E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-33-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 RESET

The PIC17CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- WDT Reset (normal operation)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are forced to a "reset state" on Power-on Reset (POR), on $\overline{\text{MCLR}}$ or WDT Reset and on $\overline{\text{MCLR}}$ reset during SLEEP. They are not affected by a WDT Reset during SLEEP, since this reset is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 4-3. These bits are used in software to determine the nature of reset. See Table 4-4 for a full description of reset states of all registers.

Note: While the device is in a reset state, the internal phase clock is held in the Q1 state. Any processor mode that allows external execution will force the RE0/ALE pin as a low output and the RE1/OE and RE2/WR pins as high outputs.

A simplified block diagram of the on-chip reset circuit is shown in Figure 4-1.

4.1 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT), and Oscillator Start-up</u> <u>Timer (OST)</u>

4.1.1 POWER-ON RESET (POR)

The Power-on Reset circuit holds the device in reset until VDD is above the trip point (in the range of 1.4V -2.3V). The PIC17C42 does not produce an internal reset when VDD declines. All other devices will produce an internal reset for both rising and falling VDD. To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD is required. See Electrical Specifications for details.

4.1.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 96 ms time-out (nominal) on power-up. This occurs from rising edge of the POR signal and after the first rising edge of $\overline{\text{MCLR}}$ (detected high). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. In most cases the PWRT delay allows the VDD to rise to an acceptable level.

The power-up time delay will vary from chip to chip and to VDD and temperature. See DC parameters for details.

FIGURE 4-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

© 1996 Microchip Technology Inc.

5.2 <u>Peripheral Interrupt Enable Register</u> (PIE)

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 5-3: PIE REGISTER (ADDRESS: 17h, BANK 1)

_R/W - 0	
RBIE	TMR3IE TMR2IE TMR1IE CA2IE CA1IE TXIE RCIE R = Readable bit
bit7	bit0 W = Writable bit
bit 7:	RBIE : PORTB Interrupt on Change Enable bit 1 = Enable PORTB interrupt on change 0 = Disable PORTB interrupt on change
bit 6:	TMR3IE : Timer3 Interrupt Enable bit 1 = Enable Timer3 interrupt 0 = Disable Timer3 interrupt
bit 5:	TMR2IE : Timer2 Interrupt Enable bit 1 = Enable Timer2 interrupt 0 = Disable Timer2 interrupt
bit 4:	TMR1IE: Timer1 Interrupt Enable bit 1 = Enable Timer1 interrupt 0 = Disable Timer1 interrupt
bit 3:	CA2IE : Capture2 Interrupt Enable bit 1 = Enable Capture interrupt on RB1/CAP2 pin 0 = Disable Capture interrupt on RB1/CAP2 pin
bit 2:	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture interrupt on RB2/CAP1 pin 0 = Disable Capture interrupt on RB2/CAP1 pin
bit 1:	TXIE : USART Transmit Interrupt Enable bit 1 = Enable Transmit buffer empty interrupt 0 = Disable Transmit buffer empty interrupt
bit 0:	RCIE : USART Receive Interrupt Enable bit 1 = Enable Receive buffer full interrupt 0 = Disable Receive buffer full interrupt

12.1.3.1 PWM PERIODS

The period of the PWM1 output is determined by Timer1 and its period register (PR1). The period of the PWM2 output can be software configured to use either Timer1 or Timer2 as the time-base. When TM2PW2 bit (PW2DCL<5>) is clear, the time-base is determined by TMR1 and PR1. When TM2PW2 is set, the time-base is determined by Timer2 and PR2.

Running two different PWM outputs on two different timers allows different PWM periods. Running both PWMs from Timer1 allows the best use of resources by freeing Timer2 to operate as an 8-bit timer. Timer1 and Timer2 can not be used as a 16-bit timer if either PWM is being used.

The PWM periods can be calculated as follows:

period of PWM1 =[(PR1) + 1] x 4Tosc

period of PWM2 =[(PR1) + 1] x 4Tosc or [(PR2) + 1] x 4Tosc

The duty cycle of PWMx is determined by the 10-bit value DCx<9:0>. The upper 8-bits are from register PWxDCH and the lower 2-bits are from PWxDCL<7:6> (PWxDCH:PWxDCL<7:6>). Table 12-3 shows the maximum PWM frequency (FPWM) given the value in the period register.

The number of bits of resolution that the PWM can achieve depends on the operation frequency of the device as well as the PWM frequency (FPWM).

