9	I/O	TTL	
RD7/AD15	33	36	8	I/O	TTL	
						PORTE is a bi-directional I/O Port.
RE0/ALE	30	32	4	I/O	TTL	In microprocessor mode or extended microcontroller mode, it is the Address Latch Enable (ALE) output. Address should be latched on the falling edge of ALE output.
RE1/OE	29	31	3	I/O	TTL	In microprocessor or extended microcontroller mode, it is the Output Enable (\overline{OE}) control output (active low).
RE2/WR	28	30	2	I/O	TTL	In microprocessor or extended microcontroller mode, it is the Write Enable (WR) control output (active low).
TEST	27	29	1	I	ST	Test mode selection control input. Always tie to Vss for nor- mal operation.
Vss	10, 31	11, 12, 33, 34	5, 6, 27, 28	Р		Ground reference for logic and I/O pins.
Vdd	1	1, 44	16, 17	Р		Positive supply for logic and I/O pins.

TABLE 3-1:	PINOUT DESCRIPTIONS
------------	---------------------

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input. NOTES:

9.4.1 PORTE AND DDRE REGISTER


PORTE is a 3-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to it will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (\overline{OE}), and Write (\overline{WR}). The control signals \overline{OE} and \overline{WR} are active low signals. The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-4 shows the instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-4: INITIALIZING PORTE

MOVLB	1	;	Select Bank 1
CLRF	PORTE	;	Initialize PORTE data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0x03	;	Value used to initialize
		;	data direction
MOVWF	DDRE	;	Set RE<1:0> as inputs
		;	RE<2> as outputs
		;	RE<7:3> are always
		;	read as '0'

FIGURE 9-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

NOTES:

12.0 TIMER1, TIMER2, TIMER3, PWMS AND CAPTURES

The PIC17C4X has a wealth of timers and time-based functions to ease the implementation of control applications. These time-base functions include two PWM outputs and two Capture inputs.

Timer1 and Timer2 are two 8-bit incrementing timers, each with a period register (PR1 and PR2 respectively) and separate overflow interrupt flags. Timer1 and Timer2 can operate either as timers (increment on internal Fosc/4 clock) or as counters (increment on falling edge of external clock on pin RB4/TCLK12). They are also software configurable to operate as a single 16-bit timer. These timers are also used as the time-base for the PWM (pulse width modulation) module. Timer3 is a 16-bit timer/counter consisting of the TMR3H and TMR3L registers. This timer has four other associated registers. Two registers are used as a 16-bit period register or a 16-bit Capture1 register (PR3H/CA1H:PR3L/CA1L). The other two registers are strictly the Capture2 registers (CA2H:CA2L). Timer3 is the time-base for the two 16-bit captures.

TMR3 can be software configured to increment from the internal system clock or from an external signal on the RB5/TCLK3 pin.

Figure 12-1 and Figure 12-2 are the control registers for the operation of Timer1, Timer2, and Timer3, as well as PWM1, PWM2, Capture1, and Capture2.

FIGURE 12-1: TCON1 REGISTER (ADDRESS: 16h, BANK 3)

bit7	I CA2ED0 CA1ED1 CA1ED0 T16 TMR3CS TMR2CS TMR1CS bit0	R = Readable bit W = Writable bit -n = Value at POR reset
bit 7-6:	CA2ED1:CA2ED0 : Capture2 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 5-4:	CA1ED1:CA1ED0 : Capture1 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 3:	T16 : Timer1:Timer2 Mode Select bit 1 = Timer1 and Timer2 form a 16-bit timer 0 = Timer1 and Timer2 are two 8-bit timers	
bit 2:	TMR3CS : Timer3 Clock Source Select bit 1 = TMR3 increments off the falling edge of the RB5/TCLK3 pin 0 = TMR3 increments off the internal clock	
bit 1:	TMR2CS : Timer2 Clock Source Select bit 1 = TMR2 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR2 increments off the internal clock	
bit 0:	TMR1CS : Timer1 Clock Source Select bit 1 = TMR1 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR1 increments off the internal clock	

12.2.1 ONE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 12-7. The timer increments until it equals the period register and then resets to 0000h. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

This mode is selected if control bit CA1/PR3 is clear. In this mode, the Capture1 register, consisting of high byte (PR3H/CA1H) and low byte (PR3L/CA1L), is configured as the period control register for TMR3. Capture1 is disabled in this mode, and the corresponding Interrupt bit CA1IF is never set. TMR3 increments until it equals the value in the period register and then resets to 0000h.