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log\left(2\right)} \quad \text{bits}$$

The PWMx duty cycle is as follows:

PWMx Duty Cycle = $(DCx) \times TOSC$

where DCx represents the 10-bit value from PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If PRx = PWxDCH, then the PWM output will be low for one to four Q-clock (depending on the state of the PWxDCL<7:6> bits). For a Duty Cycle to be 100%, the PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are double buffered. When the user writes to these registers, they are stored in master latches. When TMR1 (or TMR2) overflows and a new PWM period begins, the master latch values are transferred to the slave latches and the PWMx pin is forced high.

Note:	For PW1DCH, PW1DCL, PW2DCH and
	PW2DCL registers, a write operation
	writes to the "master latches" while a read
	operation reads the "slave latches". As a
	result, the user may not read back what
	was just written to the duty cycle registers.

The user should also avoid any "read-modify-write" operations on the duty cycle registers, such as: ADDWF PW1DCH. This may cause duty cycle outputs that are unpredictable.

TABLE 12-3:	PWM FREQUENCY vs.
	RESOLUTION AT 25 MHz

PWM	Frequency (kHz)							
Frequency	24.4	48.8	65.104	97.66	390.6			
PRx Value	0xFF	0x7F	0x5F	0x3F	0x0F			
High Resolution	10-bit	9-bit	8.5-bit	8-bit	6-bit			
Standard Resolution	8-bit	7-bit	6.5-bit	6-bit	4-bit			

12.1.3.2 PWM INTERRUPTS

The PWM module makes use of TMR1 or TMR2 interrupts. A timer interrupt is generated when TMR1 or TMR2 equals its period register and is cleared to zero. This interrupt also marks the beginning of a PWM cycle. The user can write new duty cycle values before the timer roll-over. The TMR1 interrupt is latched into the TMR1IF bit and the TMR2 interrupt is latched into the TMR2IF bit. These flags must be cleared in software.

12.1.3.3 EXTERNAL CLOCK SOURCE

The PWMs will operate regardless of the clock source of the timer. The use of an external clock has ramifications that must be understood. Because the external TCLK12 input is synchronized internally (sampled once per instruction cycle), the time TCLK12 changes to the time the timer increments will vary by as much as TCY (one instruction cycle). This will cause jitter in the duty cycle as well as the period of the PWM output.

This jitter will be \pm TCY, unless the external clock is synchronized with the processor clock. Use of one of the PWM outputs as the clock source to the TCLKx input, will supply a synchronized clock.

In general, when using an external clock source for PWM, its frequency should be much less than the device frequency (Fosc).

12.2.3 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 12-9 shows the timing diagram when operating from an external clock.

12.2.4 READING/WRITING TIMER3

Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method to read or write the timer is to stop the timer, perform any read or write operation, and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 free-running, care must be taken. For writing to the 16-bit TMR3, Example 12-2 may be used. For reading the 16-bit TMR3, Example 12-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 12-2: WRITING TO TMR3

BSF CPUSTA, GLINTD ;Disable interrupt MOVFP RAM_L, TMR3L ; MOVFP RAM_H, TMR3H ; BCF CPUSTA, GLINTD ;Done,enable interrupt

EXAMPLE 12-3: READING FROM TMR3

MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMR3L,	WREG	;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
RETURN			;return

FIGURE 12-9: TMR1, TMR2, AND TMR3 OPERATION IN EXTERNAL CLOCK MODE

TABLE 13-3:	BAUD RATES FOR SYNCHRONOUS MODE

BAUD RATE (K)	Fosc = 3	3 MHz %ERROR	SPBRG value (decimal)	Fosc = 2	5 MHz %ERROR	SPBRG value (decimal)	FOSC = 2	0 MHz %ERROR	SPBRG value (decimal)	Fosc = 1	6 MHz %ERROR	SPBRG value (decimal)
()		/02/11/01/	(accinal)		<i>x</i> 021111011	(40011141)		<i>/</i> 021111011	(uconnai)		<i>/</i> 021111011	(uconnai)
0.3	NA	_	_	NA	_	_	NA	_	_	NA	_	—
1.2	NA	_	_	NA	—	_	NA	_	_	NA	_	_
2.4	NA	—	—	NA	—	—	NA	—	—	NA	—	—
9.6	NA	_	—	NA	_	—	NA	_	—	NA	_	_
19.2	NA	—	_	NA	—	_	19.53	+1.73	255	19.23	+0.16	207
76.8	77.10	+0.39	106	77.16	+0.47	80	76.92	+0.16	64	76.92	+0.16	51
96	95.93	-0.07	85	96.15	+0.16	64	96.15	+0.16	51	95.24	-0.79	41
300	294.64	-1.79	27	297.62	-0.79	20	294.1	-1.96	16	307.69	+2.56	12
500	485.29	-2.94	16	480.77	-3.85	12	500	0	9	500	0	7
HIGH	8250	—	0	6250	—	0	5000	—	0	4000	—	0
LOW	32.22	_	255	24.41	_	255	19.53	_	255	15.625	_	255