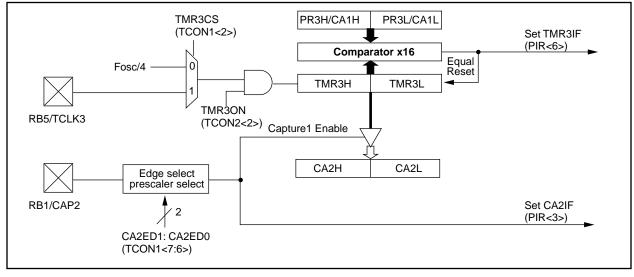
Capture2 is active in this mode. The CA2ED1 and CA2ED0 bits determine the event on which capture will occur. The possible events are:

- · Capture on every falling edge
- Capture on every rising edge
- · Capture every 4th rising edge
- · Capture every 16th rising edge

When a capture takes place, an interrupt flag is latched into the CA2IF bit. This interrupt can be enabled by setting the corresponding mask bit CA2IE. The Peripheral Interrupt Enable bit (PEIE) must be set and the Global Interrupt Disable bit (GLINTD) must be cleared for the interrupt to be acknowledged. The CA2IF interrupt flag bit must be cleared in software.

When the capture prescale select is changed, the prescaler is not reset and an event may be generated. Therefore, the first capture after such a change will be ambiguous. However, it sets the time-base for the next capture. The prescaler is reset upon chip reset. Capture pin RB1/CAP2 is a multiplexed pin. When used as a port pin, Capture2 is not disabled. However, the user can simply disable the Capture2 interrupt by clearing CA2IE. If RB1/CAP2 is used as an output pin, the user can activate a capture by writing to the port pin. This may be useful during development phase to emulate a capture interrupt.

The input on capture pin RB1/CAP2 is synchronized internally to internal phase clocks. This imposes certain restrictions on the input waveform (see the Electrical Specification section for timing).


The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the Timer3 value to the capture register, protecting the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The recommended sequence to read capture registers and capture overflow flag bits is shown in Example 12-1.

EXAMPLE 12-1: SEQUENCE TO READ CAPTURE REGISTERS

MOVLB 3	;Select Bank 3
MOVPF CA2L,LO_BYTE	;Read Capture2 low
	;byte, store in LO_BYTE
MOVPF CA2H, HI_BYTE	;Read Capture2 high
	;byte, store in HI_BYTE
MOVPF TCON2,STAT_VAL	;Read TCON2 into file
	;STAT_VAL

FIGURE 12-7: TIMER3 WITH ONE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM

BSF	Bit Set f							
Syntax:	[<i>label</i>] E	[<i>label</i>] BSF f,b						
Operands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$						
Operation:	Dperation: $1 \rightarrow (f < b >)$							
Status Affected: None								
Encoding:	1000	0bbb	fff	f	ffff			
Description:	Bit 'b' in register 'f' is set.							
Words:	1							
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3	3		Q4			
Decode	Read register 'f'	Execu	ute		Write gister 'f'			
Example:	BSF	FLAG_RE	G, 7					
After Instruct	EG= 0x0A							

BTF	SC	Bit Test, s	Bit Test, skip if Clear					
Synt	tax:	[<i>label</i>] B	[label] BTFSC f,b					
Ope	rands:	$0 \le f \le 253$ $0 \le b \le 7$	$0 \le f \le 255$ $0 \le b \le 7$					
Ope	ration:	skip if (f <t< td=""><td>o>) = 0</td><td></td><td></td></t<>	o>) = 0					
Stat	us Affected:	None						
Enc	oding:	1001	1bbb	ffff	ffff			
Des	cription:	instruction If bit 'b' is 0 fetched du cution is di cuted inste	If bit 'b' in register 'f' is 0 then the next instruction is skipped. If bit 'b' is 0 then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.					
Wor	ds:	1	1					
Cycl	les:	1(2)	1(2)					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Execu	ite	NOP			
lf sk	ip:							
	Q1	Q2	Q3		Q4			
	Forced NOP	NOP	Execu	ite	NOP			
<u>Exa</u>	mple:	FALSE	BTFSC :	FLAG,1				
	Before Instru PC		dress (HE	RE)				
	After Instructi If FLAG<7 PC If FLAG<7 PC	l> = 0; = ac l> = 1;	ldress (TR					