BAUD	Fosc = 10 M	Hz	SPBRG	Fosc = 7.159) MHz	SPBRG	FOSC = 5.068	3 MHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	NA	_	_	NA	_	_	NA	_	
1.2	NA	_	_	NA	_	_	NA	_	_
2.4	NA	_	_	NA	_	_	NA	_	_
9.6	9.766	+1.73	255	9.622	+0.23	185	9.6	0	131
19.2	19.23	+0.16	129	19.24	+0.23	92	19.2	0	65
76.8	75.76	-1.36	32	77.82	+1.32	22	79.2	+3.13	15
96	96.15	+0.16	25	94.20	-1.88	18	97.48	+1.54	12
300	312.5	+4.17	7	298.3	-0.57	5	316.8	+5.60	3
500	500	0	4	NA	_	_	NA	_	_
HIGH	2500	_	0	1789.8	_	0	1267	_	0
LOW	9.766	_	255	6.991	_	255	4.950	_	255
-									
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	Z	SPBRG	Fosc = 32.76	8 kHz	SPBRG
BAUD RATE (K)	Fosc = 3.579 KBAUD	MHz %ERROR	SPBRG value (decimal)	Fosc = 1 MH KBAUD	z %ERROR	SPBRG value (decimal)	Fosc = 32.76 KBAUD	68 kHz %ERROR	SPBRG value (decimal)
BAUD RATE (K)	Fosc = 3.579 KBAUD NA	MHz %ERROR —	SPBRG value (decimal)	Fosc = 1 MH KBAUD NA	z %ERROR —	SPBRG value (decimal)	Fosc = 32.76 KBAUD 0.303	68 kHz %ERROR +1.14	SPBRG value (decimal) 26
BAUD RATE (K) 0.3 1.2	Fosc = 3.579 KBAUD NA NA	MHz %ERROR — —	SPBRG value (decimal) —	Fosc = 1 MH KBAUD NA 1.202	z %ERROR — +0.16	SPBRG value (decimal) — 207	Fosc = 32.76 KBAUD 0.303 1.170	58 kHz %ERROR +1.14 -2.48	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4	Fosc = 3.579 KBAUD NA NA NA	MHz %ERROR — — —	SPBRG value (decimal) — —	Fosc = 1 MH KBAUD NA 1.202 2.404	z %ERROR +0.16 +0.16	SPBRG value (decimal) — 207 103	Fosc = 32.76 KBAUD 0.303 1.170 NA	68 kHz %ERROR +1.14 -2.48 —	SPBRG value (decimal) 26 6 —
BAUD RATE (K) 0.3 1.2 2.4 9.6	Fosc = 3.579 KBAUD NA NA 9.622	MHz %ERROR +0.23	SPBRG value (decimal) — — — 92	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615	z %ERROR 	SPBRG value (decimal) — 207 103 25	FOSC = 32.76 KBAUD 0.303 1.170 NA NA	8 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2	Fosc = 3.579 KBAUD NA NA 9.622 19.04	MHz %ERROR +0.23 -0.83	SPBRG value (decimal) — — — 92 46	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24	z %ERROR 	SPBRG value (decimal) — 207 103 25 12	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57	MHz %ERROR — — +0.23 -0.83 -2.90	SPBRG value (decimal) — — 92 46 11	FOSC = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34	Z %ERROR +0.16 +0.16 +0.16 +0.16 +0.16 +8.51	SPBRG value (decimal) — 207 103 25 12 2 2	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43	MHz %ERROR — — +0.23 -0.83 -2.90 _3.57	SPBRG value (decimal) — — — 92 46 11 8	FOSC = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA	z <u>~</u> +0.16 +0.16 +0.16 +0.16 +8.51 _	SPBRG value (decimal) — 207 103 25 12 2 2 	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57	SPBRG value (decimal) — — 92 46 11 8 2	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) — 207 103 25 12 2 2 — 2 —	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA	68 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3 NA	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57 —	SPBRG value (decimal) — — 92 46 11 8 2 	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA NA	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) 207 103 25 12 2 2 2 	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500 HIGH	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3 NA 894.9	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57 — _ _	SPBRG value (decimal) — — 92 46 11 8 2 — 0	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA NA NA 250	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) 207 103 25 12 2 2 0	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA NA NA NA S.192	68 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6 0