DECF	Decreme	nt f		DECFSZ	Decrement f,	skip if 0	
Syntax:	[label]	DECF f,d		Syntax:	[label] DEC	FSZ f,d	
Operands:	0 ≤ f ≤ 258 d ∈ [0,1]	5		Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$		
Operation:	(f) – 1 \rightarrow (dest)		Operation:	(f) – 1 \rightarrow (dest		
Status Affected:	OV, C, DC	;, Z			skip if result =	0	
Encoding:	0000	011d ff	ff ffff	Status Affected	l: None		
Description:	Decrement	register 'f'. If '	d' is 0 the	Encoding:	0001 011	Ld fff	f ffff
		ored in WREG		Description:	The contents of mented. If 'd' is	0 the resu	It is placed in
Words:	1				WREG. If 'd' is 1 back in register		t is placed
Cycles:	1				If the result is 0,		instruction.
Q Cycle Activity:					which is already	/ fetched,	is discarded,
Q1	Q2	Q3	Q4		and an NOP is e ing it a two-cycle		
Decode	Read register 'f'	Execute	Write to destination	Words:	1		
Example:	DECF	CNT, 1		Cycles:	1(2)		
Before Instru		- ,		Q Cycle Activit	y:		
CNT	= 0x01			Q1	Q2	Q3	Q4
Z	= 0			Decode		xecute	Write to
After Instruc	tion				register 'f'		destination
CNT	= 0x00			Example:			CNT, 1
Z	= 1				GC CONTINUE	OTO	LOOP
				Defers inc			
				Before Ins	liucion		

PC	=	Address (HERE)
After Instruct	ion	
CNT	=	CNT - 1
If CNT	=	0;
PC	=	Address (CONTINUE)
If CNT	≠	0;
PC	=	Address (HERE+1)

MOVPF	Move p to f						
Syntax:	[<i>label</i>] MOVPF p,f						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq p \leq 31 \end{array}$						
Operation:	$(p) \rightarrow (f)$						
Status Affected: Z							
Encoding:	010p pppp ffff ffff						
Description: Move data from data memory location 'p' to data memory location 'f'. Location 'f' can be anywhere in the 256 byte data space (00h to FFh) while 'p' can be 00h to 1Fh.							
	Either 'p' or 'f' can be WREG (a useful special situation).						
MOVPF is particularly useful for transfer- ring a peripheral register (e.g. the timer or an I/O port) to a data memory loca- tion. Both 'f' and 'p' can be indirectly addressed.							
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2 Q3 Q4						
Decode	ReadExecuteWriteregister 'p'register 'f'						
Example:	MOVPF REG1, REG2						
Before Instru	iction						
REG1 REG2	= 0x11 = 0x33						
After Instruc REG1 REG2	ion = 0x11 = 0x11						

MO\	/WF	Ν	Move WREG to f						
Synt	ax:	[/	label]	MOVWF	= f				
Ope	rands:	0	≤ f ≤ 25	5					
Ope	ration:	(\	VREG) ·	\rightarrow (f)					
State	us Affected:	N	one						
Enco	oding:		0000	0001	fff	f	ffff		
Description:		Lo		from WR can be a space.		•			
Wor	ds:	1							
Cycl	es:	1							
QC	ycle Activity:								
	Q1		Q2	Q3	3		Q4		
	Decode		Read gister 'f'	Execu	ute		Write gister 'f'		
<u>Exa</u>	<u>mple</u> :	M	OVWF	REG					
	Before Instru WREG REG	uctio = =	n 0x4F 0xFF						
	After Instruc WREG REG	tion = =	0x4F 0x4F						