14.3 Watchdog Timer (WDT)

The Watchdog Timer's function is to recover from software malfunction. The WDT uses an internal free running on-chip RC oscillator for its clock source. This does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLK-OUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation and SLEEP mode, a WDT time-out generates a device RESET. The WDT can be permanently disabled by programming the configuration bits WDTPS1:WDTPS0 as '00' (Section 14.1).

Under normal operation, the WDT must be cleared on a regular interval. This time is less the minimum WDT overflow time. Not clearing the WDT in this time frame will cause the WDT to overflow and reset the device.

14.3.1 WDT PERIOD

The WDT has a nominal time-out period of 12 ms, (with postscaler = 1). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a postscaler with a division ratio of up to 1:256 can be assigned to the WDT. Thus, typical time-out periods up to 3.0 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out thus generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the CPUSTA register will be cleared upon a WDT time-out.

14.3.2 CLEARING THE WDT AND POSTSCALER

The WDT and postscaler are cleared when:

- The device is in the reset state
- A SLEEP instruction is executed
- A CLRWDT instruction is executed
- Wake-up from SLEEP by an interrupt

The WDT counter/postscaler will start counting on the first edge after the device exits the reset state.

14.3.3 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT postscaler) it may take several seconds before a WDT time-out occurs.

The WDT and postscaler is the Power-up Timer during the Power-on Reset sequence.

14.3.4 WDT AS NORMAL TIMER

When the WDT is selected as a normal timer, the clock source is the device clock. Neither the WDT nor the postscaler are directly readable or writable. The overflow time is 65536 Tosc cycles. On overflow, the $\overline{10}$ bit is cleared (device is not reset). The CLRWDT instruction can be used to set the $\overline{10}$ bit. This allows the WDT to be a simple overflow timer. When in sleep, the WDT does not increment.

14.4.2 MINIMIZING CURRENT CONSUMPTION

To minimize current consumption, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should be at VDD or VSS. The contributions from on-chip pull-ups on PORTB should also be considered, and disabled when possible.

14.5 <u>Code Protection</u>

The code in the program memory can be protected by selecting the microcontroller in code protected mode (PM2:PM0 = '000').

Note:	PM2 de	oes not	exist on th	e PIC17C42. To
	select	code	protected	microcontroller
	mode.	PM1:PM		

In this mode, instructions that are in the on-chip program memory space, can continue to read or write the program memory. An instruction that is executed outside of the internal program memory range will be inhibited from writing to or reading from program memory.

Note: Microchip does not recommend code protecting windowed devices.

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

AND	DWF	AND WRI	EG with	f	
Synt	tax:	[label] A	NDWF	f,d	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	5		
Ope	ration:	(WREG) .	AND. (f)	ightarrow (dest)	1
Stat	us Affected:	Z			
Enco	oding:	0000	101d	ffff	ffff
Des	cription:	The conten register 'f'. in WREG. I back in reg	its of WR If 'd' is 0 f 'd' is 1 t ister 'f'.	EG are AN the result he result is	D'ed with is stored s stored
Wor	ds:	1			
Cycl	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q	3	Q4
	Decode	Read register 'f'	Exect	ute V de:	Vrite to stination
<u>Exa</u>	<u>mple</u> :	ANDWF	REG, 1		
	Before Instru WREG REG	iction = 0x17 = 0xC2			
	After Instruct WREG REG	tion = 0x17 = 0x02			

BCF		Bit Clear	f					
Syntax: [label] BCF f,b								
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$0 \le f \le 255$ $0 \le b \le 7$					
Ope	ration:	$0 \rightarrow (f < b >$	-)					
Stat	us Affected:	None						
Enc	oding:	1000	1bbb	fff	f	ffff		
Des	cription:	tion: Bit 'b' in register 'f' is cleared.						
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Execu	cute Write register		Write gister 'f'		
<u>Exa</u>	<u>mple</u> :	BCF	FLAG_R	EG,	7			
Before Instruction FLAG_REG = 0xC7								
	After Instruction FLAG_REG = 0x47							

CPFSEQ		Compare skip if f =	Compare f with WREG, skip if f = WREG			CPFSGT		Compare f with WREG, skip if f > WREG				
Synt	ax:	[label] C	CPFSEQ f		Syn	tax:	[label] (CPFSGT f				
Ope	rands:	0 ≤ f ≤ 255	5		Ope	erands:	$0 \le f \le 255$	5				
Operation:		(f) – (WREG), skip if (f) = (WREG) (unsigned comparison)				eration:	(f) – (WRE0 skip if (f) > (unsigned o	(f) – (WREG), skip if (f) > (WREG) (unsigned comparison)				
Statu	us Affected:	None			Stat	us Affected:	None					
Enco	oding:	0011	0001 fff	f ffff	Enc	oding:	0011	0010 ff	ff ffff			
Description:		Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If 'f' = WREG then the fetched instruc- tion is discarded and an NOP is exe- cuted instead making this a two-cycle instruction.			Des	cription:	Compares the contents of data mer location 'f' to the contents of the WI by performing an unsigned subtrac If the contents of 'f' > the contents of WREG then the fetched instruction discarded and an NOP is executed instead making this a two-cycle ins					
Word	ds:	1			Mor	de.	1					
Cycles:		1 (2)				Cycles: 1 (2)						
QC	cle Activity:					velo Activity:	1 (2)					
	Q1	Q2	Q3	Q4	QU		02	03	04			
	Decode	Read register 'f'	Execute	NOP		Decode	Read	Execute	NOP			
lf ski	p:				lf ek	/in:	register 'f'					
	Q1	Q2	Q3	Q4	11 51	ωp. Ο1	02	03	04			
	Forced NOP	NOP	Execute	NOP		Forced NOP	NOP	Execute	NOP			
<u>Exar</u>	nple:	HERE (NEQUAL EQUAL	CPFSEQ REG : :		<u>Exa</u>	mple:	HERE NGREATER GREATER	CPFSGT RI	G			
	Before Instru PC Addre WREG REG	iction ess = HE = ? = ?	RE			Before Instru PC WREG	iction = Ac = ?	dress (HERE)			
	After Instruct If REG PC If REG PC	tion = Wf = Ad ≠ Wf = Ad	REG; dress (EQUAL REG; dress (NEQUA) L)		After Instruct If REG PC If REG PC	tion > W = Ac ≤ W = Ac	REG; Idress (grea: REG; Idress (ngrea	TER) ATER)			

Applicable Devices 42 R42 42A 43 R43 44

17.1 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

			Standard Operating Conditions (unless otherwise stated) Operating temperature					
DC CHARA	CIERIS	STICS				-40°C	\leq TA \leq +85°C for industrial and	
						0°C	\leq TA \leq +70°C for commercial	
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage	4.5	_	5.5	V		
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	Ι	V	Device in SLEEP mode	
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details	
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060*	_	_	mV/ms	See section on Power-on Reset for details	
D010	IDD	Supply Current	-	3	6	mA	Fosc = 4 MHz (Note 4)	
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz	
D012			-	11	24 *	mA	Fosc = 16 MHz	
D013			-	19	38	mA	Fosc = 25 MHz	
D014			_	95	150	μA	Fosc = 32 kHz WDT enabled (EC osc configuration)	
D020	IPD	Power-down Current	_	10	40	μA	VDD = 5.5V, WDT enabled	
D021		(Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads need to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \cdot R)$. For capacitive loads, The current can be estimated (for an individual I/O pin) as (CL $\cdot VDD$) $\cdot f$

CL = Total capacitive load on the I/O pin; f = average frequency on the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, all I/O pins in hi-impedance state and tied to VDD or Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 17-9: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	_	_	65	ns	
121	TckRF	Clock out rise time and fall time (Master Mode)	_	10	35	ns	
122	TdtRF	Data out rise time and fall time	_	10	35	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 17-10: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3:	CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↓ to CLKOUT	OSC1 \downarrow to CLKOUT \downarrow		15‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↓ to CLKOUT	\uparrow	—	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time		—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time		—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT ↑ to Port out valid	PIC17CR42/42A/43/ R43/44	—	_	0.5TCY + 20 ‡	ns	Note 1
			PIC17LCR42/42A/43/ R43/44	_	—	0.5TCY + 50 ‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT↑	PIC17CR42/42A/43/ R43/44	0.25Tcy + 25 ‡	_		ns	Note 1
			PIC17LCR42/42A/43/ R43/44	0.25Tcy + 50 ‡	—	—	ns	Note 1
16	TckH2iol	Port in hold after CL	Port in hold after CLKOUT1		—	_	ns	Note 1
17	TosH2ioV	OSC1↓ (Q1 cycle) t	o Port out valid	—	—	100 ‡	ns	
18	TosH2iol	OSC1↓ (Q2 cycle) to Port input invalid (I/O in hold time)		0 ‡	-	—	ns	
19	TioV2osH	Port input valid to OSC1↓ (I/O in setup time)		30 ‡	_	—	ns	
20	TioR	Port output rise time		—	10 ‡	35 ‡	ns	
21	TioF	Port output fall time		_	10 ‡	35 ‡	ns	
22	TinHL	INT pin high or low	time	25 *	—		ns	
23	TrbHL	RB7:RB0 change I	IT high or low time	25 *	_		ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 42 R42 42A 43 R43 44