NEGW	V	Negate W	Negate W						
Syntax	K :	[<i>label</i>] NEGW f,s	;						
Opera	nds:	0 ≤ F ≤ 255 s ∈ [0,1]							
Opera	tion:	$\frac{\overline{WREG}}{\overline{WREG}} + 1 \to (f);$ $\overline{WREG} + 1 \to s$							
Status	Affected:	OV, C, DC, Z							
Encod	ling:	0010 110s f	fff ffff						
Description:		ment. If 's' is 0 the resul WREG and data memo	WREG is negated using two's comple- ment. If 's' is 0 the result is placed in WREG and data memory location 'f'. If 's' is 1 the result is placed only in data memory location 'f'.						
Words	:	1	1						
Cycles	3:	1							
Q Cyc	le Activity:								
	Q1	Q2 Q3	Q4						
	Decode	Read Execute register 'f'	Write register 'f' and other specified register						
<u>Examp</u>	ole:	NEGW REG, 0							
		ction = 0011 1010 [0x3A], = 1010 1011 [0xAB]							
At	fter Instruct WREG REG	ion = 1100 0111 [0xC6] = 1100 0111 [0xC6]							

NOF	2	No Opera	No Operation						
Synt	tax:	[label]	NOP						
Ope	rands:	None							
Ope	ration:	No opera	tion						
Stat	us Affected:	None	None						
Encoding:		0000	0000	000	0	0000			
Des	cription:	No operati	No operation.						
Wor	ds:	1	1						
Cycl	es:	1							
Q Cycle Activity:									
	Q1	Q2	Q3		Q4				
	Decode	NOP	Exect	ute		NOP			

Example:

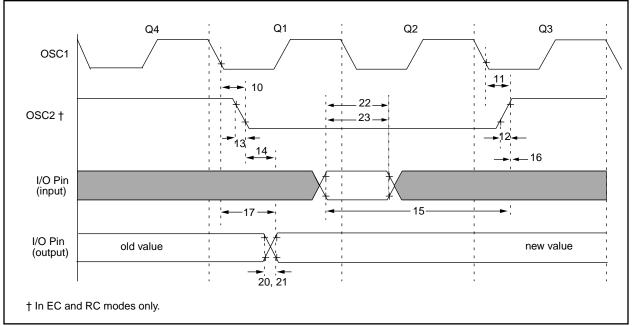
None.

XORLW	Exclusive OR Literal with	XORWF	Exclusive OR WREG with f				
	WREG	Syntax:	[label] XORWF f,d				
Syntax:	[<i>label</i>] XORLW k	Operands:	$0 \le f \le 255$				
Operands:	$0 \le k \le 255$		d ∈ [0,1]				
Operation:	(WREG) .XOR. $k \rightarrow (WREG)$	Operation:	(WREG) .XOR. (f) \rightarrow (dest)				
Status Affected:	Z	Status Affected:	Z				
Encoding:	1011 0100 kkkk kkkk	Encoding:	0000 110d ffff ffff				
Description:	The contents of WREG are XOR'ed with the 8-bit literal 'k'. The result is placed in WREG.	Description:	Exclusive OR the contents of WREG with register 'f'. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in the register 'f'.				
Words:	1	Words:	1				
Cycles:	1	Cycles:	1				
Q Cycle Activity:		Q Cycle Activity:					
Q1	Q2 Q3 Q4	Q Oycle Activity. Q1	Q2 Q3 Q4				
Decode	ReadExecuteWrite toliteral 'k'WREG	Decode	Read Execute Write to destination				
Example:	XORLW 0xAF	L					
Before Instruc	ction	Example:	XORWF REG, 1				
After Instructi	= 0xB5 on = 0x1A	Before Instru REG WREG	ction = 0xAF = 0xB5				
		After Instructi REG WREG	ion = 0x1A = 0xB5				

Applicable Devices 42 R42 42A 43 R43 44

17.0 PIC17C42 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †


Ambient temperature under bias	55 to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss (Note 2)	0.6V to +14V
Voltage on RA2 and RA3 with respect to Vss	0.6V to +12V
Voltage on all other pins with respect to Vss	
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin(s) - Total	250 mA
Maximum current into VDD pin(s) - Total	200 mA
Input clamp current, liк (Vi < 0 or Vi > VDD)	
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	60 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-V	OH) X IOH} + Σ (VOL X IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