20.0 PIC17CR42/42A/43/R43/44 DC AND AC CHARACTERISTICS

The graphs and tables provided in this section are for design guidance and are not tested nor guaranteed. In some graphs or tables the data presented is outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

TABLE 20-1: PIN CAPACITANCE PER PACKAGE TYPE

Din Nama	Typical Capacitance (pF)							
	40-pin DIP	44-pin PLCC	44-pin MQFP	44-pin TQFP				
All pins, except MCLR, VDD, and Vss	10	10	10	10				
MCLR pin	20	20	20	20				

FIGURE 20-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: microcontroller, protected microcontroller, extended microcontroller, and microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions have been removed.
- 4. 4 new instructions for transferring data between data memory and program memory. This can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replaces function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing the interrupt.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt on change feature works on all eight port pins.
- 16. TMR0 is 16-bit plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Configuration bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit) (PIC17C43 and PIC17C44 only).
- 19. Peripheral modules operate slightly differently.
- 20. Oscillator modes slightly redefined.
- 21. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 22. Addition of a test mode pin.
- 23. In-circuit serial programming is not implemented.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXX to PIC17CXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the interrupt service routine into its four vectors.
- 3. Replace:

4.

MOVF with:	REG1,	W
MOVFP	REG1,	WREG
Replace:		
MOVF	REG1,	W
MOVWF with:	REG2	
MOVPF	REG1,	<pre>REG2 ; Addr(REG1)<20h</pre>
or		
MOVFP	REG1,	REG2 ; Addr(REG2)<20h

Note: If REG1 and REG2 are both at addresses greater then 20h, two instructions are required. MOVFP REG1, WREG ; MOVPF WREG, REG2 ;

- 5. Ensure that all bit names and register names are updated to new data memory map location.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on reset.

To convert code from the PIC17C42 to all the other PIC17C4X devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1996} Microchip Technology Inc.

Table 17-9:	Serial Port Synchronous Transmission
T-11- 47 40	Requirements
Table 17-10:	Serial Port Synchronous Receive
T-11- 47 44	Requirements
Table 17-11:	Memory Interface Write Requirements 161
Table 17-12:	Memory Interface Read Requirements 162
Table 18-1:	Pin Capacitance per Package Type 163
Table 18-2:	RC Oscillator Frequencies 165
Table 19-1:	Cross Reference of Device Specs for
	Oscillator Configurations and Frequencies
	of Operation (Commercial Devices)176
Table 19-2:	External Clock Timing Requirements 184
Table 19-3:	CLKOUT and I/O Timing Requirements 185
Table 19-4:	Reset, Watchdog Timer,
	Oscillator Start-Up Timer and
	Power-Up Timer Requirements
Table 19-5:	Timer0 Clock Requirements
Table 19-6:	Timer1, Timer2, and Timer3 Clock
	Requirements
Table 19-7:	Capture Requirements
Table 19-8:	PWM Requirements
Table 19-9:	Synchronous Transmission
	Requirements 189
Table 19-10:	Synchronous Receive Requirements
Table 19-11:	Memory Interface Write Requirements
	(Not Supported in PIC17I C4X Devices) 190
Table 19-12	Memory Interface read Requirements
	(Not Supported in PIC17I C4X Devices) 191
Table 20-1	Pin Canacitance per Package Type 193
Table 20-1.	PC Oscillator Frequencies
Table E_1 .	Pin Compatible Devices

LIST OF EQUATIONS

Equation 8-1:	16 x 16 Unsigned Multiplication	
	Algorithm50	
Equation 8-2:	16 x 16 Signed Multiplication	
	Algorithm51	
	Algorithm	