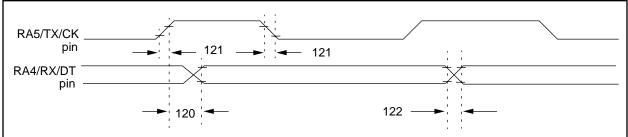
Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓		15 ‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↑ to CLKOUT↑	—	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time	—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time	—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT [↑] to Port out valid	—	—	0.5Tcy + 20‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT	0.25Tcy + 25 ‡	—	—	ns	Note 1
16	TckH2iol	Port in hold after CLKOUT	0 ‡	—	—	ns	Note 1
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	—	100 ‡	ns	
20	TioR	Port output rise time	—	10 ‡	35 ‡	ns	
21	TioF	Port output fall time	—	10 ‡	35 ‡	ns	
22	TinHL	INT pin high or low time	25 *	_	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25 *	—	—	ns	

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where OSC2 output = 4 x Tosc = Tcy.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

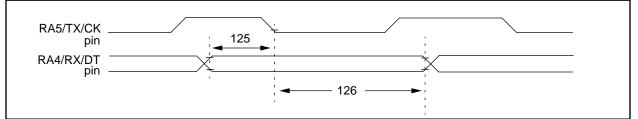


TABLE 19-9: SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param	C. m	Characteristic		Min	Trent	Max	Unito	Conditions	
No.	Sym	Characteristic		IVIIII	Тур†	Max	Units	Conditions	
120	TckH2dtV	SYNC XMIT (MASTER &							
		SLAVE)	PIC17CR42/42A/43/R43/44	—	—	50	ns		
		Clock high to data out valid	PIC17LCR42/42A/43/R43/44	—	—	75	ns		
121	TckRF	Clock out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns		
		(Master Mode)	PIC17LCR42/42A/43/R43/44	—	—	40	ns		
122	TdtRF	Data out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns		
			PIC17LCR42/42A/43/R43/44	—	—	40	ns		
†	Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not								

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

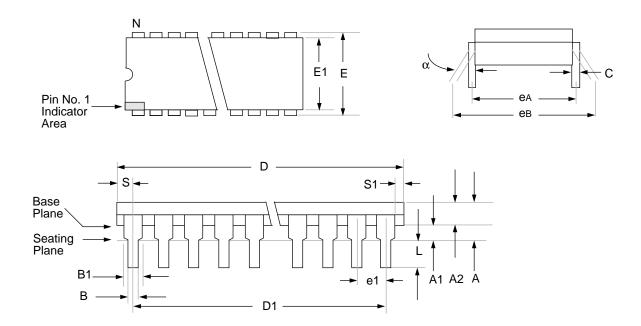
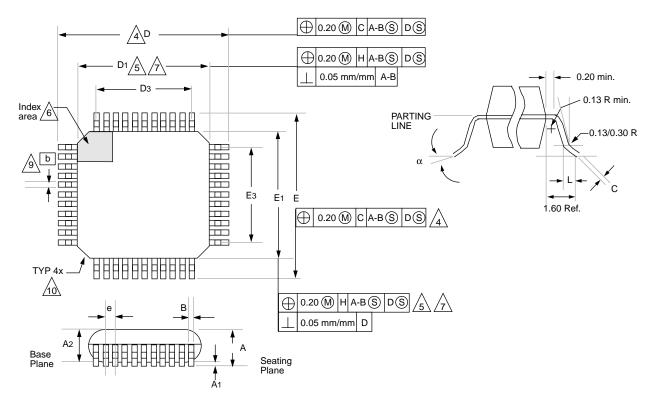


TABLE 19-10: SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

21.2 <u>40-Lead Plastic Dual In-line (600 mil)</u>

Package Group: Plastic Dual In-Line (PLA)								
	Millimeters			Inches				
Symbol	Min	Мах	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
Α	_	5.080		_	0.200			
A1	0.381	_		0.015	_			
A2	3.175	4.064		0.125	0.160			
В	0.355	0.559		0.014	0.022			
B1	1.270	1.778	Typical	0.050	0.070	Typical		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	51.181	52.197		2.015	2.055			
D1	48.260	48.260	Reference	1.900	1.900	Reference		
E	15.240	15.875		0.600	0.625			
E1	13.462	13.970		0.530	0.550			
e1	2.489	2.591	Typical	0.098	0.102	Typical		
eA	15.240	15.240	Reference	0.600	0.600	Reference		
eB	15.240	17.272		0.600	0.680			
L	2.921	3.683		0.115	0.145			
N	40	40		40	40			
S	1.270	_		0.050	_			
S1	0.508	-		0.020	_			

Package Group: Plastic MQFP									
		Millimeters			Inches				
Symbol	Min	Max Notes		Max Note		Min	Мах	Notes	
α	0°	7 °		0°	7 °				
А	2.000	2.350		0.078	0.093				
A1	0.050	0.250		0.002	0.010				
A2	1.950	2.100		0.768	0.083				
b	0.300	0.450	Typical	0.011	0.018	Typical			
С	0.150	0.180		0.006	0.007				
D	12.950	13.450		0.510	0.530				
D1	9.900	10.100		0.390	0.398				
D3	8.000	8.000	Reference	0.315	0.315	Reference			
E	12.950	13.450		0.510	0.530				
E1	9.900	10.100		0.390	0.398				
E3	8.000	8.000	Reference	0.315	0.315	Reference			
е	0.800	0.800		0.031	0.032				
L	0.730	1.030		0.028	0.041				
Ν	44	44		44	44				
CP	0.102	_		0.004	_				

PIC16C7X Family of Devices

E.5

Clock Memory Peripherals Features Features Peripherals Features Features Clock Memory Peripherals Features Feat	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ГМR0 — — — 4 4 13 3.0-6.0 Yes — 18-pin DIP, SOIC	TMR0 4 4 13 3.0-6.0 Yes 18-pin DIP, SOIC; 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP	TMR0, 1 SPI/I ² C - 5 8 22 2.5-6.0 Yes 28-pin SDIP, SOIC, SSOP TMR1, TMR2 - 5 8 22 2.5-6.0 Yes 28-pin SDIP, SOIC, SSOP	TMR0, 2 SPI/I ² C, - 5 11 22 3.0-6.0 Yes - 28-pin SDIP, SOIC TMR1, TMR2 USART	TMR0, 2 SPI/I ² C, 5 11 22 2.5-6.0 Yes Yes 28-pin SDIP, SOIC TMR1, TMR2 USART	TMR0, 2 SPI/I ² C, Yes 8 12 33 3.0-6.0 Yes 40-pin DIP; TMR1, TMR2 USART 12 33 3.0-6.0 Yes 44-pin PLCC, MQFP	TMR0, 2 SPI/I ² C, Yes 8 12 33 2.5-6.0 Yes 40-pin DIP; TMR1, TMR2 USART 12 33 2.5-6.0 Yes 44-pin PLCC, MQFP, TQFP	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.
TO CATHER TO LOUGH	TMR0	TMR0	TMR0	TMR0, TMR1, TM	TMR0, TMR1, TM	TMR0, TMR1, TM	TMR0, TMR1, TM	TMR0, TMR1, TM	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable c capability.
-10 TOL 870	98 98	36	68	128	192	192	192	192	y device
	512	ź	ź	2K	4 7	4 7	4 7	4 7	7 Famil
	20 11/10/	20	20	20	20	20	20	20	C16/17 vility.
	PIC16C710	PIC16C71	PIC16C711	PIC16C72	PIC16C73	PIC16C73A ⁽¹⁾	PIC16C74	PIC16C74A ⁽¹⁾	All PIC16/ capability.

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSS and MCLR pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509	8-pin
PIC16C54, PIC16C54A, PIC16CR54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C61, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622, PIC16C710, PIC16C71, PIC16C711, PIC16F83, PIC16CR83, PIC16C84, PIC16F84A, PIC16CR84	18-pin 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73, PIC16C73A	28-pin
PIC16C64, PIC16CR64, PIC16C64A, PIC16C65, PIC16C65A, PIC16C74, PIC16C74A	40-pin
PIC17C42, PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin

TABLE E-1: PIN COMPATIBLE DEVICES

NOTES: